
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 12, DECEMBER 1988 1805

Dataflow Computing Models, Languages, and
Machines for Intelligence Computations

JAYANTHA HERATH, MEMBER, IEEE, YOSHINOR1 YAMAGUCHI, NOBUO SAITO, MEMBER, IEEE, A N D
TOSHITSUGU YUBA

Abstract-Dataflow computing, a radical departure from von Neu-
mann computing, supports multiprocessing on a massive scale and plays
a major role in permitting intelligence computing machines to achieve
ultrahigh speeds. Intelligence computations consist of large complex
numerical and nonnumerical computations. Efficient computing models
are necessary to represent intelligence computations. An abstract com-
puting model, a base language specification for the abstract model,
high-level and low-level language design to map parallel algorithms to
abstract computing model, parallel architecture design to support
computing model and design of support software to map computing
model to arcTiitecture a re steps in constructing computing systems. This
paper concentrates on dataflow computing for intelligence computa-
tions and presents a comparison of dataflow computing models, lan-
guages and dataflow computing machines for numerical and nonnu-
merical computations. The high level language-graph transformation
that must be performed to achieve high performance for numerical and
nonnumerical programs when executed in a dataflow computing envi-
ronment a re described using the DCBL transformations and applied
to the Lisp language. Some general problems in dataflow computing
machines are discussed. Performance evaluation measurements ob-
tained by executing benchmark programs in the ETL's nonnumerical
dataflow computing environment, the EM-3, are presented.

Index Terms-Architecture, dataflow, functional and logic program-
ming, parallel computation, performance analysis.

I. INTRODUCTION
TELLIGENCE computations compute characteristics I" associated with human intelligence. They consist of

large numerical and nonnumerical computations, includ-
ing understanding, learning, reasoning, and problem
solving. An ultrahigh speed computing system is neces-
sary to compute such complex computations. The demand
for ultrahigh speed computing machines for analyzing
physical processes, solving scientific problems, and in-
telligence computations is increasing every day. The ma-
jor difficulty in satisfying this demand in uniprocessing is
the physical constraints of hardware and the sequential
and centralized control in the von Neumann abstract com-
puting model.

Sequential and deterministic von Neumann machines
are not oriented to intelligence computations involving

Manuscript received April 6, 1987; revised November 21, 1987. This
work was supported by the Ministry of Education and the Ministry of In-
ternal Trade and Industry, Japan, and the Ministry of Higher Education,
Sri Lanka.

J . Herath is with the Department of Computer Science, George Mason
University, Fairfax, VA 22030.

Y. Yamaguchi and T. Yuba are with the Electrotechnical Labordtory,
Niiharigun, Ibaraki 305, Japan.

N . Saito is with the Department of Mathematics, Keio University. 3-
14-1 Hiyoshi, Kohoku-ku. Yokohama 2 2 3 . Japan.

IEEE Log Number 8824635.

parallel and nondeterministic computations. The alterna-
tive to sequential processing is parallel processing with
high density devices. To solve nondeterministic prob-
lems, it is necessary to research efficient computing
models and more efficient heuristics. The machines pro-
cessing intelligence computations must be dynamic. Ef-
ficient control mechanisms for load balancing of re-
sources, communicating networks, garbage collectors,
and schedulers are important in such machines. Computer
hardware improved from vacuum tubes to VLSI but there
has been no significant change in the sequential abstract
computing model, sequential algorithms, languages and
architecture. Circuit improvements that neglect the par-
allelism of problems do not lead to achieve higher com-
puting speeds. Higher speeds in uniprocessor systems are
achieved by using parallel control mechanisms such as
interleaved memory, instruction fetch and execution over-
lap, extended instruction set, I/O processors, smaller and
faster local storages and multiple execution units.

Parallelism in problems can be detected by users and
compilers. New computing models are necessary to ex-
ploit the parallelism expressed by different algorithms
which give different parallelism for the problem. New
languages map the algorithms to computing models by ex-
pressing all the possible parallelism of an algorithm and
defining the parallel tasks. New machines exploit instruc-
tion level parallelism. However, if there is no parallelism,
no speedup can be expected. The dataflow graph parti-
tioning for the vector machines is horizontal to generate
the vectors and for the multiprocessors is vertical to gen-
erate one or more tasks, the basic unit for scheduling.
Synchronization of control and data flow during execution
assure the execution order.

Dataflow computing [11 provides multidimensional
multiple pipelining instruction parallelism and hardware
parallelism. Scheduling is based on availability of data.
Processes are instruction size. The problems in multipro-
cessing due to the physical structure and operation are
eliminated by parallelism and simple dataflow principle.
The dataflow approach has the potential to exploit large
scale concurrency efficiently, for maximum utilization of
VLSI in computer design, compatibility with distributed
networks, and compatibility with functional high-level
programming. In dataflow, an instruction is enabled im-
mediately after the arrival of required operands, and par-
tial results of the execution are passed directly as data
tokens. The computations are free of side effects, and in-

0098-5589/88/1200-1805$01 .OO @ 1988 IEEE

1806 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14, NO. 12. DECEMBER 1988

dependent computations proceed in parallel. In dataflow
computing, there is no concept of shared data storage.
Every instruction is allocated by the computing element.

The dataflow concept can be easily implemented in both
major computing application areas; numerical and non-
numerical computations. Basic elements of dataflow com-
puting are operators, arcs and tokens. An operation is en-
abled as soon as its operands are available. The output
token value is determined by the operation and input to-
ken values. All dataflow graphs shown in this paper are
drawn according to the following convention. Boxes rep-
resent oprations; arrows represent arcs; arrows with black
heads represent the path for data tokens; arrows with white
heads represent the path for control tokens; black dots
represent the data tokens; and the white dots represent the
control tokens. Common evaluation techniques of these
models include strict and nonstrict evaluations. In strict
dataflow computing, all the operands of an operation or
arguments of a function must be presented to enable the
execution. Figs. l(a) and l(b) show the firing sequence
of the strict computation, multiply. In nonstrict dataflow
computing, a selected number of operands of an operation
or arguments of a function is sufficient to enable the ex-
ecution. This avoids unnecessary computations, elimi-
nates nonterminating computations and optimizes the
computations. Figs. l(c) and l(d) show the firing se-
quence of the nonstrict computation, HCONS. The
HCONS operator has two arguments. The result of
HCONS, the first argument, is generated immediately
after the arrival of first argument. Figs. l(e) and l (f) show
the dataflow computing for the numerical computation (A
* B) - (B / C) + (C / D) and the nonnumerical com-
putation CONS(CAR(x1, x2, * * e) , CDR(x1, x2,
. . *)).

In dataflow computing, data structures in the storage
are represented by a pointer token. This reduces the par-
allelism of the computation, but provides safe execution.
In static dataflow, arrays are treated either as a set of sca-
lars which allow the elements of the array to be handled
simultaneously by independent dataflow instructions or as
a sequence of values which spreads the array out in time
for pipeline execution. Heaps are functional directed
acyclic graphs. They must be completely produced before
consumption. The append, select, create and delete actors
are used to access these structures. The I-structures allow
a selection of elements before complete production of the
structure. The position of an element is defined by a
tagged token. The presence, absence and wait bits indi-
cate the state of the element. Read of an unwritten storage
cell is deferred by the controller until a write arrives.
Pipelining between consumers and producers gives better
performance. Streams are sequentially allocated arrays.

In the basic dataflow computing model, the number of
tokens per arc is restricted to one during the entire com-
putation which results in huge acyclic graphs. This makes
the computation strictly iterative. This problem is solved
by many other advanced computing models. These models
support the building of highly parallel and asynchronous

I / I I . . I ' I '
4 I A'B

HCONS

I y- 1 1 (X l . X Z , -1 ...)

Fig. l (e) Numerical

Fig. 1. Dataflow computing.

computing machines, but differ in their approach as to how
the computing should proceed. Section I1 of this paper
discusses the acknowledgment static, strictly static, re-
cursive dynamic, tagged token dynamic, eduction, lazy-
eager, pseudo-result, and Not(operation) dataflow com-
puting models. The discussion is based on the represen-
tation of conditional computations, the root of iterative
and recursive computations. Section I11 overviews the
logic programming and functional languages used to rep-
resent dataflow computations and the process of high-level
languages to graph transformation using DCBL transfor-
mation. This transformation is applied to Lisp to obtain
dataflow graphs. Section IV discusses the characteristics
of representative dataflow computing machines for nu-
merical and nonnumerical computations and some general
problems. Section V gives the performance evaluation
measurements made using EM-3.

11. DATAFLOW COMPUTING MODELS

A . Static Computing

Static dataflow computing [I] to [5] was proposed by
Dennis for ultrahigh speed computing machines. The
VIM, Texas DDP, LAU, Hughes, and NEDIPS systems
are based on the static computing model. This computing
model consists of operators, data and control arcs, and
data and control tokens. In static computing, concurrent
reentrance is inhibited. Several tokens per link are al-
lowed but there is a restriction of one token per time. An

HERATH ef ' COMPbTING MODELS FOR INTELLIGENCE COMPUTATIONS I807

actor fires when there are no tokens on any of the actor's
output arcs.

Two models are used to represent static dataflow com-
puting. The strictly static model used in Texas DDP 161,
[7] prohibits initiation of a new iteration before the pre-
vious one is concluded. The branch node does not provide
new tokens until the previous iteration is completed. This
model provides safe execution of the computation but
limits the parallelism. In the acknowledgment static model
[3] consumers send acknowledgment signals to produc-
ers, indicating the possibility of accepting a new set of
tokens. This enables pipeline production of tokens and
exploits the parallelism by allowing initiation of new it-
erations before the previous one has been concluded. Safe
execution of reentrant graphs is provided with added com-
plexity.

A token consists of a value and one component tag rep-
resenting the target actor identity. No code copying or
recursion is allowed. Only iteration is supported. The
switch-t, switch-f, and merge operations are introduced
to support conditional computations in both models. A
true token at the input of switch-t copies the other token
in the input to the output. A false token at the input of
switch-t does not dispatch the other input token to the out-
put. Similarly, the switch-f operator dispatches the input
token to the output if and only if the boolean input token
is false. Three input merge operators are executed when
the boolean input and appropriate data token is available.
Fig. 2 shows the implementation of the conditional com-
putation, IF C (x) THEN A1 (x) ELSE B1 (x) , and three
instances of the firing sequence.

B. Recursive Dynamic Computing

In dynamic dataflow computing, several instances of a
node can be fired at a time and these nodes can be created
at run time. Concurrent reentrance is permitted using code
copying. In code copying, a new instance of a subgraph
is created. The tokens must be directed to the correspond-
ing instance. This enables recursive computations in the
dataflow computing environment. Davis [161, [171 and
Dennis et al. [4] proposed the recursive dynamic com-
puting model based on FIFO queues and recursive com-
putations resulting in acyclic directed graphs. In each in-
vocation, a maximum of one token is placed on a link.
An apply actor causes a new copy of the program graph.
There are no merge actors because in any instance of the
graph only one of the data inputs of the merge is used. A
token consists of a value and a two component tag, one
representing the graph instance, the other representing the
actor within the graph. A token is represented by, < U ,
< U , s > d >, a data value U , an activation instance U ,
an actor within the function s, and the operand of the tar-
get actor d . The operand of the target actor is not neces-
sary for single operand operations. The DDM 1 machine
is based on this recursive dynamic computing. Fig. 3
shows the firing sequence for recursive dynamic dataflow
computing.

Pig. Z(b) t
Fig. 2. Static computing

cl 1

>ig. S(a)

?ig. S(b)

Fig. 3. Recursive dynamic computing.

C. Tagged Token Dynamic Computing
The tagged token dynamic computing model, proposed

separately by Arvind [8] to [l l] and Gurd-Watson 1121-
[lS], is more efficient in exploiting the parallelism to a
large degree. A tag assigned to each token distinguishes
its identity. Identically tagged tokens enable the execu-
tion of an operation. Tagging allows many data values per
link at one time. Several instances of a node are fired at
one time. Each node can be created at run time. Recursion
and iteration are represented directly. Successive cycles
of an iteration are allowed to overlap by unfolding loops.

A token consists of a value and tag representing the
target actor identity. A token is represented by, < U , < U ,
c, s, i > d > , a data value U , an activation instance U , a
code block (loop body) c , an actor within the function s,
an index representing the cycle of an iteration (data struc-
tures) i , and function activation d. No merge actor is used.
Identity actors, such as D-operator for loop entry which
establishes a new context for iteration and sets the index
of result tokens to one greater than the index of the input
token and D-reset operator for loop exit which restores
the tag of result token to that of the context surrounding

1808 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14. NO. 12. DECEMBER 1988

the tag, are used. Special mechanisms, such as loop throt-
tling are used to limit, the parallelism exploited by tagged
tokens.

The MIT TTDA, Manchester Dataflow machine and all
tagged token dynamic dataflow machines are based on this
model. Id, LAPSE, MAD, SASL, SISAL, and many other
dataflow languages support these machines. The switch
operation used to implement conditional computations has
two input arcs, one for boolean tokens and the other for
data tokens to be switched. This operator also has two
output arcs. The incoming boolean token determines the
output arc along which the incoming data token is sent.
A true token copies the other token in the input to the T
output while a false token copies to the F output. No
merge operators are used. The BRR operation used by
Gurd’s group is similar to this switch operation. Fig. 4
shows the firing sequence for tagged token dynamic da-
taflow computing.

D. Eduction Computing
The Eduction model, proposed by Ashcroft and Jagan-

nathan [18], is a hybrid computing model of dataflow and
demand flow computing. Operator nets represent the
eduction computations graphically. The demand for a re-
sult triggers its computation which in turn triggers eval-
uation of its arguments. The demand propagation contin-
ues until constants are encountered, then a value is
returned to the demanding node and execution proceeds
in the opposite direction. This minimizes the computation
to compute only necessary computations for a particular
problem. The arguments for branches of conditional com-
putations are not evaluated in parallel. Only necessary ar-
guments are evaluated. The modal operators, where, first,
next, followed by, as soon as, merge, whenever, upon
and is current, are used to express recursion and iteration
in a purely functional way. The Eazy flow engine is pro-
posed to execute operator nets described in LUCID lan-
guage. Fig. 5 shows the firing sequence of eduction com-
puting. The wvr node is similar to the switch-t operation.
The switch operation is occasionally used. Operators such
as wvr and merge need extra memory to remember the
last token arrived in dynamic dataflow computing.

E, Dataflow-Control flow Computing
The Dataflow-Control flow computing model proposed

by Treleavan et al. [20] use two basic mechanisms. One
instruction causes the execution of others using the con-
trol mechanism. Instructions receive and dispatch data
using the data mechanism. Instruction execution is caused
by the availability of specific set of data and control to-
kens. Data tokens carry partial result values while control
tokens carry null values. Instructions are activated by the
set of control tokens. Conditional Computations are sup-
ported by the many input two output switch operation.

F. Eager-Lazy Computing
The eager-lazy dataflow computing model was pro-

posed by Amamiya et al. [21] to 1261 for artificial intel-

ligence

!’. Switch

Ij
Switch

I Fig. 4(b)

Fig. 4 . Dynamic computing.

lb ig . S(b)

Fig. 5 . Eduction computing.

applications. In eager evaluation, all possible .. -
computations are executed in parallel without optimizing.
Conditional computations are executed parallel to the
branches. CAR and CDR parts are evaluated in parallel
to the CONS. CONS (x, y) is implemented using the get-
cell, writecar and writecdr operations shown in Fig. 6.
This is the lenient cons mechanism. In lazy evaluation,
selected computations are executed to optimize the com-
putation. The selected branch is executed after the exe-
cution of the conditional computation. In the lazy cons
mechanism, the car or cdr part is evaluated only when its
value is demanded. In this model, eager, lazy, nonstrict,
and demand driven computing mechanisms are selectively
and efficiently implemented to obtain the maximum effi-
ciency. The model is implemented in DFM using VALID
language.

G. Pseudoresult Computing
Yamaguchi et al. [28]-[30] proposed the pseudoresult

dataflow computing model shown in Fig. 7, particularly
for A1 applications. In Fig. 7 black boxes represent pseu-

1809 HERATH er U / . : COMPUTING MODELS FOR INTELLIGENCE COMPUTATIONS

Fig. 6. Eager-lazy computing.

doresults, black dots represent semiresults and white
boxes represent actual results. Pseudoresults are gener-
ated immediately after the arrival of all arguments, as a
result of function execution. See Fig. 7(a). This pseudo-
result enables the successive computations relaxing the
firing conditions. The operations in the function are exe-
cuted concurrently with the evaluation of its successor.
The identifiers of pseudoresults are realized by addresses
in a result store and are eventually filled by actual results.
The semiresult is the pseudoresult used in nonnumerical
computations, and the partial-result is the pseudoresult
used in numerical computations. When the input to an op-
eration or function is actual, semi or pseudo, the output
is an actual or semiresult. The execution of an arithmetic
operation is deferred until the inputs become actual. Fig.
7(b) shows four different instances of CONS execution
and Fig. 7(c) shows an application example of pseudore-
sults. This model is implemented in the EM-3 using the
languages EMLISP and EMIL.

H. Not(operation) Computing
In the Not(operation) computing model [3 11-[33], par-

allel computations are represented by sequential, parallel
and decision making computation segments. Ordered se-
quential computation segments ensure the logical correct-
ness of the computation. Parallel computation segments
composed of independent computations. The conditional
computation is represented using two parallel comple-
mentary computations. The transformation of a traditional
conditional computation to a Not(operation) based com-
putation is performed in two steps. First, the traditional
conditional computation is disintegrated into two comple-
mentary basic operations which must be executed for
deadlock-free computation. The positive state is denoted
by Operation and the negative state is denoted by
Not(operation). The negative state represents many other
positive and negative states. n sequential conditional
computations are represented by n different independent
parallel operations. Then the semantics of the execution
are defined. One of the operations executed will give an
output value if the operation is satisfied. Figs. 8(a) and
8(b) show the firing sequence of the conditional compu-
tation. IF (Operation) THEN SI OR IF (Not(operation))
THEN S2. The Operation and Not(operation) receive a
copy of the input token. When the Operation satisfies the
input data token, the data token is given as the result of
execution, and the output of the Not(operation) is frozen.
Otherwise, the Not(operation) gives the data value output

r pq
Fig. 7(a)

I

t g

7 (c) 1
Fig. 7. Pseudoresult based computing

Fig. B(a)

I na
Fig. 8(b) & ... Sn & ... 1s”

Fig. B (d) Fig. B (e)

Fig. 8. Not(operation) computing.

show two instances of firing sequence of n parallel con-
ditional computations.

111. DATAFLOW COMPUTING LANGUAGES
The language is very important in representing parallel

algorithms for intelligence computations and mapping
them efficiently onto the computing environment. Func-
tional and logic programming languages are two major
declarative language paradigms to enhance intelligence
computing productivity. In dataflow computing it is pos-
sible to use an existing sequential language, functional

~~

language, parallel logic programming or any other high-
level language. The use of existing languages allows ex- while the Operation output is frozen. Figs. 8(c) and 8(d)

1810 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14. NO. 12. DECEMBER 1988

isting software to run on the new machine and give a pro-
grammer high degree of control over the run time behav-
ior. Conventional programs consisting of sequences of
statements and control statements alter the data stored in
memory one at a time. Variables are used to represent
storage cells and a statement is necessary to alter data for
each variable.

The use of sequential languages to represent parallel
algorithms and map for a parallel execution environment
complicate the execution process. Algorithms that form
dataflow graphs from conventional languages are com-
plex. The concurrency detected by a compiler is also lim-
ited. The use of a language which reflects the parallel ma-
chine features exploits the machine parallelism but
increases the programming complexity. Dataflow pro-
gramming requires no knowledge of machine structure and
there is no need of explicit expression of parallelism. The
compiler detects the parallelism. Users should not con-
sider the explicit control of memory allocations in using
machines, but should deal only with data values. Low-
level languages for dataflow computing machines should
describe dataflow computing efficiently.

A. Logic Programming
Robinson’s resolution principle [34] applies only one

powerful rule of inference to mechanical theorem prov-
ing. This enables computer making deductions from set
of logical formulas. Drawing inferences at a very high
speed is the future objective of expert systems. Logic pro-
gramming, based on symbolic logic, is suitable for
knowledge processing systems dealing with large data-
bases [35]. Implicit search strategy and parallelism sup-
port symbolic processing. Logic programming describes
the facts and their relationships in a problem and controls
the execution nondeterministically. Questioning gives the
answer using declared facts and defined rules. A question
is answerable if it is the head of any other clause and each
of its goals is true. When answering a question, logic pro-
gramming looks for matching facts in the database. Two
facts match if their predicates and corresponding argu-
ments are the same. The process of matching, unification,
is the execution mode. Clauses in logic programming are
transformed into dataflow graphs.

1) Prolog: Colmeraur’s Prolog design [36] based on
language theory and mathematical logic with practical
constraints. Prolog, a sequential logic programming lan-
guage, draws inferences efficiently. Relationships are rep-
resented as predicates, and objects are represented as ar-
guments. Facts declare the relationships between objects.
Assertion, a fact, has no body. Conditional assertion, a
rule, has a head and body. Rules are used to describe or
define the relationships. The execution mode is unifica-
tion with backtracking. Prolog languages start the exe-
cution of a goal only after the completion of the previous
goal.

2) Relational Language: Clark’s Relational language
[38] is focus on parallel execution of logic programs. Re-
lational language features include AND-parallel execu-

tion of conjunctive goals, process communications by
shared variables and OR-parallel reduction. The commit
operator is introduced to separate the guard and body.
AND-parallel processes are synchronized by defining the
instances of the variables as producers or consumers.

3) PARLOG: Clark’s PARLOG [39] augments the ex-
pressive power of Relational language. In PARLOG, the
resolution tree has one chain at AND levels, and OR lev-
els are partially or fully generated. Communicating pro-
cesses combine the partial solutions. Restriction of the
access mode is specified by mode declaration. The modes
of predicate variables are predefined as input or output.

4) Concurrent Prolog: Many features of Relational
Language are implemented in Shapiro’s Concurrent
Prolog [40]. In Concurrent Prolog the search strategy is
multiple, depth first. The resolution tree consists of one
chain from top to bottom. Guards can bind variables. Read
only variables in a process are introduced to support pro-
cess synchronization. The clause activation is suspended
until the variable is assigned a value.

B. Functional Programming Languages

In functional programming languages, programs are
mathematical functions based on functional algebra.
Function application is the major operation. The object is
mapped onto another object. There is no concept of stor-
age, assignment, goto, or side effects. Programs are free
building blocks for larger programs. Functional lan-
guages do not reflect von Neumann properties or the ma-
chine structure and are zero or single assignment lan-
guages. They provide specially controlled reassignment
constructs for loop. Functional languages such as Pure
Lisp and FP [41], [42] can be used effectively to execute
computations in dataflow computing machines. In FP,
programs are used to construct new programs using pro-
gram forming operations. It increases the expressiveness
of algorithms, exploits the massive parallelism in scien-
tific computations, permits abstract data structures,
streams, and irregular data structures, and allows power-
ful programming constructs. However, some problems,
including storage control, need efficient solution.

1) VAL: VAL, the high level language designed by
Dennis’s group [11-[5], is value oriented, as opposed to
traditional variable orientation. In a value oriented sys-
tem, new values are defined and used but no values can
ever be modified. Values may be bound to identifiers but
identifiers are prevented from being used as variables. The
design principles of VAL provide implicit concurrency
and synchronization by using completely functional lan-
guage features. Expression based features inhibit all forms
of side effects. Once the values of all inputs are known,
execution cannot influence the results of any other oper-
ation ready to be executed. Automatic detection of par-
allel computations by compilers, vectorization, has been
used to exploit concurrency. Side effect features, memory
update and aliasing are banned. VAL helps simplify crit-
ical programming chores such as error handling, debug-

HERATH ef U / . : COMPUTING MODELS FOR INTELLIGENCE COMPUTATIONS 181 I

ging, and speed analysis. VIMVAL, an extension of
VAL, treat functions as first class objects. They are passed
as arguments and returned as results of functions. Stream
types, free variables, recursion, and mutual recursion fea-
tures are added.

2) Id: Id [8]-[ll] was proposed by Arvind and Gos-
telow. Id, or Irvine Dataflow, is a block structured,
expression oriented, side effect free, single assignment
language. A program in Id is a list of expressions. The
four basic expressions are blocks, conditionals, loops and
procedure applications. Id variables are not typed. SE-
LECT and APPEND create new and logically distinct
structures, Executions are dynamic compared to the static
nature of Dennis’s model. Id supports streams, non-de-
terministic programming and higher order functions.

3) LUCID: LUCID [19], proposed by Ashcroft and
Wadge, is the programming language of operator nets.
The transformation from one to another is simple since
the programs represent mathematical semantics of opera-
tor nets. In LUCID, programming proofs are carried out
and incorporates iterations by regarding all values as his-
tories [171. Everything, including constants, is an infinite
history. Assignment statements are equations between
histories. A program in LUCID is an unordered set of
equations. Conventional LUCID is implemented employ-
ing demand driven computing for infinite objects.

4) Manchester Languages: Languages used in the
Manchester machine [121-[151 are conventional lan-
guages, LAPSE, MAD, SASL, and SISAL. SASL, based
on LUCID, treats functions as first class objects. In par-
ticular, the function takes one argument, and currying is
used to obtain the effect of multiple argument functions.
LAPSE, a single assignment language, has Pascal-like
syntax. LAPSE stores arrays during iteration or for-all
loops which have used them. MAD, based on Id, is typed,
using streams and has operators such as list processing
operations. MAD stores arrays longer, and garbage col-
lection is performed using reference counts. SPNLN and
TASS are low-level dataflow graph languages used for
these languages.

SISAL [43], [44], stream and iteration in a single as-
signment language, is a cooperative research by the Co-
larado State University, DEC, Lawrence Livermore Lab-
oratory, and Manchester University. This language is a
value oriented functional language for sequential, vector,
multiprocessor, and dataflow computing machines. SISAL
is implemented on the VAX, CRAY, HEP, and Man-
chester dataflow machines. SISAL is strongly typed. Re-
cursion has been added. Error values are simplified. Some
Id (/MAD) features are added. Tokens are labeled to al-
low multiple use of arcs. Labels are used for data struc-
tures, loops, and functions. IF1, the intermediate lan-
guage for SISAL [36], performs machine independent
optimizations and machine dependent analysis.

5) Valid: Valid, value identification language [23] de-
signed by Amamiya et al., is a functional language with
implicit and explicit parallel constructs. Lenient-cons
computing is applied in function evaluation to achieve

parallelism. List computations and higher order functions
are written using an Algol and Lisp-like syntax.

6) EMLISP: EMLISP, is a single assignment language
[27]-[30]. To obtain side effect free, pure functional list
processing, the features added to conventional Lisp to in-
crease efficiency in von Neumann computing, such as rel-
atives of PROG, flow controlling operations, list modi-
fiers, relatives of array, and side effect operations such as
RPLACA and RPLACD, are removed. The global and
free variables and loops are inhibited. Special features
such as parallel COND, parallel OR, parallel AND, and
BLOCK are added. EMIL is the low-level language used
to represent dataflow computing graphs.

C. DCBL Transformations for Dataflow Computing
Languages

The objectives of DCBL (pronounced decibel) [32] de-
sign is to define operational semantics for dataflow com-
puting languages, development of high level languages
based on abstraction mechanisms that frees the user from
consideration of machine characteristics and are comfort-
able for users to express many forms of concurrency, to
facilitate the natural expression of parallelism of the prob-
lems for processing on dataflow machines, and to enable
a compiler to generate optimized code that exploits the
inherent dataflow parallelism without the application of
sophisticated analysis techniques.

1) Specijication of DCBL: DCBL allows parallel al-
gorithms to be expressed as a collection of expressions.
The execution of a DCBL program consists of a sequence
of parallel executions of expressions. An expression ex-
ecution may generate zero, one or more than two values.
Tuple expressions, multivalue function expressions, con-
ditional expressions, and parallel expressions generate
more than two values. The DCBL syntax specification for
iterative computations is given below.

exp :: = function(exp)
exp 1 exp, exp, * *

I IF exp THEN exp, IFNOT exp THEN exp
1 identifiers
I constants
I LET idlist = exp IN exp
1 IF exp THEN exp
I FOR idlist = exp DO iteration

iteration :: = ITER exp NOTITER exp
1 LET idlist = exp IN iteration
1 IF exp THEN iteration
I IF exp THEN iteration, IFNOT exp THEN it-
eration

idlist ::= id
I idlist id

The application of a function to an expression,
funct (exp), is used to represent sequential computations.
The elementary functions are operators. The operations
performed on expressions can be characterized by math-
ematical functions. The application of function F to the

1812 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14, NO. 12, DECEMBER 1988

imports, x , y , and z , produces export F (x , y , z) . The
expression exp, exp, * * * exp is used to represent parallel
computations. Identifiers and constants are the most ele-
mentary expressions. Values can be bound to identifiers,
which can be bound to simple types (integer and real),
structured types and function calls. The LET IN expres-
sion provides local binding to extend the execution envi-
ronment.

Decision making computations, conditional expres-
sions and the FOR DO expressions, sequence the parallel
computation to ensure logical correctness and avoid ini-
tiating computations whose results can never be used.
Conditional expression represents operational semantics
for conditional, iterative and recursive computations. The
general IF THEN ELSE expressions and case expressions
are represented by the IF exp THEN exp. All predicates
in IF exp THEN are supported by expressions. IF exp
THEN exp provides the single branch conditional expres-
sion. IF expl THEN exp2 IFNOT expl THEN exp3 is
a two branch conditional expression with two parallel
complementary conditional computations. Combining n
IF exp THEN exp expressions, gives n parallel compu-
tations with a live branch and n - 1 dead branches.

The FOR idlist = exp DO iteration expression imple-
ments iterative computations that depend on the previous
iterative computation result. The FOR expression has loop
initiation and a loop body. Loop initiation is performed
by the FOR idlist = exp part and the loop body appears
in DO iteration. The iterative expression is evaluated by
binding the iterative identifiers, the elements of idlist, to
the values of exp. The evaluation of the iteration body
results in a NOTITER expression and an ITER expres-
sion. Both these expressions are evaluated concurrently in
each iteration exploiting the hidden parallelism of the it-
eration expression. If the NOTITER expression satisfies
the condition, this terminates the iteration and gives the
computation result. Otherwise, the output is given by
ITER expression. Here, the ITER expression is satisfied
and continues iteration. The iteration is terminated when
the evaluation of the ITER body results in an ordinary
NOTITER expression. The value of this expression is the
value of the ITER expression. Parallel expressions for the
computations of the type For i := 1 to n do C[i] :=
A[i] * B[i], represents iterations that do not depend on
the previous computation result.

2) DataJlow Graph Specijication Language: A data-
flow graph representing dataflow computations can be de-
fined by N = [T, 0, L] where T, 0, and L represent the
set of tokens, the set of operations and the set of links.
For an element Oi in 0, the set Im(Oi) represents the
import ports of Oi and Ex (Oi) represents the export ports
of Oi. Firing of an operation maps imports to exports. The
semantics of firing define the minimum set of import ports,
varying from one to the total number of imports, that must
receive imports to enable an operation/function. The out-
put semantics may vary depending on the execution of an

operation. Firing an operator dispatches exports to zero
or more export links. Expressions and the compiler help
identify concurrency in algorithms and their program and
map that concurrency onto graphs. The graph, which con-
nects subgraphs composed of operators, is an explicit rep-
resentation of the concurrency available in evaluating
expressions.

An element of a dataflow computation consists of im-
port ports, imports, export ports, exports, import links,
export links, and operators. Specifications of a dataflow
graph include imports, exports, data links, and operators.
Operators are defined recursively using local imports and
exports. Imports to the operator embark at import ports.
Exports of the operators disembark at export ports. The
number of imports or exports in a link is unlimited. This
gives the dynamic computing features. The restriction of
values to one gives the static computing feature. The op-
erators communicate values through their import and ex-
port ports. The graph has an import port for each free
variable of the expression and an export port for each
value returned by the expression.

The exports produced are exported via export ports to
defined destinations to enable successive computations.
The destination of an export value is specified by the im-
port port number of the destination operator. The export
port of an operator is connected by a link to the import
port of another operator. The export value of one operator
is the import value to another operator.

The following notations are used to specify the dataflow
graphs. T (exp) is used to represent the operators of the
translated expression exp. 1M.T (exp) represent the set
of imports to T(exp). EX.T(exp) represents the exports
at the export ports of the T(exp). The imports and exports
have defined import ports and export ports. Links are rep-
resented by EX.T(exp1) -+ IM.T(exp2) which means
that the exports of T(exp1) are linked as the imports to
the defined import ports of the T(exp2). The import ports
of all parallel subgraphs are assigned the set of import
values. The graph export ports are formed by concate-
nating the export ports of the component subgraphs. This
graph language provides facilities to design demand driven
computing languages and to specify parallel and distrib-
uted systems.

The complexity of a dataflow graph increases with the
number of operators and arcs. This increases execution
and communication time and creates many problems when
executing in a limited resource. The fundamental princi-
ple of managing the complexity is to reduce the size of
the graph while preserving the original properties of the
graph. In graph reduction, the number of operators, arcs
and tokens generated are reduced without changing the
final result of the computation.

3) DCBL Transformation: The transfer function T
maps expressions to dataflow graphs and the functionality
of the operator F maps imports onto exports. The opera-
tional semantics are defined and derived by the applica-

HERATH et al.: COMPUTING MODELS FOR INTELLIGENCE COMPUTATIONS 1813

tion of F(T(exp)). The expression transformation to
graphs gives the informal operational semantics of the da-
taflow graphs. The transformation of funct(exp),
T(funct(exp)), is sequentially connected dataflow
subgraphs. The transformation is made by connecting the
export ports of T(exp) to the import ports of T(funct). The
transformation of [T(expl, exp2, . expn)] consists of
n subgraphs, [T(expl)], [T(exp2)], * . . and [T(expn)],
that can be executed in parallel. Two subgraphs are con-
nected sequentially in the implementation of the simplest
conditional expression, IF expl THEN exp2. Predicate
expl controls the evaluation of exp2. The import data
value of T(exp1) is the export of T(exp1) if this data sat-
isfies the condition expressed by expl; if not, the data
value is simply absorbed. This expression provides the
facility to evaluate n parallel conditional expressions. The
transformation of parallel complementary conditional
expressions, IF expl THEN exp2 IFNOT expl THEN
exp3 is illustrated in Fig. 9. The transformation of the
identifier, [T(id)], gives a graph with no operators. The
transformation of a constant expression gives the const
operator with import export links. A trigger-value import
produces the value, const, as the export.

DCBL binds identifiers locally. In evaluating FOR
idlist = exp DO iteration, the elements of idlist are
bound to the values of exp, and iteration is terminated
when the iteration results in an ordinary expression.
ITER(exp) supports iteration if the imports satisfy the
expression exp. NOTITERexp gives the result of the
computation. The iteration body, LET idlist = exp IN
iteration, is implemented in the same way as the expres-
sion LET idlist = expl IN exp2 is implemented. The
dataflow graph implementation of the conditional itera-
tion body, IF exp THEN iteration, is similar to that of
the conditional expression. Both subgraphs, IF exp and
IFNOTexp, provide a complete set of exports. [T(exp)]
and [T(notexp)] are placed on the import paths of the
iteration body subgraphs, [Tl(iterationl)] and
[Tl(iteration2)]. Exports of [T(exp)] or [T(notexp)] en-
able the evaluation of a selected iteration body.

4) Functionality: The functionality of dataflow graph
represents the operational semantics of expressions and
the formal simulation of dataflow graph execution. The
graph is mapped onto its semantic characteristics using
the functionality of its operators. The operational seman-
tics of a dataflow operator are given by its functionality
which maps its imports onto exports. The functionality of
an operator is the usual arithmetic or boolean function as-
sociated with it. For example, F + (x, -y) = x + y and
Fconstant (x) = constant. Arrival of x token triggers the
constant operator to give the defined export. The func-
tionality can be extended for an ordered set of dataflow
imports. The operator, plus, can be applied to the ordered
sets x.X and y . Y where x represents the first value of one
ordered set, X represents the rest of that ordered set, y
represents the first value of the other ordered set, and Y

imports: (IM.T(exp1) U (IM.T(NOTexp1) = IM.T(exp1)) U (IM.T(expZ) -
(EX.T(exp1)) U (IM.T(exp3) - (EX.T(NOT(exp1))

exports: (EX.T(exp2)) or (EX.T(exp3))

links:(EX.T(expl)->IM.T(expZ)) U EX.T(NOTexp1)-> IM.T(exp3))

roperatorr:]
m]

imports:(LM.T(expl) = EX.T(NOTexp1))
I

I exports:(EX.T(exp1))

irnports:(IM.T(NOTexpl))

exports:(EX.T(NOTexpl) = M T(exp1))

irnports:(IM.T(expZ))

exports:(EX.T(expZ))

irnports:(lM.T(exp3))

Fig. 9. DCBL transformation-T(IF expl THEN exp? IFNOT expl THEN
exp3).

represents the rest of that ordered set. Hence,

(x + y) . Fplus(X, Y) .
The characteristics of operators or functions can be dis-

tinguished by either imports or exports. According to im-
ports there are two types, strict and nonstrict, of operators
or functions. In strict operator or function the availability
of all imports enables the execution. For strict operators,
the operator will not execute without its complete set of
imports. F(X, Y, * * .) = e if X or Y * = e = empty
Nonstrict operators or functions need the availability of
specified operands or arguments to enable the execution.
According to exports there are two types of operators; one
produces exports in the execution with the arrival of im-
ports, and the other, used in the implementation of con-
ditional, iterative, and recursive computations, produces
and seizes or freezes the exports, depending on the arrival
of imports. In executing conditional operators, the data
value imported is exported if it satisfies the conditional
operator; if it does not satisfy the conditional operator, no
export values are produced. The complementary set of
conditional operators, Fcond (x) and Fnotcond (x), can
be executed concurrently.

5) DCBL Transformations in Lisp: The DCBL trans-
formation process can be used in any language to repre-

Fplus(x.X, y . Y) = Fplus(x, y) . Fplus(X, Y) =

1814 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14. NO. 12. DECEMBER 1988

sent dataflow computations. Flow graph languages can be
defined, using imports or exports. Import based languages
can be used to represent demand driven computations.
Imports and exports show the relationship between data-
flow and demand flow computations. IL is the interme-
diate form for transformed Lisp programs. IL- 1 represents
the dataflow computations based on exports from an op-
erator. The format of the codes is

(OPCODE CONSTANT DEST-LIST)
(CALL FUNCTION-NAME NO-OF-ARG NO-OF-
RET DEST-LIST)
(PROC FUNCTION-NAME NO-OF-ARG DEST-
LIST).

The opcode represents an operation or a function name.
Constant type operands of an operation are placed in the
constant datum field of the operation. Dest-list, corre-
sponding to the number of output arcs of a node, repre-
sents the destinations of the result of an operation. A des-
tination field consists of a label field and an attribute field.
The label field represents the destination node and the at-
tribute field represents the node attribute. Proc specifies
the function name, total number of arguments, and des-
tination list of each argument. Fig. 10(a) shows the Lisp
program and Fig. 10(b) shows the IL-1 code for Fibon-
acci computation,

F(1) = 1 ;
F(2) = 1 ;
F(n) = F(n-1) + F(n-2).

Fig. 1O(c) shows the IL code based on imports to an
operator. Instead of destinations of exports being defined,
the origins of imports are defined. DEST-LIST in IL code
is replaced by ORG-LIST, which represents the origins of
the imports, to get the IL format for import based com-
putations.

The nonnumerical and numerical operations in IL are
car, cdr, cons, add, multiply, subtract and divide. The
dataflow computing support codes are distribution, pro-
cedure, call, return and constant. The first column of Ta-
ble I gives the definitions of these operators. The second
column of Table I gives the definitions of nonstrict oper-
ators used in IL. The third column of Table I gives the
definitions of the conditional operations. CONSTANT is
used to obtain constants, TRUE, FALSE, or any other
required value. IL codes give the Fig. 10(d) dataflow
graph of the Fibonacci computation. Parallel EQUAL and
NOTEQUAL satisfy the conditional computation require-
ment. The functionality of IL operators for nonnumerical,
numerical, and conditional operations is shown below.
Here, N and E imply frozen export and error value export.

List operations:
Fhead((x1 x2 . * .)) = x l
Ftail((x1 x2 * *)) = (x2 x3 *) Ftail(()) = E
Fcons(x1 (x2 * . -)) = (xl x2 *

Ffhead(()) = E

)

= Fib n-I + Fib n-2

(defun fibonacci (n)
(cond ((cq n 1) 1)

(t (plus (fibonncci(diKerence n 1))
(Rbonacci(diKerenc+ n 2))))))
Fln. IO(.)

((eq n 2) 1)

GOOOl (PROCEDURE FIB I (GO002 MONO-0))
GOO02 ('DISTRIBUTE (GO001 MONO-0) (GO004 MONO-0))
GO003 ('EQ (C-1 1) (GO012 (RETURN 1)))
GOOO4 ('EQ (C-1 2) (Goo06 MONO-0)))
GOWS ('GT (C-I 2) (COO07 MONO-0) (GOO08 MONO-0))
G0006 (*CONSTANT (C-1 1) (G0012(RETURN 1)))
GOW7 ('DIFFERENCE (C-1 1) (GOO09 (ARC 1 1)))
G0008 ('DIFFERENCE (C-1 2) (GOO10 (ARC 1 1)))
GOO09 ('CALL FIB 1 1 (GO011 0))
GOOlO ('CALL FIB 1 1 (GO011 1))
G W l l ('PLUS (GOO14 (RETURN 1)))
GOO12 ('RETURN I)
END
FIK. 1OIb)

GOOOl (PROCEDURE FIB 1)
GOOOZ ('DISTRIBUTE (GO001 MONO-0))
GOO03 ('EQ (C-1 1) (Goo02 2))
GOO04 ('EQ (C-1 2) (COO02 1))
GO005 ('CT (C-1 2) (COO02 1))
GO006 ('CONSTANT (C- l 1) (Goo04 1))
GO007 ('DIFFERENCE (C-1 1) (COO05 1))
GO008 ('DIFFERENCE (C- l 2) (GOO05 1))
GO009 ('CALL FIB 1 1 (GO007 0))
GOOlO (-CALL FIB 1 1 (GO008 1))
GOO11 (-PLUS (GOO09 1) (GOO10 2))
GO012 ('RETURN (CO003 1) (GOO04 2) GOO11 3)

1
-~
' Procedure Fib 1

1Di;tribute ,]

J

[Return

Fig. IO(d)

Fig. 10. Fibonacci-dataflow computing

Numerical operations:
Fplus(x y) = x+y Fdifference(x y) = x-y
Fquotient(x y) = x l y Fremainder(x y) = rem x ly
Ftimes(x y) = x * y

Conditional operations:
Fnull(()) = () Fnotnull(x1
Fnull(x1 . . .) = N Fnotnull(()) = N

*) = (xl . . .)

Fatom((x)) = (x) Fatom((x1 -) = (xl . a)

Fatom((x1- * *)) = N Fnotatom(x) = N

Fnumberp(1) = 1 Fnotnumberp(1
Fnumberp(1 *

Fequal(x x) = x Fnotequal(x x) = N
Fequal(x y) = N Fnotequal(x y) = x

. -) = 1 . . .
.) = N Fnotnumberp(1) = N

HEKATH er a / : COMPUTING MODELS FOR INTELLIGENCE COMPUTATIONS

~

1815

TABLE 1
BASIC DEFINITIONS

lie(of two Input li.1,

(. P L U S : Addition of
,U" inputs

D ~ R ~ ~ ~ ~ ~ ~ or t w o in-
5 . D I F F E R E N C E :

P"lr

6 . T I \ I E S Mul t ip i t -
ce l lo" of t w o inputs

7 QUOTIEKT: DI-
. i s o n of one input
by o ihpr

8. R EM A I V DE R .
Hernainder 01 dmi-
5iO" of I X O ,"put3

9 . 1>1S T R IB U T E :
1>ir,rit,u,cr '"put

IO.CO\STA\T:
C o r ~ e n l d a i s U h w
inpui I S rece ived

1 I . P R O C E U U R E :
Dednes procedure

12 C A L L : Calls pro.
c e d u r c

I S R E T U R N : R c -
, t"l"S value of procr . , durc

-

; G d i t i o n a l - I L
i . iToht .h l&- f&
storn inpu,, 1rec.c
o t h c r x l m

2.VOTATOM:
Frrrrc lor acorn in-
p u t , Input o therwise

S.V\'UhtHERP: Intc-

put. f r r c r r othcr-
v i s e

4 . 3 O T S U M B E R P :
Frcrre for integer

x i3c

S . E Q U A L . Right in-

ort,crxio.

6 . N O T E Q U A L
Right input it not
equal. f r e e z e o thcr -

gc, for inleger in.

input. input o l h c r -

put if cquBi. rrccrc

W l P C

7 V U L L : xUii ror
input. rrcrrc

n . \ o r \ u i s . : irlpui
for not null input.
rrFCSp

i n p u t i r R . I p a ~ p r than

o t h r r x is.

9 G R E A T E R . RiShl

Idi. f rccrr other-
U i./c

1O.KOTCREATER:
Right input i f not

frrcrc o l h c r u IJI

than

~ _ _ _ _

rondiiioraal-EM IL
L A T O M : RUC for
acorn input. f a l x
otherwise

for incrgcr input.

$.EQUAL: nu* for
.que1 input.. f S l 3 C

o l h e r x i o e

(. N U L L : True for
null input. felar 0th-
r r u i s .

5 . G R E A T E R T H A X :

. .

2 . N U M B t l L P : Truc

fal.rc olhcrul r r

T~~~ ir ,ish, input
i l grcaLer than Irfl.
fsloc o t h e r x i s t

6.LESSTHAV: True
if right input is le13
t h a n I&. falrr o l h -
P I U i J C

7.SWIJCH- T:
T: F ~ ~ ~ . ~ i r n o t t rue ,

r u i k h input o ther -
U io*

8.SWITCH-F:

r x i i c h m p u t ocher-
x i.t

F: €recr. ir fais..

for integers x greaterthan y
Fgreater(x y) = y Fnotgreater(x y) = x
Fgreater(y x) = N Fnotgreater(x y) = N

Fhcons(x1 (x2 * .)) = x l
Ftcons((x1, x2 - . .) xn) = xn
Fand(F .) = F Fand(T,T,T . * T) = T
For(- * T) = T Fand(F,F,F *

nonstrict operators:

- F) = F

IV. DATAFLOW COMPUTING MACHINES
Considerable progress has been made in building data-

flow machines during last few years to support intelli-
gence computations [52]-[56]. Dataflow machines con-
tributed to advance in building parallel systems. Recur-
sive computations are implemented using tags or code
copying. Software simulation is the most economic way
to verify the effectiveness of the dataflow computing con-
cept and to identify and solve some problems. Real hard-
ware prototypes help to identify and solve hardware prob-
lems. Larger programs can be executed at a higher speed
in large scale prototypes with sufficient resources.

A . Static Machines
I) VIM: The Dennis group at MIT introduced the da-

taflow computing concept and laid the foundation for most
other dataflow projects [11-[5]. Research and develop-
ment projects on dataflow computing started in 1968, and
a 1 GFLOP VAL interpretive machine, VIM, is being de-
veloped. The group's contributions include basic and ad-
vanced dataflow computing models, design of dataflow
graphs, dataflow computing languages, and computer ar-
chitecture. Their main objective is to prove the feasibility
of the practical application of static dataflow computing
with acknowledgment signals for large scale numerical

computations. Acknowledgment signals provide safe ex-
ecution of the computation. In static computing, data to-
kens are stored in an instruction or a copy of the instruc-
tion. Instruction has an operation code to holding operand
values and destination fields. The nodes of a program are
loaded to memory before the computation begins and, at
most, one instance of a node is enabled for firing at a
time. To activate an instruction operand fields must be
filled and acknowledge signals must arrive. Enabled nodes
are detected by associating a counter with each node. Re-
source allocation decisions are made by the programmer
or compiler. Computations that do not contribute to the
final result are avoided by demand driven processing. The
system has been implemented as an interpreter on a Lisp
machine and eight PE multiprocessor prototype. Bench-
mark programs such as the weather model, Navier-stoks
problem, and plasma simulation were executed. A larger
prototype with 1024 cell blocks, 1024 functional units,
and 32 array modules has been proposed.

1) Global Conjiguration: The VIM machine consists
of a routing network, cell blocks, functional units and ar-
ray memories, shown in Fig. 11. Interconnection network
tolerate the latency. Cell blocks store program graphs, op-
erations, operands, destination addresses of nodes, and
recognize the instructions ready for execution. The func-
tional unit performs operations on data values. Array
memories store array structures.

2) Processing Elements: Functions of PE's are per-
formed by cell blocks and functional units. Simple in-
structions such as duplicating values and performing tests
are executed within the cell block. A PE, with instruction
enabling and execution mechanisms, consists of an update
unit, an operation unit, a queue, a fetch unit, and an ac-
tivity store. The activity store holds dataflow instructions.
The fetch unit picks addresses of an enabled instruction
from the queue, fetches that instruction with its operands
from the activity store and delivers it to the operation unit.
Instruction execution gives result packets which are sent
on to the update unit. The update unit enters the address
of the enabled instruction in the FIFO queue. If the target
instructions of a result packet reside in some other PE,
the packet is sent off through the network. Program graph
execution terminates when none of the nodes is enabled.
Streams are handled by pipelining. There is no scheduler
to assign nodes to a processor. Faults in the machine re-
quire restarting the computation from the beginning.

3) Packet Formats and Instructions: Result packets
consist of a result value and a reference. Control packets
contain boolean values and control values. Data packets
contain integer or complex values. Floating point, fixed
point, logical packet communication, and shift instruc-
tions are used in the processor instruction set.

2) Texas Distributed Data Processor: The DDP was
designed by Texas Instmments [6], [7]. The project
started in 1976 and the DDP has been in operation since
1978. The main objective is to investigate the feasibility
of static dataflow computing without acknowledgment
signals for high speed computing systems. The DDP uses

1816 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14. NO. 12. DECEMBER 1988

IIROUTkR ' 1 ~ ROVTER
I

Fig. 11. VIM architecture

a strict compound branch node to prevent the initiation of
a new iteration before the completion of the previous it-
eration. The DDP is implemented in TTL. Each dataflow
computer contains 32K words of MOS memory. ADA is
used in the four-processor DDP at the computer science
department of the University of Southwestern Louisiana.

a) Global Conjiguration: The DDP shown in Fig.
12, consists of four identical dataflow computers to exe-
cute programs and a TI 990/10 minicomputer acting as a
front-end processor. These computing elements are con-
nected by a DCLN ring.

b) Processing Elements: Each . dataflow computer
consists of an arithmetic unit which processes executable
instructions, a program memory holding dataflow instruc-
tions, an update controller which updates instructions with
tokens and a pending executable instruction queue. Each
node is associated with a counter. When an instruction
completes execution, a series of token packets is released
to the update controller which stores the token operand in
the instruction and decrements the count by one. If this
count is zero, the instruction is executable and is placed
in the instruction queue. Two communication paths are
used: one for transmitting instruction packets and result
packets, and the other for maintenance and diagnostic
purposes. A maintenance controller detects faulty proces-
sors. Computations can restart at the preceding check-
point. A maintenance bus provides communication facil-
ities to monitor the performance of each processor, to load
and dump contents of the memory, and to diagnose the
faults. The local memory of the processor has an instruc-
tion memory and a data memory. Result packets are stored
in data memory. Recursive computations are not sup-
ported.

c) Packet Formats and lnstructions: Instruction
packets use up to fifteen 35-bit words. An instruction can
have up to 13 input and 13 output arcs with a total of 14
input and output arcs. Result packets are two words long
and contain routing information and data. Monitor call,
semaphore instructions and pipelining are used in imple-
menting streams. Floating point instructions, fixed point
instructions, logical and shift instructions, loop control,
memory fetch and communication with front end proces-
sor oriented instructions support Fortran IV programs.

OUTPUT PORT
PE 1

m---
- 3 = 2 _ i

-
- 7 P E 3

Fig. 12. Texas distributed processor.

FETCH, STORE, and MC instructions handle instruc-
tions and data.

3) LAU System: The LAU project started in 1976 at
the CERT Laboratory, Toulouse, France [45], [46]. The
LAU machine has been in operation since 1979. The
group designed the LAU high-level single assignment
language, programmed a large number of problems, and
implemented a compiler and detailed simulator.

a) Global Conjiguration: The machine consists of a
memory unit, control unit and 32 processing units, shown
in Fig. 13. The memory unit stores instructions and data.
The control unit maintains the control memory. Six uni-
directional buses are used for communication.

b) Processing Elements: Each processing element is
built in 16-bit microprogrammed processes using AMD
2900 bit slice microprocessors. Execution units read data
from central memory. Enabled instructions are kept in a
ready instruction queue until results come out of the pro-
cessor. This helps to reassign instructions to a healthy
processor. Enabled nodes are detected by associating a
counter with each node. The memory unit stores instruc-
tions and the data control unit maintains control memory.
The von Neumann program counter is replaced by an in-
struction control memory which handles instructions and
a data control memory which handles data.

c) Packet Formats and Instructions: Each node can
have a maximum of two input arcs and several output arcs.
The length of instruction and data packets are 64-bits. The
LAU system does not handle stream data structures. The
instruction set includes fixed point, logical, shift, control
instructions such as CASE, LOOP, CALL, RETURN,
and EXPAND.

4) NEDIPS: NEDIPS and IPP were the first commer-
cially available dataflow processors [64]. They are special
purpose dataflow processors with static architecture, well
tuned to image processing applications developed by the
Nippon Electric Co. NEDIPS is a 32-bit machine for sci-
entific computation and uses high speed logic. The Image

HERATH er al. : COMPUTING MODELS FOR INTELLIGENCE COMPUTATIONS 1817

I lEzzA INSTRUCTION QUEUE

1 - 1 I

1 / C O i T R O L U N I T 1
Fig. 13. LAU system.

Pipelined Processor (IPP) is a single chip processor of
similar architecture. This processor is a building block for
highly parallel image processing systems. Special mech-
anisms are used to implement multiple tokens per arc.
Special hardware operations are provided for generating,
splitting and merging streams of tokens.

B. Dynamic Machines
I) MIT Tagged-Token Dataflow Machine: The Irvine

dataflow project started in 1975 at the University of Cal-
ifornia at Irvine and is being continued at MIT by Ar-
vind’s group [8]-[113. The major contributions include
the tagged token dynamic computing model, I-structures,
Id language and computer architecture. The main objec-
tive is to exploit VLSI and provide highly concurrent pro-
gram organization. A 32-PE machine using Symbolic Lisp
machines is being constructed. A 256 board 1 BIP ma-
chine is under construction.

a) Global Conjiguration: This asynchronous ma-
chine has 64 processing elements connected via an n-cube
communication network. The organization minimizes
communication overhead by matching at the processing
element holding the storage instruction and bypassing the
network to the processor itself.

b) Processing Elements: A PE consists of the input,
waiting matching, instruction fetch, service, and output
sections, shown in Fig. 14. The input section accepts in-
puts from other processing elements, the waiting match-
ing section forms data tokens into sets for one instruction,
the instruction fetch section fetches executable instruc-
tions from local program memory, and the output section
routes data tokens containing results to the destination
processing element. Enabled nodes are detected using tags
carrying the information of the node. Tagged stream ele-
ments are processed in parallel using multiple instances,
one for each element. Program memory stores instruction
codes. The data memory, an I-structure memory, stores
arrays. Waiting matching storage, an associative mem-
ory, matches or stores the incoming tokens. The alloca-
tion of memory and tags is controlled by a manager. Re-
cursive computations are supported by tagged tokens.
Processing units asynchronously evaluate the executable
instruction packets. Faults require computations to be re-
stored at the previous checkpoint.

i r ” ” l - ; y] q
STORAGE FETCH

ARITHMETIC LOGIC

Fig. 14. MIT tagged token dataflow PE.

c) Packet Formats and Instructions: There is a max-
imum of two input tokens and several output tokens per
node. Thirty-two enabled nodes can wait for the ALU.
The instruction set includes floating point, fixed point,
and logical instructions. The instruction and data packet
lengths are 33 and 71 bits.

2) Manchester Dataflow Computer: The Manchester
project started in 1975 by the Gurd-Watson group [12]-
[15] at Manchester University. The group’s main objec-
tive is to investigate the use of tagged token dataflow
computing concept for very high speed dynamic comput-
ing systems. They completed the construction of 20 pro-
cessor, strongly typed, tagged dataflow machine in 1980
using Schottky bit slice microprocessors. Their contribu-
tions include tagged token dynamic computing model,
several high level dataflow computing languages and the
dataflow machine. The reported performance of the ma-
chine is approximately l .6 MIPS.

a) Global Configuration: The machine consists of a
switch, token queue, matching unit, instruction unit and
a processing unit, Fig. 15. A switch provides input and
output for the system. The token queue is the FIFO buffer
providing temporary storage for tokens. The matching unit
matches pairs of tokens, employing hardware hashing.
The instruction store holds dataflow programs and PE’s
execute instructions.

b) Processing Elements: There are fifteen functional
units in the processor. One enabled node is assigned to
each functional unit. The node store supplies enabled
nodes to the processing unit. Enabled nodes are assigned
to the functional units using any hardware distributor.
Therefore, there are no multiple assignments to a func-
tional unit. The matching unit can hold 16K units and em-
ploy dynamic hashing. The PU consists of distribution
and arbitration systems and a group of microprogrammed
microprocessors. Streams are processed in parallel using
multiple instances, one for each element. Recursion com-
putations are supported using tags.

c) Packet Formats and Instructions: The instruction
set supports floating point, fixed point, data branch, token
label, flow control, and token relabeling instructions. A
maximum of two input arcs and two output arcs is allo-
cated to an operation. The lengths of instruction and data
packets are 167 and 96 bits.

1818

I I
1 TOKEN OlIEUE 1

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14, NO. 12. DECEMBER 1988

PROCESSOR STORAGE

] . . . E PE

Fig. 16. DDMl.

Fig. 15. Manchester machine.

3) DDMl: The Data Driven Machine project [161, [171
started in 1975 by the Davis group at Burroughs Interac-
tive Research Center. Construction was completed in
1976, and the machine is now at the Utah University. This
dynamic machine employs FIFO queues instead of tagged
tokens to distinguish computations. Program execution
and machine organization are based on recursion. The
DDMl is in operation and has been used to study basic
issues in dataflow. The DEC20/40 is used for software
support. The graphs are generated from a high-level func-
tional language GPL. Parenthesized strings in dataflow
programs provide localized dynamic computing.

a) Global Conjiguration: The machine is composed
of an octary tree hierarchy of computing elements. This
hierarchy exploits VLSI, utilizing the locality of refer-
ence to reduce the communication and control problems.

b) Processing Elements: A PE consists of an atomic
storage unit, an atomic processor, an agenda queue, an
input queue, an output queue, and a switch, Fig. 16. The
atomic storage unit, a 4K-4bit character store, is the pro-
gram memory. The atomic processor is the execution unit.
The agenda queue is the message store for the local atomic
storage unit. The input queue is the buffer to the messages
from the superior element. The output queue is the buffer
to the messages to the superior element. The switch con-
nects to eight computer elements. The tree structure in-
hibits immediate rerouting of the results before the fault.

c) Packet Formats and Instructions: Data tokens
provide all communications. Each instruction is repre-
sented as a variable length instruction packet. Each in-
struction has an enabling counter for input arcs. An in-
struction can have any number of input and output arcs.
Streams are handled by pipelining the tokens. The atomic
processor processes integer-oriented, logical, indexed
read and write, and relational operator-oriented instruc-
tions.

4) SIGMA-1: The SIGMA-] project [48]-[51] was
started in 1982 by Yuba’s group at the Electrotechnical
Laboratory (ETL). Their main objective is to develop a
large scale tagged token dynamic dataflow machine with
100 MFLOPS performance for scientific and technologi-
cal computations. SIGMA-1 uses a C-like high-level da-
taflow computing language, DFC (Dataflow C), and SAS
intermediate language to describe the dataflow graphs. A

preliminary version of the PE and SE using advanced
Schottky TTL logic and MOS memories has been in op-
eration, with 1.3 MIPS, since November 1984. The final
version of a single group uses gate-array LSI chips. The
full hardware configuration with the total predicted per-
formance of 100 MFLOPS is in operation now.

a) Global Conjiguration: The SIGMA- 1, shown in
Fig. 17(a), has 128 PE’s and 128 structure elements (SE’s)
which are divided into 32 groups connected by a two level
hierarchical network. This hierarchy corresponds to par-
allel execution of iterations and procedure calls which ap-
pear frequently in numerical computations. A single group
consists of four PE’s and four SE’s connected by a 10 X
10 crossbar switch. The remaining two ports of the switch
are used for the interfaces to the global network and the
maintenance architecture. The global network is a two
stage omega network.

b) Processing Elements: A PE, shown in Fig. 17(b),
consists of several functional units, each of which works
synchronously and constitutes a two stage pipeline. A
chained hashing hardware with 64K cells is used as the
matching memory unit. Each PE consists of about 81K
logic gates, using nine types of 28 gate-array LSI’s. An
SE controls array structures allowing single write and
multiple read operations. It is implemented by memory of
25613 cells where each cell is attached with a waiting
queue for asynchronous access control.

c) Packet Formats and Instructions: The data trans-
fer between PE’s and SE’s is in fixed length packet form.
A packet consists of the PE or SE number (8 bits), the
cancel bit, the destination identifier (28 bits), the tagged
data (40 bits), and miscellaneous information (12 bits).
The length of the instruction is 40 bits in a primitive for-
mat. The first 20 bits indicate the operation to be per-
formed, and the next 20 bits indicate the destination ad-
dress of the result data. It is possible to allocate a
maximum of three different destinations to an instruction.

5) EM-3: The EM-3 project was started by Yuba’s
group at ETL [27]-[33] in 1982. The objectives of the
project include evaluating the effectiveness of pseudore-
sult dataflow computing for symbolic manipulations, im-
plementing new parallel architectures, and evaluating the
performance of a hardware simulator by executing appli-
cation programs. The eight PE prototype started operation
in 1984, and the 16 PE organization has been in operation
since 1985. It is used to implement new parallel control
mechanisms. The maximum performance of the hardware

HERATH et a l . : COMPUTING MODELS FOR INTELLIGENCE COMPUTATIONS 1819

'LOBAL NETWORK I

1- PEI. ..PE4 SEI, ..SE4

I
MAINTENANCE PROCESSORS 1,..16

SERVICE PROCESSOR 1
'ig. l ? (a)

Fig. 17. SIGMA-1-PE

is about I O MIPS. An advanced version of the EM-3
which will be a more practical dataflow computer proto-
type is being developed.

a) Global Conjiguration: Sixteen identical PE's are
connected via a packet communication network. There is
no locality in the network. The router network is adopted
for communication and a special gate-array LSI chip has
been developed for this purpose. The LSI chip is a 4-bit
slice 4 x 4 router and the transfer rate of a packet through
the network is 150 nanoseconds.

b) Processing Elements: A PE is constructed using
MC68000 microprocessor with special hardware, shown
in Fig. 18. Almost all the functions, including the func-
tion evaluation mechanism, are performed sequentially
within the PE. The MC68000, the packet memory control
unit used as the network interface, and the I/O interface
to the host computer are connected by a common bus.
Each PE comprises three boards excluding the interface
to the host computer PDP- 1 1/44 and the network boards.
Packet memory is accessed from the microprocessor, and
each packet is represented as a pointer to packet memory.
Hence, there is no overhead in moving packets in a PE.

c) Packet Formats and Instructions: The 96-bit re-
sult packet carries output data of an operation. A result
packet consists of the PE number (8 bits), the type-of-
packet field (4 bits), the packet length (4 bits), the desti-
nation-identifier (48 bits) and tagged data (32 bits). The
packet is divided into six 16-bit segments in the network.
The length of an instruction is 48 bits, comprising the 32-
bit destination field and the 16-bit operation field. The
immediate data (32 bits) can be contained, and the num-
ber of destination fields within an instruction is not fixed.

6) EDDY: Amamiya et al. [22] at Nippon Telegraph
and Telephone Corporation (NTT) started research and
development on dataflow machines in 1980. A dataflow
processor array system for scientific and technological

ILL MATCHING SEARCHING

Fig. 18. EM-3 PE.

computations, EDDY, was set up as a prototype in 1983.
High speed was achieved by adapting the operational
characteristics of scientific and technological computa-
tions to the machine architecture at a hardware level. Ap-
plication programs were written in VALID. The machine
exploits parallelism inherent in the application programs,
and its performance was not sensitive to inter-PE com-
munication delay or to load imbalance.

a) Global Conjiguration: Sixteen PE's are con-
nected in a 4 X 4 cellular array structure. Each PE con-
nects directly to eight neighbouring PE's. There are two
broadcast control units for loading programs and data to
each PE, which are located at the interfaces between the
host computer, PDP-11/60, and a set of PE's.

b) Processing Elements: Each PE is constructed
using two 28000 microprocessors. One controls the com-
munication and the other controls the dataflow and exe-
cution of instructions. The tagged token concept is ap-
plied for function invocation and iteration handling. Each
array element in a program is given a unique identifier,
and all elements are processed in parallel. Each PE works
logically as a circular pipeline, but practically, each func-
tional unit within a PE operates sequentially.

c) Packet Formats and Instructions: A data packet
consists of the identifier (color), the destination field and
the value field. An identifier comprises the array element
name, the instantiation name and the loop count. An in-
stantiation name corresponds to a procedure instance name
and is statically determined at compiling time by caller-
callee analysis. The array elements are also statically al-
located to the PE's according to a specific mapping strat-
egy. The instruction contains almost the same information
as the data packet except for an operation code.

7) DFM: Amamiya et al. [21]-[26] at NTT started the
DFM project in 1982. Their main objective is to develop
a dataflow machine for symbolic manipulations [I91 to
[25] using lenient and lazy cons mechanisms. In 1985, the
construction of the DFM-I1 was started using CMOS gate-
array technology. Parallel processing of the DFM is re-
alized by parallel evaluation of function arguments, par-
tial execution of a function body and pipeline processing
of a delayed evaluation scheme. The two PE version of
the DFM has been in operation since the beginning of

1820 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 12, DECEMBER 1988

1986. The basic cycle of a PE is 180 nanoseconds and the
maximum speed is about 1.4 MIPS per PE.

a) Global Conjiguration: Several clusters were con-
nected via a network, shown in Fig. 19. A cluster consists
of eight PE’s and eight structure memories connected by
multiple buses. Structure memories are separate from PE’s
for efficient list processing. Each cluster is supervised by
a cluster control unit. The cluster control unit controls the
load balancing among PE’s within the cluster and com-
municates with other clusters via the network or the host
computer. The two level network is based on clustering.
The load distribution is within a cluster, and function dis-
tribution is among clusters. A blocked content addressa-
ble memory scheme is applied to reduce the amount of
hardware.

b) Processing Elements: Each PE is composed of an
instruction memory, an operand memory and an execu-
tion unit. The matching unit contains content addressable
memory for each function activation. These units work as
a circular pipeline. A hardware queue is placed at the en-
trance of the instruction memory to ease packet traffic in
the circular pipeline. Each structure memory is con-
structed by multiple memory banks equipped with the list
operation unit. Each cell of the structure memory is com-
posed of the cell type field (one bit), the reference count
field (9 bits), the CAR field, and the CDR field (23 bits
each).

c) Packet Formats and Instructions: The size of a
result packet is 56 bits and its contents are the destination-
identifier with the function name (24 bits), and data (32
bits). There are instructions to the cluster control unit and
to the structure memory as well as to the execution unit.
An instruction to the execution unit consists of the oper-
ation field (8 bits), two operand-fields (32 bits each), and
the destination-identifier. An instruction to the structure
memory is 90 bits and is associated with the 3-bit PE
number.

8) PIM-D: Itoh et al. [58] at ICOT began the research
and development of a dataflow PROLOG machine in the
middle of 1982. The objective of ICOT is to develop all
computer related technology from the viewpoint of pred-
icate logic. Dataflow architecture, logic programming and
natural language understanding are three research direc-
tions identified for this paradigm. Three different types of
architecture, the PIM-D, a parallel reduction machine and
a parallel inference machine with an efficient task distri-
bution mechanism, were studied to overcome the highly
parallel processing problems in logic programs. The PIM-
D employs the breadth-first search. To avoid the deadlock
problem caused by the number of processes, each process
is associated with execution priority. The eight PE
PIM-D is in operation now. LSI implementation is being
developed.

a) Global Conjiguration: The machine consists of 16
PE’s, 15 structure memories (SM’s) and a three level hi-
erarchical network, implemented by a 113-bit bus, shown
in Fig. 20. The PE’s and SM’s are divided into four clus-
ters, each of which consists of four PE’s and four SM’s,

PE], PEZ, ... PEm -
ISMI, SMZ, ... SMn

Fig. 19(a)

Fig. 19(b)

Fig. 19. DFM-PE.

Fig. 20. PIM-D architecture.

except for one cluster. Each bus is connected by the net-
work node with a 128 packet buffer. The minimum trans-
mission time is 450 nanoseconds per packet.

b) Processing Elements: A PE is composed of a
packet queue, an instruction control unit, and two atomic
processing units for execution which are also connected
via a bus. The instruction control unit serves as the match-
ing function of dataflow control. Each hardware unit is
constructed using bit-sliced microprogrammable proces-
sors and TTL IC’s.

c) Data Formats: A packet transferred between PE’s
via a bus consists of the PE/SM number (5 bits), the
packet type (9 bits), the packet color (16 bits), the desti-
nation identifier (24 bits) and the operand data (32 bits).
The length of the instruction is 59 bits. A cell of a SM is
composed of data (32 X 2 bits), the type flag (2 X 2 bits),
and the reference count area (10 bits).

9) TOPSTAR: The TOPSTAR [59] is a macro data-
flow machine, developed from 1978 to 1982 by Suzuki et
al. at the University of Tokyo [53] to support the rec-
ognition of printed Chinese character patterns. The TOP-
STAR-I, composed of three PM’s and two CM’s, is the
prototype of the more advanced TOPSTAR-11. The TOP-
STAR-I1 was easily expandable by plugging in additional
modules. Both machines were in operation with the sys-
tem software. Data buffers causes the pipeline effect.
Using TOPSTAR-I1 as a testbed, some experimental stud-
ies such as the dataflow Lisp compiler, logic simulation
and parallel PROLOG implementation, were carried out.

HERATH et al.: COMPUTING MODELS FOR INTELLIGENCE COMPUTATIONS 1821

This led to the development of the parallel PROLOG ma-
chine called the PIE.

a) Global Conjguration: Sixteen processing mod-
ules (PM) and eight communication and control modules
(CM) are organized in a bipartite graph. Each PM is con-
nected to a maximum of four CM’s, while each CM is
connected to a maximum of eight PM’s. Each PM or CM
is separated from each other but has indirect paths through
CM’s or PM’s. A procedure level dataflow graph is dy-
namically mapped into the PM-CM connection network.
Each PM interrupts one of the connected CM’s and re-
quests to allocate a task. Each CM contains allocated pro-
cedures of an execution program, and if executable tasks
exist, their instances as well as their argument data are
sent to the requested PM.

b) Processing Units: Each PM or CM is constructed
using a Z-80 microprocessor and a direct memory access
(DMA) controller. The communication between PM and
CM is through the DMA system at high speed because the
data block is transferred when a new instance of a pro-
cedure is needed at an allocated PM. The CM’s commu-
nication memory is shared with each PM and contains ex-
ecution programs and their argument data.

c) Data Formats: The data packet has a variable
length and consists of the serial number, the field indi-
cating the stack depth, the destination addresses and the
procedure instance. The serial number corresponds to a
color, and the stack depth is used for recording the history
of the data passed. The data format supports the imple-
mentation of the control mechanism of iteration and re-
cursion.

C. Other Projects
In addition to the projects mentioned above, there are

many other dataflow research projects. These include
projects at the University of Southern California [47],
Hughes Aircraft Company, University of Adelaide [65],
University of New South Wales, Keio University, Japan
[3 11, [57], Osaka University [62], Gunma University
[57], Tokyo University [61], and Indian Institute of Tech-
nology.

D. Problems in Datajow Computing Machines
1) Matching Bottleneck: The dataflow processing ele-

ment must consist of mechanisms to recognize the data
tokens to an operation, perform the execution of operation
and dispatch unit to distribute result data tokens. Hence,
a dataflow processing element basically consists of a
matching unit, instruction fetch unit, execution unit and
distribution unit, shown in Fig. 21. The execution unit
performs the execution and structure handling. Matching
performs the synchronization of multiple segments of ex-
ecution. The matching unit sequentially matches and syn-
chronizes the operands of double-operand operations for
execution. No matching is necessary for single-operand
operations. The larger the number of double-operand op-
erations, the more matching to be performed in the match-
ing unit. This narrows the pipeline between the matching

Fig. 21. Dataflow PE

unit and execution unit and reduces the computing speed.
This is the matching bottleneck.

2) Remaining Packet Garbage: The large number of
unexecuted packets waiting in the matching unit after
completing the execution of computation is remaining
packet garbage, RPG. RPG is generated due to vertical
branches created by conditional computations and mul-
tiargument functions. A conditional computation divides
the dataflow computing into two vertical branches. Exe-
cution of the conditional computation makes one branch
LIVE and the other DEAD. Data flow to the operations
ignores the liveness of the branch. Loading only one op-
erand of a double operand operation in the DEAD branch
results in RPG. The multiple-arguments in a function di-
vide the dataflow computation into live vertical branches.
RPG is created when a DEAD branch of a conditional
computation in one vertical branch receives the data val-
ues from the same vertical branch and/or from some other
vertical branch.

3) Control of Parallelism: Dataflow computations
have huge parallelism, many times larger than the paral-
lelism available in the hardware. Such computations tend
to use excessive amounts of storage since many partial
results are created long before resources are available to
process them. Therefore, it is necessary to restrict excess
program parallelism to approximately match machine par-
allelism.

The tokens generated must be dispatched to the corre-
sponding nodes. The more tokens generated the greater
the communication delay. The parallelism can be used ef-
ficiently to hide latency. Balanced load distribution among
PE’s increase the performance of the system and utiliza-
tion of the resources. Unbalanced load distribution and
heavy load degrade the performance of a dataflow system.
Therefore, efficient techniques to reduce unnecessary to-
ken generation and efficient communication ways are nec-
essary.

4) Sequential Computing Segments: A sequential
computing segment is a program segment in which the
maximum parallelism is less than the number of proces-
sors and/or pipeline stages. Such computations are in-
volved in conditional computations, recursive procedure
calls and iterative computations which use previous com-
puting results to continue computation. The performance

1822 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14. NO. 12, DECEMBER 1988

of the sequential computing segments in a program is im-
portant in parallel computing.

5) Parallel Execution of Conditional Computa-
tions: Communication control systems and production
systems consist of a large number of parallel conditional
computations. Nondeterminate computations such as
guarded expressions can be implemented in parallel with
the use of the simple switch-t operation. The guarded con-
dition evaluated as true enables successive computations
to return the value of the guarded expression evaluation.
The switch operation with two outputs used in the con-
ditional computing implementation cannot be used in the
parallel implementation of conditional computations
without additional complex control mechanisms.

6) Optimization of Datajow Computations: In func-
tional languages, different occurrences of an expression
always yield the same value. Loop invariant expressions
produce the same value on each pass of the loop. The
value produced by such common computation, CC’s, is
evaluated once and can be used at all occurrences of the
expression. Reusing CC’s within conditional expressions
saves computational effort. Detecting and arranging CC’s
in conditional expressions to optimize program execution
in dataflow machines is a complicated process. Identify-
ing nonstrict operators or functions and not evaluating the
arguments that will not contribute to the final result of the
computation optimizes dataflow computations. Such non-
strict operators are identified and added to enhance the
efficiency of dataflow computing systems.

V . PERFORMANCE EVALUATION USING THE EM-3
A . EM-3 Operational Model

The functional configuration of the dataflow computing
element is shown in Fig. 18. The result packets received
at the input section are checked and the packets corre-
sponding to single-operand operations are sent to the op-
eration fetch section. The result packets corresponding to
double-operand operators or to a function which has a
plural number of arguments are sent to the operand match-
ing section. This section matches and synchronizes the
packets. The unmatched packets awaiting their partners
are stored in the matching store and searched for when
necessary. If the arrived result packet finds its partner in
the matching store, both are removed from the store and
sent to the instruction fetch section.

The program store is attached to the instruction fetch
section and stores the program to be executed. The op-
eration fetch section fetches operations from the program
store according to the operation addresses and combines
them with their operands to generate internal execution
packets.

The invocation section is activated when a call opera-
tion is fetched at the operation fetch section. A call op-
eration invokes a defined function. The result store, sim-
ulating the pseudoresult control mechanism, is handled by
the search, invocation, exit, and execution sections. This
store consists of a result table, a deferred buffer, and a
storage for list cells. The result table manages a set of

pseudoresults. Each entry consists of tags and a result
value. The deferred buffer is storage for entrust packets
until the pseudoresults become actual. The list cell stor-
age is for list cells created by the cons operation. The
storage management of the result table and the deferred
buffer is carried out by the reference count garbage col-
lection scheme. A pseudoresult identifier is created for the
newly invoked function and an invocation packet is gen-
erated. This packet is sent to the PE scheduler section.

The initiation section accepts invoke packets and ex-
tracts a function name. Its arguments are placed in the
packets and generate result packets corresponding to each
argument. The body of the function is activated by these
result packets.

The search section is activated by an entrust packet
which is associated with a pseudoresult identifier. The
pseudoresult table is searched using the pseudoresult
identifier for the actual result. If found, the entrust packet
is sent to the execution section. If not found, it is stored
at the deferred buffer and waits for the completion of the
predecessor operation assigned by the pseudoresult iden-
tifier.

The exit section stores the values of actual results or
pointers to semiresults which correspond to each pseu-
doresult of the function and are stored in the pseudoresult
table at the exit of each section. If the activated entrust
packets corresponding to the exit operation and waiting
for completion of the function are executable, they are
sent to the execution section, otherwise they are sent to
the entrust section.

The entrust section generates entrust packets and defers
the execution of the operation when input packets include
a pseudoresult. The generated entrust packets are sent to
the PE assigned by the pseudoresult identifier. The sched-
uler section decides the destination PE by using a hashing
function. The preexecution section examines the operands
of an execute packet. If there is a pseudoresult in an op-
erand, the packet is sent to the entrust section, otherwise
it is sent to the execution section. The output section sends
external packets through the communication network to
the corresponding destination PE’s.

B. EMIL
EMLISP is the high-level language and EMIL

is the low level language used in the EM-3. Column 4 of
Table I shows the basic definitions of EMIL codes.
NULL, NUMBERP, ATOM, LESSTHAN, EQUAL,
and GREATERTHAN are conditional operations.
SWITCH-T and SWITCH-F operations are executed with
all the conditional operations. Distribute, procedure, con-
stant, call and return are dataflow computing support
codes. The functionality of EMIL operations is summa-
rized below. Here, E, T and F imply error, true and false,
and integer x is greater than integer y .

List operations:
Fcar((x1 x2 * . .)) = xl Fcar(()) = E
Fcdr((x1 x2
Fcons(x1 (x2 *

. .)) = (x2 x3 * * *) Fcdr(()) = E
)) = (X I x2 . . .)

HERATH et al.: COMPUTING MODELS FOR INTELLIGENCE COMPUTATIONS

E
x 30-

T
I
M 20

1823

~

Attribute checking:
Fatom(a) = T Fatom(x1 x2 .
Fnumberp(1) = T Fnumberp(1 . - *) = F
Fnull(()) = T Fnull(x1 * *) = F
Fequal(x x) = T Fequal(x y) = F
Fgreaterthan(x y) = T Fgreaterthan(y x) = F
Flessthan(y x) = T Flessthan(x y) = F

Numerical operations:
Fplus (x y) = x+y Fdifference(x y) = x-y
Fquotient(x y) = x/y Fremainder(x y) = rem x/y
Ftimes(x y) = xy

a) = F

C. Performance Evaluation Measurements
This section discusses the experimental results obtained

by executing Benchmark programs in the EM-3 [28]-[34].
The software simulator, written in SIMULA, describes
the EM-3 dataflow computing environment, which inter-
prets and executes the EMIL code that describes the da-
taflow computation. The Fibonacci function (F(13)), the
Ackermann function (AK(2 9)), sequential and parallel
versions of the n queen problem (4QS and 4QP), quick-
sort algorithm with maximum parallel data (QUI), Fibon-
acci function F(13), same-fringe (SF) and copy (CP), are
some of the nonnumerical and numerical computations
performed in the EM-3.

I) Effectiveness of Pseudoresult Model: Fig. 22 shows
the performance measurements of SF with and without
pseudoresults. When not using pseudoresults, the execu-
tion of CONS is deferred until the operands become ac-
tual data values. In this case, pseudoresults are generated
but never used in any instruction. The execution time dif-
ference in a single PE configuration is due to the entrust
packet overhead. The number of entrust packets used
without pseudoresults is five times greater than with pseu-
doresults. Dataflow parallelism in SF is very small with-
out pseudoresults and the performance is not improved
with the increase of PE's. The pseudoresult dataflow
computing model revealed the hidden parallelism in Lisp
languages and accelerated the program execution in par-
allel computing environment.

2) Effectiveness of Not(operation) Model: The effec-
tiveness of the Not(operation) model is observed by com-
paring the performance characteristics measurements. The
timing parameters used for operation executions, shown
in Table 11, are larger in the Not(operation) model than
the traditional model. Figs. 23(a) and 23(b) show EMIL
code and corresponding dataflow computing of Fibonacci
numbers. Fig. 10 shows Not(operation) based dataflow
computing of Fibonacci numbers.

Ideal dataflow parallelism of an algorithm is the number
of parallel operations that can be executed in one time
step in an idealized machine. The idealized machine con-
sists of unbounded processors and memories, where all
operations have equal execution time and operators are
executed as soon as operands are available. It is assumed
that an unlimited number of concurrent operations can be
executed in one time step. Fig. 24(a) shows the ideal da-
taflow parallelism in F(13) with the traditional computing

',\ With Pseudo-reault

h

x 6 10 I S I
o i 2 4 8

Fig. 2 2 . Execution time variation-pseudoresult.

TABLE I1
TIMING PARAMETERS

model. Here, the maximum parallelism, 495 concurrent
operations, is observed at the 49th of 85 steps. Fig. 24(b)
shows the ideal dataflow parallelism in the Not(operation)
model. Here, the maximum parallelism, 261 concurrent
operations, is observed at the 34th of 60 steps. This dem-
onstrates the increase in real dataflow parallelism and the
removal of a large number of unnecessary computations
with pseudo-parallelism, and hence the reduction in da-
taflow computing cost.

Table 111 shows the frequency of operations executed
in each benchmark program. This illustrates that SWITCH
operations account for a large percentage of all operations
executed.

Fig. 25 shows the F(13) execution times in the tradi-
tional and Not(operation) models for varying the number
of EM-3 processing elements. The shape of the graph does
not change, but the computing speed approximately dou-
bles in the Not(operation) model. The reasons for speed
increase include reduction of double-operand operations,
parallelization of sequential computing segments, bal-
anced pipeline stages and reduction of token generation

1824 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 12, DECEMBER 1988

(PROCEDURE FIB 1

GOO02 (‘DISTRIBUTE (GO003 MONO-0) (GO006 DATA) (GOO10
DATA)(G0014 DATA))
GO009 (‘EQ (C-l 1) (GOO04 MONO-CONTROL) (GO006 CONTROL)
(GO007 MONO-CONTROL))
GO004 (‘SWITCH-T (C-0 1) (GO018 (RETURN 1)))
GO006 (‘SWITCH-F (GO005 0))
GO007 (‘SWITCH-F (C-0 2) (GO005 0))
GO005 (‘EQ (GOO08 MONO-CONTROL) (GOOlO CONTROL) (GOO11
MONO-CONTROL)(G0014 CONTROL) (GO015 MONO-CONTROL))
GO008 (*SWITCH-T (C-0 1) (GOO18 (RETURN 1)))
GOOlO (‘SWITCH-F (GO609 0))
GO011 (‘SWITCH-F (C-0 1) (GO009 1)))
GO009 (‘DIFFERENCE (GOO12 (ARG 1 1)))
GOO12 (‘CALL FIB 1 1 (GO017 0))
GOO14 (‘SWITCH-F (GO013 0))
GO015 (’SWITCH-F (C-0 2) (GO013 1))
GO013 (‘DIFFERENCE (GO016 (ARG 1
GO016 (‘CALL FIB 1 1 (GOO17 1))
GO017 (‘PLUS (GO018 (RETURN 1)))
GO018 (’RETURN 1)
END

Fig. 23(a)

(GOO02 MONO-0))

1)))

Procedure Fib

D i s t r i b u t e I
I I

Ll I

Fig. 2S(b)

Fig. 23. Fibonacci-traditional.

and traffic. In traditional dataflow computing, each sin-
gle-operand conditional operation must execute two or
more additional double-operand operators and must create
many packets to support intermediate executions. These
packets contribute much to the congestion. Not(operation)
based single-operand conditional computation eliminates
matching. Tokens are executed directly in the execution
unit. In traditional dataflow computing, each double op-
erand conditional operation must execute two or more ad-
ditional double-operand operators and must create many
packets to support intermediate executions.
Not(operation) based double-operand conditional com-
putation matches and executes directly to give the result
immediately. Unnecessary packet creation is eliminated,
thereby reducing congestion.

Fig. 26 shows the average waiting time variation in the

P
A
R
A
L
L
E
L
I
s
M

1

P
A
R
A
L
L
E
L
I
S
M

1

..

. . ~~

T o t a l s t e p s 86
Average p a r a l l e l l e m 62.2
Tlme/sca le 6 . 7

..
40 85

(a)

T o t a l s t e p 6 00
Average p a r a l l e l i s m 4 8 . 8 . Time/sca le 4

30 00
(b)

Fig. 2 4 . Ideal dataflow parallelism.

TABLE I11
EXECUTION FREQUENCY OF OPERATIONS

CDR 0 44 104 0 482
CONS 0 24 48 0 482
PLUS 110 125 308 232 0
DIFFERENCE 229 44 i o 0 464 0
TIMES 0 0 0 0 0
DIVIDE 0 0 0 0 0

1060 958 2488 2434 2246 SWITCH-F
SWITCH-T 820 363 900 841 2115
ATOM 0 0 0 0 0
NULL 0 39 90 0 483
EQL 350 162 390 841 0
GREATER P 0 0 0 0 0
LESSP 0 0 0 0 189
CALL 229 101 241 4G4 522
DISTRIBUTE 460 366 875 465 1383
PRINT 0 1 2 0 0 I! CONSTANT 1 0 3 3 0 0

matching section in each PE of the 32-PE EM-3. The
Not(operation) model reduces the waiting time to one
tenth that of the traditional model. This is due to the re-
duction of a large number of double-operand operations
to be executed.

Table IV compares the single-operand packets and dou-
ble-operand packets generated in the execution of F(13).
The number of single-operand packets generated de-
creased from 8673 to 4148. The number of result packets
entering the matching section, double-operand opera-

HERATH ef u l . : COMPUTING MODELS FOR INTELLIGENCE COMPUTATIONS

Packet type Tkaditional
One operand 8675
Two operand 4766

!3k I

I 2

N O T (0 P)
4148

464

10 TRADITIONAL
NOT(OPERATI0N)

1 2 4 a 1 8 3 2 ’
UO. OF PROCESSING ELEMENTS

Fig. 2 5 . Execution time variation

100
I
I

E
n

60

0 i 10 20 30

PROCESSING ELEMENT

Fig. 26. Matching waiting time-average.

TABLE 1V
PACKETS GENERATED

tions, decreased from 4756 to 464. The Not(operation)
model significantly reduces the number of single-operand
packets, double operand packets and operations executed.
This results in a proportionate reduction of computing and
communication costs and increase in computing speed.

Table V compares the number of operations executed
showing the reduction in the number of operations exe-
cuted. This reduction is due to the elimination of addi-
tional double-operand operations used in the execution of
traditional conditional computations.

Table VI shows the maximum number of packets wait-
ing in the queue, and the congestion of each functional
unit of the EM-3 at the busiest instance.

Fig. 27 shows the maximum number of packets waiting
in the queue to the matching section in each PE of the 32-
PE EM-3. The maximum number of packets in a single-
PE EM-3 with traditional computing is very high com-
pared to the Not(operation). The more tokens that are
generated, the greater the communication delay and cost
and waiting time in the queues. The Not(operation) com-
puting model provides an efficient way of reducing tokens
generated and hence reduces the token traffic.

No RPG is collected in the matching store when exe-
cuting F(13) with the Not(operation) model. The

1825

TABLE V
OPERATIONS EXECUTED

/I ODeration I Traditional I NOTIOP) 11

equal

difference 464

TABLE VI
PACKET QUEUE

I

:a
I

P
A

i 4
E
T
S

0
20 30

lo
PROCESSING ELEMENT

Fig. 27. Maximum packets-matching queue

Not(operation) completely stops the flow of data from the
predecessor of the conditional computation to the dead
branch. Dispatching a special packet to execute all the
operations in the dead branch, a control operation to stop
the flow of data into the dead branch, setting the life of
double operand packets or other efficient garbage collect-
ing mechanism must be implemented to remove RPG
completely.

The Not(operation) computing model provides an effi-
cient way of implementing parallel conditional computa-
tions. The optimization will reduce the number of arith-
metic and conditional operations, the size of the dataflow
graph, execution time, parallelism, total number of to-
kens. and token traffic.

VI. CONCLUSIONS
Computing models, languages, and architecture have

not changed very much over the last thirty years. Appli-
cations of new computing models, languages, and ma-

1826 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14. NO. 12. DECEMBER 1988

chines to numerical and nonnumerical computations show
promise. The market is responding to the availability of
such machines for intelligence computations. Intelligence
computing research is highly dependent on high perfor-
mance low cost parallel computing systems. Researchers
are examining radically different approaches. The data-
flow computing concept is the most effective, promising
computing method to implement in machine architecture
for high speed computing. This paper first analyzed the
dataflow computing models such as static computing with
and without acknowledgment signals, recursive dynamic,
tagged token dynamic, eduction, dataflow-control flow,
eager-lazy , pseudo-result, and Not(operation).

The research on functional and logic programming lan-
guages and their applications to intelligence computations
will revolutionize the computer paradigm. Logic pro-
gramming allows high level program specifications with-
out explicit control directives. Functional languages pro-
vide the facility to programmer not to think in terms of
storage. Functional programming transforms objects to
other objects without naming. The functional languages
designed to map algorithms into dataflow computing such
as VAL, Id, LUCID, VALID, DFC, and EMLISP were
discussed. The DCBL transformation for dataflow com-
puting and its application to Lisp were discussed.

The major difficulty in realizing very high speed data-
flow computing machines is the highly tuned, widely
available and familiar von Neumann machines. The da-
taflow machines for numerical and nonnumerical com-
putations such as VIM, DDP, LAU, NEDIPS, MIT
TTDA, Manchester Dataflow Machine, DDMl, SIG-
MA-1, EM-3, EDDY, DFM, PIM-D, and TOPSTAR
were discussed. The SIGMA- 1, which predicts the high-
est computing speeds, is a milestone in computing ma-
chines. Some general problems in dataflow computing and
performance evaluation measurements made in the EM-3
dataflow computing environment were presented.

A . Further Research
Considerable progress has been made in building data-

flow machines during last few years. The construction of
very high speed dataflow computing machines needs fur-
ther research in the following areas.

1) Different dataflow computing models.
2) High-level languages suited to dataflow program-

3) Low-level languages suited to dataflow architecture.
4) Algorithms for specific applications and systems.
5) Dataflow computing processors and system archi-

6) Operating systems with efficient resource allocation

7) Optimum design of an instruction set processor.
8) High-speed operand matching mechanisms.
9) Efficient structure memory implementations.
10) Low cost high-speed communication networks to

11) Problems in dataflow computing.

ming.

tectures.

schemes.

interconnect PE’s.

12) Fault-tolerant computing for 1000 to 10 000 pro-

13) Impact of VLSI and device technology.
14) Applications of dataflow computing concept in

cessor dataflow computing machines.

other fields.

ACKNOWLEDGMENT
We wish to thank all the researchers in dataflow field

for their efforts and contributions to realize dataflow ma-
chines. We would also like to thank Prof. M. Ishii and I.
Shuichi of the University of Electro-Communications for
their support in this research. We wish to acknowledge
the invaluable support and discussions with Mr. Toda, Dr.
Shimada, Dr. Hiraki, Dr. Furuya, Dr. Uchibori, and Mr.
Nishida, the members of the computer architecture group.
We would like to thank the members of the Saito lab at
Keio University and appreciate the support extended by
Dr. Rine, Dr. Wang, and colleagues at George Mason
University. We thank the referees, Dr. B. Wah and Dr.
C. V. Ramammoorthy for their helpful comments on an
early version of this paper. Special thanks to S. Herath
and R. Mattingley for helping in many ways with this
work.

REFERENCES
[l] J . E. Rodriguez, “A graph model for parallel computation,” Tech.

Rep. Lab. Comput. Sci., MIT, Tech. Rep. ESLR-398, MAC-TR-64.
Sept. 1969.

[2] J . B. Dennis, “First version of a dataflow procedure language,” in
Proc. Colloyue sur la Programmation, Vol. 19 (Lecture Notes in
Computer Science).

[3] J. B . Dennis, G. R. Gao, and K. Todd, “Modeling the weather with
a dataflow super computer,” lEEE Trans. Comput., vol. C-33, no.
7 , pp. 592-603, July 1984.

[4] J. B. Dennis, “Data flow computation.” in NATO AS1 Series, Vol.
F14, Control Flow and Data Flow: Concepts of Distributed Program-
ming, M. Broy, Ed.

Berlin: Springer-Verlag, 1974, pp. 362-376.

Berlin: Springer-Verlag, 1985, pp. 346-397.
I . D. Brock, “Operational Semantics of a data flow language,” MIT,
Tech. Rep. MIT/LCS/TM-I20.
M. Cornish, “The TI dataflow architectures: The power of concur-
rency for avionics,” in l E E E Proc. 3rd Cor$ Digital Avionics Sys-
rems, Fort Worth, TX, Nov. 1979, pp. 19-25.
M. Cornish, D. W. Hogan, and J . C . Jensen, “The Texas Instruments
distributed processor,” in Proc. Louisiana Computer Exposition, La-
faytte, LA, Mar. 1979, pp. 189-193.
Arvind and K. P. Gostelow. “Some relationships between asynchron-
ous interpreters of a dataflow language,” in Proc. IFIP WG2.2 Con&
Formal Description of Programming Languuges, St. Andrews, Can-
ada, 1977.
- , “The U-interpreter,” Computer, vol. 15, no. 2, pp. 42-49, Feb.
1982.
P. Arvind, V. Kathail, and K. Pingaley. “A dataflow architecture
with tagged tokens,” Lab. Comput. Sci., MIT, Rep. TM-174. Sept.
1980.
Arvind and D. E. Culler. “Dataflow architectures,” Lab. Comput.
Sci., MIT, Rep. TM-294, 1986.
1. R. Gurd and I. Watson, “A multilayered dataflow computer archi-
tecture,” in Proc. 7th Int. Con& Parallel Processing. Aug. 1977.
1. Watson and J . R. Gurd, “A prototype dataflow computer with to-
ken labelling,” in Proc. 1979 Nat. Computing Conf. AFIPS Proc.,
vol. 48, June 1979. pp. 623-628.
J . R . Gurd, J. R. W. Glauert, and C. C. Kirkham. “Generation of
dataflow graphical object code for the lapse programming language,”
in Lecture Nores in Computer Science, vol. 1 1 1 . Berlin: Springer-
Verlag, June 1981, pp. 155-168.
J . Gurd and I. Watson. “Preliminary evaluation of a prototype data-
flow computer,” in Proc. IFIP, 1983, pp. 545-551.
A. L. Davis. “The architecture and system method of DDMI: A re-

HERATH er a l . : COMPUTING MODELS FOR INTELLIGENCE COMPUTATIONS I827

cursively structured data driven machine,” in Proc. 5th Annu. Symp.
Computer Architecture, Apr. 1978, pp. 210-215.
A. L. Davis, “A dataflow evaluation system based on the concept of
recursive locality,” in Proc. 1979 Nut. Computer Conf., vol. 48, AF-
IPS, 1979, pp. 1079-1086.
E. A. Ashcroft and R. Jagannathan, “Operator nets,” in Proc. Fifrh
Gen. Comp. Arch. . IFIP. 1984.
E. A. Ashcroft and W. W. Wadge, “Lucid. a nonprocedural language
with iteration,” Commun. ACM, vol. 20, no. 7, pp. 519-526, July
1977.
P. C. Treleaven. D. R. Brownbridge, R. P. Hopkins, and P. W. Ran-
tenbach. “Combining dataflow and control flow computing,” Com-
put . J . . vol. 25. no. 2. pp. 207-217, 1982.
M. Amamiya, M. Takesue. R. Hasegawa, and M. Mikami, “Imple-
mentation and evaluation of a list processing-oriented dataflow ma-
chine,” in Proc. 13th Int. Symp. Comp. Arch . , 1986, pp. 10-19.
N. Takahashi and M. Amamiya, “A data flow processor array sys-
tem-Design and analysis,’’ in Proc. 10th Annu. Int. Symp. Com-
puter Architecture, IEEE, 1983, pp. 243-250.
M. Amamiya, R. Hasegawa, and S. Ono, ”VALID: A high level
functional language for dataflow machine,” Rev. ECL, vol. 32, no.
5 . p p . 793-802. 1984.
M. Amamiya, R. Hasegawa, 0. Nakamura, and H. Mikami, “A list
processing oriented data flow machine architecture,” in Proc. Nut.
Comput. Conf. , AFIPS, 1982, pp. 143-151.
M. Amamiya and R. Hasegawa. “Dataflow computing and eager and
lazy evaluation,” J . New Gen. Cornput.. vol. 2 , no. 8, pp. 105-129.
1984.
S . Ono, N. Takahashi,and M. Amamiya, “Optimized demand-driven
evaluation of functional programs on a dataflow machine,” in Proc.
Inr. Conf. Parallel Processing ‘86, pp. 421-428.
T. Yuba, Y. Yamaguchi, and T. Shimada, “A control mechanism of
a Lisp based data-driven machine,” Inform. Processing Let t . , vol.
16, pp. 139-143. 1983.
Y. Yamaguchi, K. Toda, and T. Yuba, “A performance evaluation
of a Lisp based data-driven machine (EM-3);’ in Proc. 10th Annu.
Int. Symp. Compur. Arch . , 1983, pp. 363-369.
Y. Yamaguchi, K. Toda. J . Herath. and T. Yuba, “EM-3: A LISP-
based data-driven machine.” in Proc. Int. Conf. Fifth Generation
Compur Syst . , ICOT, 1984, pp. 524-532.
K. Toda. Y. Yamaguchi, Y. Uchibori, and T. Yuba, “Preliminary
measurements of the ETL LISP-based data-driven machine,” in Proc.
IFIP TC-IO Working Conf. Fifth Gen. Comput. Arch. , July 1985.
J. Herath, N. Saito, K. Toda, Y. Yamaguchi, and T . Yuba,
“Not(operation) for high speed data-flow computing systems,” in
Proc. Int. Conf. Super Computing Systems, Dec. 1985, pp. 524-532. -. “Data-flow computing base language with n-value logic,” in
Proc. Fall Joint Comput. Conf., Nov. 1986.
J. Herath, Y. Yamaguchi, T. Yuba, and N. Saito, “Extended
not(operation) based dataflow computing for intelligent switching,”
in Proc. Int. Conf. Supercomputing Systems, May 1987.
J . A. Robinson, “A machine-oriented logic based on the resolution
principle,” J . ACM, Jan. 1965. pp. 23-41.
R. A. Kowalski and M. H. van Emden, “The semantics of predicate
logic as a programming language,” J . ACM. Oct. 1976. pp. 733-742.
A. Colmerauer, “Prolog and infinite trees,” in Logic Programming.
New York: Academic, 1982.
W. F. Clocksin and C. S. Mellish, Programming in Prolog. New
York: Springer-Verlag. 1981.
K. L. Clark and S . Gregory, “A relational language for parallel pro-
gramming,” in Proc. 1981 ACM Con$ Functional Programming and
Computer Archirecture. Oct. 1981, pp. 171-178.
-, “PARLOG: Parallel programming in logic,” ACM Trans. Pro-
gram. Lung. Syst . , pp. 1-49, Jan. 1986.
E. Y. Shapiro, “A Sub set of Concurrent Prolog and its interpreter,”
TR-003, ICOT, Tokyo, Tech. Rep. TR-003, Feb. 1983.
J . Backus, “Can programming be liberated from the von Neumann
style? A functional style and its algebra of programs,” Commun.
ACM, pp. 613-641, Aug. 1978.
-, “Function level computing,” IEEE Spectrum, pp. 22-27, Aug.
1982.
J . McGraw, “SISAL: Streams and iteration in a single-assignment
language reference manual,” Univ. California, Lawrence Livermore
Nat. Lab., Rep. M-146, Mar. 1985.
S . Skedzielewski and J . Glauert, “IFI-An intermediate form for ap-
plicative languages,” Univ. California, Lawrence Livermore Nat.
Lab., Rep. M-170, July 1985.

(451 0. Gelly et a l . , “LAU software system: A high level data driven
language for parallel programming.” in Proc. 1976 Int. Conf. Par-
allel Processing, Aug. 1976.

1461 D. Comte, N. Hifdi, J. Syre, “The data driven LAU multiprocessor
system: Results and perspectives,’’ in Proc. IFIP Congress 80, To-
kyo, Oct. 1980, pp. 175-180.

[47] J. L. Gaudiot, M . Dubios. L. T. Lee, and N. Tohme, “The TX16:
A highly programmable multimicroprocessor architecture,” IEEE
Micro, Oct. 1985.

[48] T . Shimada. K. Hiraki. and K. Nishida, “An architecture of a data-
flow machine and its evaluation,” in Proc. COMPCON ’84, Spring
1984, pp. 486-490.

1491 K. Hiraki, K. Nishida, S . Sekiguchi, and T. Shimada. “Maintenance
architecture and LSI implementation of a dataflow computer with a
large number of processors,” in Proc. Int. Conf. Parallel Processing
’86.

[SO] K. Hiraki, T. Shimada, and K. Nishida, “A hardware design of the
SIGMA-1-A dataflow computer for scientific computations,” in
Proc. 1984 Int. Conf. Parallel Processing, IEEE, 1984, pp. 524-
531.

1511 T. Shimada, K. Hiraki, K. Nishida, and S . Sekiguchi, “Evaluation
of a prototype dataflow processor of the SIGMA- I for scientific com-
putations.” in Proc. 13th Annu. Int. symp. Comput. Arch . . 1986, pp.

1521 T. Yuba. “Research and development efforts on data-flow computer
architecture in Japan,” J . Inform. Processing, vol. 9 , no. 2 , pp. 51-
62, 1986.

(531 B. Wah and G-.J. Li. “Computers for artificial intelligence applica-
tions,” IEEE Tutorial, 1986.

1541 V . P. Srini, “An architectural comparison of dataflow systems,’’
Computer, pp. 68-88, Mar. 1986.

[55] P. C. Treleaven, D. Brownbridge, and R. P. Hopkins, “Data-driven
and demand-driven computer architecture,” J . ACM Comput. Sur-
veys , vol. 14, no. 1. pp. 93-142, Mar. 1982.

[56] J . Herath, T . Yuba, and N. Saito, “Dataflow computing,” in Proc.
Int. Workshop Parallel Algorithms and Architectures ‘87 (Lecture
Notes in Computer Science).

1571 M . Tokoro, J. R. Jagannathan, and H . Sunahara, “On the working
set concept for dataflow machine,” in Proc. 10th Annu. Symp. Com-
put . Arch . . June 1983, pp. 90-97.

1581 N. Ito and M. Sato, “The architecture and preliminary evaluation
results of the experimental parallel inference machine PIM-D,” in
Proc. 13th Int. Symp. Comput. Arch. , 1986, pp. 149-156.

1591 T. Suzuki. K. Kurihara, H. Tanaka, and T. Moto-oka, “Procedure
level dataflow processing on dynamic structure multimicroproces-
sors,” J . Inform. Processing, vol. 5 , no. I , pp. 11-16, 1982.

[60] M. Kishi, H. Yasuhara, and Y. Kawamura, “DDDP: A distributed
data-driven processor,” in Proc. 10th Annu. Int. Symp. Comput.
Arch. , IEEE, 1983, pp. 236-242.

1611 K . Oyama. N. Nguyen, V . P. Shrestha, T. Saito, and H. hose . “Sys-
tem design of a distributed dataflow computer and its experimental
evaluation,” Trans. Inform. Proc. Soc. Japan, vol. 25, no. I , pp.
101-108, 1984.

1621 H. Nishikawa, K. Asada. and H. Terada, “A decentralized controlled
multiprocessor system based on the data-driven scheme,” in Proc.
3rd Inr. Conf. Distributed Computing Systems, 1982, pp. 639-644.

[631 M. Sowa and T . Murata, “A dataflow computer architecture with
program and token memories,” IEEE Trans. Comput., vol. C-31, no.

1641 T. Temma. S . Hasegawa, and S. Hanaki. “Dataflow processor for
image processing,” in Proc. Mini and Microcomputers, vol. 5 , no.
3 , pp. 52-56, 1980.

1651 A. L. Wendelborn, “A hybrid data and demand driven implementa-
tion of a lucid-like programming language,” in Proc. 9rh Comput.
Sri. Conf . , Canberra, Jan. 1986.

226-234.

Berlin: Springer-Verlag, May 1987.

9 . p ~ . 820-824, 1982.

Jayantha Herath (M’86) was born in Metigaha-
tenna, Sri Lanka, on September 3, 1954. He re-
ceived the B.Sc.(Hons) degree in electronics and
telecommunication engineering from the Univer-
sity of Sri Lanka, Katubedda Campus, in 1978,
the M.Eng. degree in electronics engineering from
the University of Electrocommunications, Japan,
in 1984, and the D.Eng. degree from Keio Uni-
versity, Japan, in 1987.

He worked as an electrical engineer in a steam
power station at the Ceylon Electricity Board and

1828 IEEE TRANSAC

taught at the University of Sri Lanka, Katubedda Campus, from 1979 to
1981. In 1980, he was awarded a Japanese government scholarship and
from 1981 to 1987 he worked as a Japanese government research student.
From 1983 to 1984. he worked at ETL under the supervision of the EM-3
group, His research interests are high-speed parallel, distributed, and fault-
tolerant computing systems, functional and logic progamming languages,
and computer networks. Now he is working as an Assistant Professor with
the Department of Computer Science at George Mason University, Fairfax,
VA.

Electronics and Commu

Yoshinori Yamaguchi was born in Oita, Japan,
in 1949. He received the B.S. degree in electrical
engineering from the University of Tokyo in 1972.

He is a Senior Researcher in the Computer Sys-
tems Division of the Electrotechnical Laboratory,
MITI, Japan. He is the principal investigator of
the EM-3 project. His current research interests
include computer architecture, parallel computer
systems and functional programming languages.

Mr. Yamaguchi is a member of the Information
Processing Society of Japan and the Institute of

inication Engineers.

Nohuo Saito (M’86) received the B.Eng ,
M Eng , and D Eng degrees from the Department
of Mathematical Engineering and Instrumentation
Physics at the University of Tokyo in 1964, 1966,
and 1978, respectively

He is a Professor of Mathematics at Keio Uni-
versity, Japan During 1970-1971 he was a vis-
iting scholar at the Department of Computer Sci-
ence of Stanford University He worked as a
visiting computer scientist on the Gandalf project
of the Department of Computer Science, Came-

TIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 12. DECEMBER 1988

gie-Mellon University. His research interests include operating systems,
parallel, and distributed processing systems, formal semantics of parallel
programming. software engineering, software development environments,
and application of knowledge engineering to software engineering.

Dr. Saito is a member of the ACM, the Japan Information Processing
Society, the Institute of Electronics, Infomation and Communication En-
gineers of Japan, and the Japan Software Science Society.

Toshitsugu Yuha was born in Osaka, Japan, on
September 22, 1941 He received the B E and
M.E degrees in electrical engineering from Kobe
University in 1964 and 1966, respectively, and the
Ph D. degree in information science from the
University of Tokyo in 1982

He is currently the Chief of the Computer Ar-
chitecture Section, Computer Systems Division,
at the Electrotechnical Laboratory He is the leader
of the SIGMA-I and EM-3 projects In 1966 he
joined the Nomura Research Institute Since 1967,

he has been with the Electrotechnical Laboratory of the Agency of Indus-
trial Science and Technology of the Ministry of International Trade and
Industry His current research interests are computer architecture, parallel
algorithms, and data stmctures and system software

Dr. Yuba is a member of the Information Processing Society of Japan,
the Institute of Electronics and Communication Engineers, and the Asao-
ciation for Computing Machinery

