CSE P 590 A

Markov Models and Hidden Markov Models
Dosage Compensation and X-Inactivation

2 copies (mom/dad) of each chromosome 1-23

Mostly, both copies of each gene are expressed
 E.g., A B O blood group defined by 2 alleles of 1 gene

Women (XX) get double dose of X genes (vs XY)?

So, early in embryogenesis:
 • One X randomly inactivated in each cell
 • Choice maintained in daughter cells

Calico: major coat color gene is on X
Reminder: Proteins “Read” DNA

E.g.:

(A) Recognition helix

NH₂

COOH

(B) DNA structure

Figure 7-10 Molecular Biology of the Cell 5/e © Garland Science 2008
Down in the Groove

Different patterns of hydrophobic methyls, potential H bonds, etc. at edges of different base pairs. They’re accessible, esp. in major groove.

Figure 7-7 Molecular Biology of the Cell 5/e (© Garland Science 2008)
DNA Methylation

CpG - 2 adjacent nts, same strand
(not Watson-Crick pair; “p” mnemonic for the
phosphodiester bond of the DNA backbone)

C of CpG is often (70-80%) methylated in
mammals i.e., CH₃ group added (both strands)
Same Pairing

Methyl-C alters major groove profile (∴ TF binding), but not base-pairing, transcription or replication
DNA Methylation—Why

In vertebrates, it generally silences transcription

(Epigenetics) X-inactivation, imprinting, repression of mobile elements, cancers, aging, and developmental differentiation

E.g., if a stem cell divides, one daughter fated to be liver, other kidney, need to

(a) turn off liver genes in kidney & vice versa,
(b) remember that through subsequent divisions

How?

(a) Methylate genes, esp. promoters, to silence them
(b) after ÷, DNA methyltransferases convert hemi- to fully-methylated (& deletion of methyltransferse is embrionic-lethal in mice)

Major exception: promoters of housekeeping genes
“CpG Islands”

Methyl-C mutates to T relatively easily
Net: CpG is less common than expected genome-wide:
f(CpG) < f(C)*f(G)

BUT in some regions (e.g. active promoters), CpG remain unmethylated, so CpG → TpG less likely there: makes “CpG Islands”; often mark gene-rich regions
CpG Islands

More CpG than elsewhere (say, CpG/GpC>50%)
More C & G than elsewhere, too (say, C+G>50%)
Typical length: few 100 to few 1000 bp

Questions
Is a short sequence (say, 200 bp) a CpG island or not?
Given long sequence (say, 10-100kb), find CpG islands?
Markov & Hidden Markov Models

References (see also online reading page):
Independence

A key issue: Previous models we’ve talked about assume *independence* of nucleotides in different positions - definitely unrealistic.
Markov Chains

A sequence x_1, x_2, \ldots of random variables is a k-th order Markov chain if, for all i, i^{th} value is independent of all but the previous k values:

$$P(x_i \mid x_1, x_2, \ldots, x_{i-1}) = P(x_i \mid x_{i-k}, x_{i-k+1}, \ldots, x_{i-1})$$

Example 1: Uniform random ACGT
Example 2: Weight matrix model
Example 3: ACGT, but $\downarrow \Pr(G \text{ following } C)$

$\} \ 0^{th}$ order
$\} \ 1^{st}$ order
A Markov Model (1st order)

States: A, C, G, T
Emissions: corresponding letter
Transitions: $a_{st} = P(x_i = t | x_{i-1} = s)$
A Markov Model (1st order)

States: A,C,G,T

Emissions: corresponding letter

Transitions: $a_{st} = P(x_i = t \mid x_{i-1} = s)$

Begin/End states
Pr of emitting sequence x

$$x = x_1 x_2 \ldots x_n$$

$$P(x) = P(x_1, x_2, \ldots, x_n)$$

$$= P(x_1) \cdot P(x_2 \mid x_1) \cdots P(x_n \mid x_{n-1}, \ldots, x_1)$$

$$= P(x_1) \cdot P(x_2 \mid x_1) \cdots P(x_n \mid x_{n-1})$$

$$= P(x_1) \prod_{i=1}^{n-1} a_{x_i, x_{i+1}}$$

$$= \prod_{i=0}^{n-1} a_{x_i, x_{i+1}} \quad \text{(with Begin state)}$$
Training

Max likelihood estimates for transition probabilities are just the frequencies of transitions when emitting the training sequences.

E.g., from 48 CpG islands in 60k bp:
Discrimination/Classification

Log likelihood ratio of CpG model vs background model

\[S(x) = \log \frac{P(x|\text{model } +)}{P(x|\text{model } -)} = \sum_{i=1}^{L} \log \frac{a_{x_{i-1}x_i}^+}{a_{x_{i-1}x_i}^-} = \sum_{i=1}^{L} \beta_{x_{i-1}x_i} \]

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-0.740</td>
<td>0.419</td>
<td>0.580</td>
<td>-0.803</td>
</tr>
<tr>
<td>C</td>
<td>-0.913</td>
<td>0.302</td>
<td>1.812</td>
<td>-0.685</td>
</tr>
<tr>
<td>G</td>
<td>-0.624</td>
<td>0.461</td>
<td>0.331</td>
<td>-0.730</td>
</tr>
<tr>
<td>T</td>
<td>-1.169</td>
<td>0.573</td>
<td>0.393</td>
<td>-0.679</td>
</tr>
</tbody>
</table>
CpG Island Scores

Figure 3.2 The histogram of the length-normalised scores for all the sequences. CpG islands are shown with dark grey and non-CpG with light grey.
What does a 2nd order Markov Model look like?

3rd order?
Questions

Q1: Given a short sequence, is it more likely from feature model or background model? Above

Q2: Given a long sequence, where are the features in it (if any)

 Approach 1: score 100 bp (e.g.) windows
 Pro: simple
 Con: arbitrary, fixed length, inflexible

 Approach 2: combine +/- models.
Combined Model

Emphasis is “Which (hidden) state?” not “Which model?”
Hidden Markov Models
(HMMs; Claude Shannon, 1948)

States: 1, 2, 3, ...
Paths: sequences of states \(\pi = (\pi_1, \pi_2, \ldots) \)
Transitions: \(a_{k,l} = P(\pi_i = l \mid \pi_{i-1} = k) \)
Emissions: \(e_k(b) = P(x_i = b \mid \pi_i = k) \)

Observed data: emission sequence
Hidden data: state/transition sequence
The Occasionally Dishonest Casino

1 fair die, 1 “loaded” die, occasionally swapped
<table>
<thead>
<tr>
<th>Rolls</th>
<th>31511624644664424531132163116415213625144543631656626566666</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die</td>
<td>FFLLL</td>
</tr>
<tr>
<td>Viterbi</td>
<td>FFLLL</td>
</tr>
<tr>
<td>Rolls</td>
<td>651166453132651245636664631636663162326455236266666625151631</td>
</tr>
<tr>
<td>Die</td>
<td>LLLLLLFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFF</td>
</tr>
<tr>
<td>Viterbi</td>
<td>LLLLLLFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFF</td>
</tr>
<tr>
<td>Rolls</td>
<td>222555441666566563564324364131513465146353411126414626253356</td>
</tr>
<tr>
<td>Die</td>
<td>FFFFFFFFFLLLFFFFFL</td>
</tr>
<tr>
<td>Viterbi</td>
<td>FFF</td>
</tr>
<tr>
<td>Rolls</td>
<td>366163666466232534413661661163252562462255265252266435353336</td>
</tr>
<tr>
<td>Die</td>
<td>LLLLLLLLLFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFF</td>
</tr>
<tr>
<td>Viterbi</td>
<td>LLFFFFF</td>
</tr>
<tr>
<td>Rolls</td>
<td>2331216253644144323351632436336655624666626326666612355245242</td>
</tr>
<tr>
<td>Die</td>
<td>FFLLL</td>
</tr>
<tr>
<td>Viterbi</td>
<td>FFLLL</td>
</tr>
</tbody>
</table>

Figure 3.5 The numbers show 300 rolls of a die as described in the example. Below is shown which die was actually used for that roll (F for fair and L for loaded). Under that the prediction by the Viterbi algorithm is shown.
Inferring hidden stuff

Joint probability of a given path π & emission sequence x:

$$P(x, \pi) = a_{0, \pi_1} \prod_{i=1}^{n} e_{\pi_i}(x_i) \cdot a_{\pi_i, \pi_{i+1}}$$

But π is hidden; what to do? Some alternatives:

Most probable single path

$$\pi^* = \arg \max_\pi P(x, \pi)$$

Sequence of most probable states

$$\hat{\pi}_i = \arg \max_k P(\pi_i = k \mid x)$$
The Viterbi Algorithm: The most probable path

Viterbi finds: \(\pi^* = \arg \max_\pi P(x, \pi) \)

Possibly there are \(10^{99}\) paths of prob \(10^{-99}\)

More commonly, one path (+ slight variants) dominate others.
(If not, other approaches may be preferable.)

Key problem: exponentially many paths \(\pi\)
Unrolling an HMM

Conceptually, sometimes convenient
Note exponentially many paths
Viterbi

\[v_l(i) = \text{probability of the most probable path emitting } x_1, x_2, \ldots, x_i \text{ and ending in state } l \]

Initialize:

\[v_l(0) = \begin{cases}
1 & \text{if } l = \text{Begin state} \\
0 & \text{otherwise}
\end{cases} \]

General case:

\[v_l(i + 1) = e_l(x_{i+1}) \cdot \max_k (v_k(i) a_{k,l}) \]
HMM Casino Example

Excel spreadsheet on web; download & play…
Viterbi Traceback

Above finds *probability* of best path
To find the path itself, trace *backward* to the
state k attaining the max at each stage
Rolls	31511624644664424531132163116415213625144543631656626566666
Die	FFLLL
Viterbi	FFFLLLLLLLLLLLLL
Rolls	6511664531326512456366646316366316232645523626666625151631
Die	LLLLLLLFFFFFFFFFFFFFFFFFFFFFFFLL
Is Viterbi “best”?

Viterbi finds $\pi^* = \arg \max_{\pi} P(x, \pi)$

Most probable (Viterbi) path goes through 5, but most probable state at 2nd step is 6 (i.e., Viterbi is not the only interesting answer.)
An HMM (unrolled)

States

Emissions/sequence positions
Viterbi: best path to each state

Viterbi score:
\[v_l(i + 1) = e_l(x_{i+1}) \cdot \max_k (v_k(i) a_{k,l}) \]

Viterbi path:\
\[back_l(i + 1) = \arg \max_k (v_k(i) a_{k,l}) \]
The Forward Algorithm

For each state/time, want total probability of all paths leading to it, with given emissions

\[f_k(i) \triangleq P(x_1 \ldots x_i, \pi_i = k) \]

\[f_l(i + 1) = e_l(x_{i+1}) \sum_k f_k(i) a_{k,l} \]

\[P(x) = \sum_{\pi} P(x, \pi) = \sum_k f_k(n) a_{k,0} \]
The Backward Algorithm

Similar: for each state/time, want total probability of all paths from it, with given emissions, conditional on that state.

\[b_k(i) \triangleq P(x_{i+1} \cdots x_n \mid \pi_i = k) \]

\[b_k(i) = \sum_l a_{k,l} e_l(x_{i+1}) b_l(i + 1) \]

\[b_k(n) = a_{k,0} \]
In state \(k \) at step \(i \)?

\[
P(x, \pi_i = k) = P(x_1, \ldots, x_i, \pi_i = k) \cdot P(x_{i+1}, \ldots, x_n \mid x_1, \ldots, x_i, \pi_i = k)
\]

\[
= P(x_1, \ldots, x_i, \pi_i = k) \cdot P(x_{i+1}, \ldots, x_n \mid \pi_i = k)
\]

\[
= f_k(i) \cdot b_k(i)
\]

\[
P(\pi_i = k \mid x) = \frac{P(x, \pi_i = k)}{P(x)} = \frac{f_k(i) \cdot b_k(i)}{P(x)}
\]
Posterior Decoding, 1

Alternative 1: what’s the most likely state at step i?

$$\hat{\pi}_i = \arg \max_k P(\pi_i = k \mid x)$$

Note: the sequence of most likely states \neq the most likely sequence of states. May not even be legal!

![Diagram showing a state transition model with labels on edges]
The Occasionally Dishonest Casino

1 fair die, 1 “loaded” die, occasionally swapped

1: 1/6
2: 1/6
3: 1/6
4: 1/6
5: 1/6
6: 1/6

1: 1/10
2: 1/10
3: 1/10
4: 1/10
5: 1/10
6: 1/2
<table>
<thead>
<tr>
<th>Rolls</th>
<th>315116246446644245311321631164152133625144543631656626566666</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die</td>
<td>FFLLLLLLLLL</td>
</tr>
<tr>
<td>Viterbi</td>
<td>FFLLLLLLLLL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rolls</th>
<th>65116645313265124563666463163663162326455236266666625151631</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die</td>
<td>LLLLLLFFFFFFFFFFFFFFFFLLLFFFFFFFFFFFFF</td>
</tr>
<tr>
<td>Viterbi</td>
<td>LLLLLLFFFFFFFFFFFFFFFFLLLFFFFFFFFFFFFF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rolls</th>
<th>222555441666566563564324364131513465146353411126414626253356</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die</td>
<td>FFFFFFFFFLLLFFFFFFFFFFFFFLL</td>
</tr>
<tr>
<td>Viterbi</td>
<td>FFLLL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rolls</th>
<th>366163666466232534413661661163252562462255265252266435353336</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die</td>
<td>LLLFFFFF</td>
</tr>
<tr>
<td>Viterbi</td>
<td>LLLFFFFF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rolls</th>
<th>2331216253644144323351632436336655624666626326666612355245242</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die</td>
<td>FFLL</td>
</tr>
<tr>
<td>Viterbi</td>
<td>FFLL</td>
</tr>
</tbody>
</table>

Figure 3.5 The numbers show 300 rolls of a die as described in the example. Below is shown which die was actually used for that roll (F for fair and L for loaded). Under that the prediction by the Viterbi algorithm is shown.
Figure 3.6 The posterior probability of being in the state corresponding to the fair die in the casino example. The x axis shows the number of the roll. The shaded areas show when the roll was generated by the loaded die.
Posterior Decoding, II

Alternative 1: what’s most likely state at step i?

$$\hat{\pi}_i = \arg \max_k P(\pi_i = k \mid x)$$

Alternative 2: given some function $g(k)$ on states, what’s its expectation. E.g., what’s probability of “+” model in CpG HMM ($g(k)=1$ iff k is “+” state)?

$$G(i \mid x) = \sum_k P(\pi_i = k \mid x) \cdot g(k)$$
CpG Islands again

Data: 41 human sequences, totaling 60kbp, including 48 CpG islands of about 1kbp each

Viterbi:
 Found 46 of 48
 plus 121 “false positives”

Posterior Decoding:
 same 2 false negatives
 plus 236 false positives

Post-process:
 46/48
 67 false pos

Post-process: merge within 500; discard < 500
Given model topology & training sequences, learn transition and emission probabilities

If π known, then MLE is just frequency observed in training data

$$a_{k,l} = \frac{\text{count of } k \rightarrow l \text{ transitions}}{\text{count of } k \rightarrow \text{anywhere transitions}}$$

$$e_k(b) = \ldots$$

If π hidden, then use EM:

given π, estimate θ; given θ estimate π.

} 2 ways
Viterbi Training

given π, estimate θ; given θ estimate π

Make initial estimates of parameters θ
Find Viterbi path π for each training sequence
Count transitions/emissions on those paths, getting new θ
Repeat

Not rigorously optimizing desired likelihood, but still useful & commonly used.
(Arguably good if you’re doing Viterbi decoding.)
Baum-Welch Training

EM: given θ, estimate π ensemble; then re-estimate θ

$$P(\pi_i = k, \pi_{i+1} = l \mid x, \theta)$$

$$= \frac{f_k(i \mid \theta) a_{k,l} e_l(x_{i+1}) b_{l}(i + 1 \mid \theta)}{P(x \mid \theta)}$$

Estimated $\#$ of $k \rightarrow l$ transitions $\hat{A}_{k,l}$

$$= \sum_{\text{training seqs}} x^j \sum_i P(\pi_i = k, \pi_{i+1} = l \mid x^j, \theta)$$

New estimate $\hat{a}_{k,l} = \frac{\hat{A}_{k,l}}{\sum_l \hat{A}_{k,l}}$

Emissions: similar
Log-odds per roll

True model 0.101 bits
300-roll est. 0.097 bits
30k-roll est. 0.100 Bits

(NB: overfitting)
HMM Summary

Viterbi – best single path (max of products)
Forward – sum over all paths (sum of products)
Backward – similar

Baum-Welch – training via EM and forward/backward (aka the forward/backward algorithm)
Viterbi training – also “EM”, but Viterbi-based
HMMs in Action: Pfam

Proteins fall into families, both across & within species
 Ex: Globins, GPCRs, Zinc Fingers, Leucine zippers,…
Identifying family very useful: suggests function, etc.
So, search & alignment are both important
One very successful approach: profile HMMs
Alignment of 7 globins. A-H mark 8 alpha helices.
Consensus line: upper case = 6/7, lower = 4/7, dot=3/7.
Could we have a profile (aka weight matrix) w/ indels?
ProfileHmm Structure

Figure 5.2 The transition structure of a profile HMM.

- **M\(j \):** Match states (20 emission probabilities)
- **I\(j \):** Insert states (Background emission probabilities)
- **D\(j \):** Delete states (silent - no emission)
Silent States

Example: chain of states, can skip some

Problem: many parameters.

A solution: chain of “silent” states; fewer parameters (but less detailed control)

Algorithms: basically the same.
Using Profile HMM’s

Search
 Forward or Viterbi

Scoring
 Log likelihood (length adjusted)
 Log odds vs background
 Z scores from either

Alignment
 Viterbi

} {next slides}
Figure 5.5 To the left the length-normalized LL score is shown as a function of sequence length. The right plot shows the same for the log-odds score.
Z-Scores

Figure 5.6 The Z-score calculated from the LL scores (left) and the log-odds (right).
Pfam Model Building

Hand-curated “seed” multiple alignments
Train profile HMM from seed alignment
Hand-chosen score threshold(s)
Automatic classification/alignment of all other protein sequences
7973 families in Rfam 18.0, 8/2005
(covers ~75% of proteins)
Model-building refinements

Pseudocounts (count = 0 common when training with 20 aa’s)

\[e_i(a) = \frac{C_{i,a} + A \cdot q_a}{\sum_a C_{i,a} + A}, \quad A \sim 20, \quad q_a = \text{background} \]

(\sim 50 \text{ training sequences})

Pseudocount “mixtures”, e.g. separate pseudocount vectors for various contexts (hydrophobic regions, buried regions,...)

(\sim 10-20 \text{ training sequences})
More refinements

Weighting: may need to down weight highly similar sequences to reflect phylogenetic or sampling biases, etc.

Match/insert assignment: Simple threshold, e.g. “> 50% gap \Rightarrow insert”, may be suboptimal. Can use forward-algorithm-like dynamic programming to compute max \textit{a posteriori} assignment.
Numerical Issues

Products of many probabilities $\rightarrow 0$

For Viterbi: just add logs

For forward/backward: also work with logs, but you need sums of products, so need “log-of-sum-of-product-of-exp-of-logs”, e.g., by table/interpolation

Keep high precision and perhaps scale factor

Working with log-odds also helps.
Model structure

Define it as well as you can.

In principle, you can allow all transitions and hope to learn their probabilities from data, but it usually works poorly – too many local optima
Duration Modeling

Self-loop duration:
- geometric \(p^n(1-p) \)
- min, then geometric

“negative binomial”

More general: possible (but slower)
Stem Cells & Cloning

Another Bio-Interlude
Caenorhabditis elegans
Nobel Prize 2002

Sydney Brenner (b 1927), established *C. elegans* as an experimental model organism.

John Sulston (b 1942) mapped cell lineage in *C. elegans* development; showed that specific cells undergo programmed cell death as an integral part of the process.

Robert Horvitz (b 1947), discovered and characterized genes controlling cell death in *C. elegans*; corresponding genes exist in humans.

Cell Fate / Differentiation
Differentiation

Once a cell differentiates, how does it know to stay that way?

“Epigenetics”

Methylation is a large part of the story

Chromatin modification is another part
Chromatin

Figure 4-22 Molecular Biology of the Cell 5/e (© Garland Science 2008)
Figure 4-24 Molecular Biology of the Cell 5/e (© Garland Science 2008)
Histone Codes

Figure 4-44a Molecular Biology of the Cell 5/e (© Garland Science 2008)

Modification State
- **M**: Heterochromatin formation, gene silencing
- **A**: Gene expression
- **K**: Silencing of Hox genes, X chromosome inactivation

Meaning

<table>
<thead>
<tr>
<th>Modification State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Heterochromatin formation, gene silencing</td>
</tr>
<tr>
<td>A</td>
<td>Gene expression</td>
</tr>
<tr>
<td>K</td>
<td>Silencing of Hox genes, X chromosome inactivation</td>
</tr>
</tbody>
</table>

Figure 4-44b Molecular Biology of the Cell 5/e (© Garland Science 2008)
Differentiation

Once a cell differentiates, how does it know to stay that way?

- Methylation is a large part of the story
- Chromatin modification is another part
- Positive autoregulation of genes is another
 - TF A turns self on (+ others) maintaining A identity

Consequences:
- Can’t regrow body parts (but salamanders can…)
- Can’t clone (easily)
Stem Cells

Reservoirs of partially undifferentiated cells in many tissues in the body
Replenish/replace dead/damaged cells
Huge therapeutic potential
Best source? Embryonic tissue
 ⇒ ethical issues
What about cell cultures
 ⇒ many are basically tumors
Cloning

Need to “undo” all the epigenetic marking added during differentiation, quench the feedback markers, etc.

Dolly the sheep
OCT 3/4 (Octamer binding transcription factor 3/4)

Transcription factor that binds to the octamer motif (5'-ATTTGCAT-3'). Forms a trimeric complex with SOX2 on DNA and controls the expression of a number of genes involved in embryonic development such as YES1, FGF4, UTF1 and ZFP206. Critical for early embryogenesis and for embryonic stem cell pluripotency.

http://www.uniprot.org/uniprot/Q01860
SOX2 (SRY-related high-mobility-group (HMG)-box protein 2)

Transcription factor that forms a trimeric complex with OCT4 on DNA and controls the expression of a number of genes involved in embryonic development such as YES1, FGF4, UTF1 and ZFP206. Critical for early embryogenesis and for embryonic stem cell pluripotency

http://www.uniprot.org/uniprot/P48431
Klf4 (kruppel-like factor 4)

Zinc-finger transcription factor. Contains 3 C2H2-type zinc fingers. May act as a transcriptional activator. Binds the CACCC core sequence. May be involved in the differentiation of epithelial cells and may also function in the development of the skeleton and kidney.

http://www.uniprot.org/uniprot/O43474
MYC (Myc proto-oncogene)

Basic helix-loop-helix transcription factor. Binds DNA both in a non-specific manner and also specifically recognizes the core sequence 5'-CAC[GA]TG-3'. Seems to activate the transcription of growth-related genes. Efficient DNA binding requires dimerization with another bHLH protein. Binds DNA as a heterodimer with MAX. Interacts with TAF1C, SPAG9, PARP10, JARID1A and JARID1B.

http://www.uniprot.org/uniprot/P01106
Stem Cells Again

Great recent progress in making equiv of embryonic stem cells from adult tissues

Takahashi & Yamanaka, *Cell*, 2006

Key? Transfect genes for those 4 transcription factors!
Issues

Myc is a proto-oncogene
Long term stability of derived cells with unnatural expression of these genes is unclear

Delivery: Retro virus
may do damage during integration
Recent Progress

2007: Some other gene combinations work, without Myc

2008: Can use adenoviruses
Coat color pattern reflects “chimeric” animals – otherwise normal, but mosaic of “induced pluripotent stem cells” & normal cells, grown from embryonic fusion

Stadtfeld, et al., 2008
Ditto in brain section

Stadtfeld, et al., 2008