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Lecture 5
Motifs: Representation & Discovery

George Palade

Nov. 19, 1912 -- Oct 8, 2008

1966 Albert Lasker Award for Basic Medical Research

1974 Nobel Prize in Physiology or Medicine (with Albert Claude and Christian de Duve)

Identified the function of mitochondria, ribosomes and cellular secretion

Outline

Last week: Learning from data:

- MLE: Max Likelihood Estimators

- EM: Expectation Maximization (MLE w/hidden data)
Expression & regulation

- Expression: creation of gene products

- Regulation: when/where/how much of each gene

product; complex and critical

Next: using MLE/EM to find regulatory motifs in
biological sequence data

Gene Expression &
Regulation




Gene Expression

Recall a gene is a DNA sequence for a protein
To say a gene is expressed means that it

is transcribed from DNA to RNA

the mRNA is processed in various ways

is exported from the nucleus (eukaryotes)

is translated into protein
A key point: not all genes are expressed all the
time, in all cells, or at equal levels
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Figure 6-9 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Regulation

In most cells, pro- or eukaryote, easily a 10,000-fold
difference between least- and most-highly expressed
genes

Regulation happens at all steps. E.g., some transcripts
can be sequestered then released, or rapidly
degraded, some are weakly translated, some are very
actively translated, some are highly transcribed, some
are not transcribed at all

Below, focus on Ist step only:
transcriptional regulation
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The /ac Operon and its Control Elements
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1965 Nobel Prize

Francois Jacob and Jacques Monod

DNA Binding Proteins

A variety of DNA binding proteins
(“transcription factors”; a significant fraction,
perhaps 5-10%, of all human proteins)
modulate transcription of protein coding
genes

The Double Helix

(a) Computer-generated
Image of DNA
(by Mel Prueitt)

(b) Uncoiled DNA Fragment

Deoxyribose residue —___

s
Phosphate

to 3 carbon
of sugar group
residue
]
o

O0—P—0

1
103 carbon
of sugar
residue

Nucleotide

As shown, the two strands coil

about each other in a fashion such that all

the bases project inward toward the helix

axis. The two strands are held together by ~ Shown in (b)

hydrogen bonds (pink rods) linking each is an uncoiled fragment of (a
base projecting from one backbone to its three complementary base pai
so-called complementary base projecting  chemist's viewpoint, each stral
from the other backbone. The base A a polymer made up of four re
always bonds to T (A and T are comple- called deoxyribonucleotides

Los Alamos Science
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Figure 7-7 Molecular Biology of the Cell 5/e (© Garland Science 2008)
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Helix-Turn-Helix DNA Binding Motif
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Figure 7-10 Molecular Biology of the Cell 5/e (© Garland Science 2008)

H-T-H Dimers

tryptophan repressor lambda Cro lambda repressor CAP fragment
fragment

Figure 7-11 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Bind 2 DNA patches, ~ | turn apart
Increases both specificity and affinity




Leucine Zipper Motif

Homo-/hetero-dimers
and combinatorial
control

Figure 7-19

Some Protein/DNA
interactions well-understood
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But the overall DNA binding
“code” still defies prediction
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Bacterial Met Repressor

Negative feedback loop:
high Met level = repress Met synthesis genes

(a beta-sheet DNA binding domain)

Summary

Proteins can bind DNA to regulate gene
expression (i.e., production of other
proteins & themselves)

This is widespread

Complex combinatorial control is possible

Sequence Motifs

Motif: “a recurring salient thematic element”

Last few slides described structural motifs in
proteins

Equally interesting are the DNA sequence
motifs to which these proteins bind - e.g.,
one leucine zipper dimer might bind (with
varying affinities) to dozens or hundreds of
similar sequences

DNA binding site
summary

Complex “code”

Short patches (4-8 bp)

Often near each other (I turn = 10 bp)
Often reverse-complements

Not perfect matches




E. coli Promoters

“TATA Box” ~ |0bp upstream of
transcription start

How to define it? TACGAT
Consensus is TATAAT TAAAAT

. : TATACT

BUT all dlffer from it GATAAT
Allow k mismatches!? TATGAT
Equally weighted? TATGTT

Wildcards like R,Y? ({A,G},{C,T}, resp.

E. coli Promoters

“TATA Box” - consensus TATAAT
~10bp upstream of transcription start

Not exact: of 168 studied (mid 80’s)

— nearly all had 2/3 of TAxyzT

—80-90% had all 3

— 50% agreed in each of x,y,z

— no perfect match

Other common features at -35, etc.

TATA Box Frequencies

TATA Scores

oSt 4 20 3 4 5 6

base

e | 1 2 3 4 5 6
A 2 95 26/ 59 51 1
C 9 2 14 13 20 3
G| 10 1 16 15 13 0
T | 79 8 44/ 13 17 96
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Scanning for TATA

Scanning for TATA
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Score Distribution Weight Matrices:
(Simulated) Statistics
Assume:

fpi = frequency of base b in position i in TATA
fp = frequency of base b in all sequences

Log likelihood ratio, given S = B B,...Bg:

P(S|“tata") T, foi  ~~, fB.i
| — I 1= 79 — I (3
8 (P(S\ “non—tata”)> °8 H?zl fB, ; °8 B,

Assumes independence




Neyman-Pearson

Given a sample x, x,, .., x , from a distribution

f(...|®) with parameter O, want to test
hypothesis © = 6, vs © = 0,.

Might as well look at likelihood ratio:

(% Xy oo xn|91)
flx), %,y - xn|82)

> 7T

Score Distribution
(Simulated)
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What’s best WMM?

Given, say, | 68 sequences s,s,, .., s, of length

6, assumed to be generated at random
according to aWMM defined by 6 x (4-1)
parameters 0, what’s the best 0?

E.g., what’s MLE for O given data s s,, ..., s,/

Answer: like coin flips or dice rolls, count
frequencies per position (see HW).

Weight Matrices:
Chemistry

Experiments show ~80% correlation of log
likelihood weight matrix scores to measured
binding energy of RNA polymerase to
variations on TATAAT consensus

[Stormo & Fields]




Another WMM examp

8 Sequences: Freq. | Col | | Col 2 | Col 3
ATG A |o065] 0 0
ATG C 0 0 0
ATG G 0.250 0 I
ATG T [0125] | 0
ATG
g$g LLR | Col | | Col2 | Col 3
TG A 1.32 -0 -00
C -00 -00 -00
Log-Likelihood Ratio: G 0 - | 2.00
Fori 1 T [-1.00] 200 [ -
10g2 f:r fac -

Non-uniform Background

* E.coli - DNA approximately 25% A, C, G, T
* M. jannaschi - 68% A-T, 32% G-C

LLR from previous

LLR | Col | | Col 2 | Col 3
example, assuming A | 074] - | -
C -0 -00 -00

fa=fr=3/8 G | 1.00 | -» | 3.00
fe=fc=1/8 T [-s8] 1492]

e.g., G in col 3 is 8 x more likely via WMM
than background, so (log,) score = 3 (bits).

Relative Entropy

AKA Kullback-Liebler Distance/Divergence,
AKA Information Content

Given distributions P, Q

P(z)
H(P||Q) =) P(x 0@ >0
€S2
Notes:
Let P(xz)log ZE ; =0 if P(z) = 0 [since 5i£l1lylogy:0]

Undefined if 0 = Q(z) < P(z)

WMM: How “Informative”?
Mean score of site vs bkg?

For any fixed length sequence x, let
P(x) = Prob. of x according to WMM
Q(x) = Prob. of x according to background

Relative Entropy:

H(P||Q) =) P(x)log, Plx)

Q(x) |
z€Q HQIP) HPIIQ)

H(P]|Q) is expected log likelihood score of a
sequence randomly chosen from WMM,;
-H(Q||P) is expected score of Background
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WMM Scores vs
Relative Entropy

-H(QIIP)

=-6.8

For WMM, you can show (based on the
assumption of independence between
columns), that :

H(PIQ) = > H(F|Q:)
where P.and Q. are the WMM/background

distributions for column i.

WMM Example, cont.
Freq. | Col | | Col2 | Col 3
A 0.625 0 0
C 0 0 0
G 0.250 0 |
T 0.125 | 0
Uniform Non-uniform
LLR | Col I | Col 2 | Col 3 LLR | Col 1| Col2| Col 3
A 1.32 -0 00 A 074 | - -0
C -00 -00 -00 C -00 -00 -00
G 0 -0 2.00 G 1.00 | -o 3.00
T -1.00 | 2.00 -00 T -1.58 | 142 | -
RelEnt| 0.70 | 2.00 | 2.00 [4.70| [RelEnt| 0.51 | 1.42 | 3.00 |4.93

Pseudocounts

Are the —00’s a problem?
Certain that a given residue never occurs
in a given position? Then —oo just right
Else, it may be a small-sample artifact

Typical fix: add a pseudocount to each observed
count—small constant (e.g., .5, )

Sounds ad hoc; there is a Bayesian justification




WMM Summary

Weight Matrix Model (aka Position Specific Scoring Matrix,
PSSM, “possum”, Oth order Markov models)

Simple statistical model assuming independence between

adjacent positions

To build: count (+ pseudocount) letter frequency per
position, log likelihood ratio to background

To scan:add LLRs per position, compare to threshold

Generalizations to higher order models (i.e., letter
frequency per position, conditional on neighbor) also
possible, with enough training data

How-to Questions

Given aligned motif instances, build model?
Frequency counts (above, maybe w/ pseudocounts)
Given a model, find (probable) instances
Scanning, as above
Given unaligned strings thought to contain a
motif, find it? (e.g., upstream regions of co-
expressed genes)
Hard ... rest of lecture.

Motif Discovery

Unfortunately, finding a site of max relative

entropy in a set of unaligned sequences is NP-

hard [Akutsu]

Motif Discovery:
4 example approaches

Brute Force
Greedy search
Expectation Maximization

Gibbs sampler




Brute Force

Input:

Motif length L, plus sequences s, s2, ..., sk (all of
length n+L-1, say), each with one instance of an
unknown motif

Algorithm:

Build all k-tuples of length L subsequences, one
from each of sy, s3, ..., sk (n* such tuples)

Compute relative entropy of each
Pick best

Brute Force, Il m

Input:

Motif length L, plus segs s, s,, ..., s, (all of length n+L-1, say),

e
each with one instance of an unknown motif
Algorithm in more detail:

Build singletons: each len L subseq of each s, s, ..., s, (nk sets)
Extend to pairs: len L subsegs of each pair of seqs (nz( ;) sets)
Then triples: len L subseqgs of each triple of seqs (n3(l3() sets)

. k
Repeat until all have k sequences (n"( k) sets)

problem
astronomically sloooow

Compute relative entropy of each; pick best

Greedy Best-First

[Hertz & Stormo]

Input:
Sequences s, s,, ..., 5,; motif length L;
“breadth” d, say d = 1000
Algorithm:

As in brute, but discard all but best d
relative entropies at each stage

¥

” problems

usual “greedy

Expectation Maximization
[MEME, Bailey & Elkan, 1995]

Input (as above):

Sequence s, s,, ..., 5,; motif length I; background

model; agai;I azssume one instance per sequence
(variants possible)
Algorithm: EM
Visible data: the sequences
Hidden data: where’s the motif
Y., — { 1 if motif in sequence 7 begins at position j

0 otherwise

Parameters 6: The WMM




MEME Outline

Typical EM algorithm:

Parameters 0! at tth iteration, used to estimate

where the motif instances are (the hidden variables)
Use those estimates to re-estimate the parameters 0
to maximize likelihood of observed data, giving pt*!
Repeat
Key: given a few good matches to best motif,
expect to pick out more

Expectation Step

(where are the motif instances?)
\)(\.PO\
) (O

E(Y;"j ‘ si,Ht) —_— s~ 1
— P(}/;,j =1 | Si’et) _>/ o
— _ P(Y;,;=1]6")
= P(Sl | Y;}j = 1,9t)w
= cP(si|Yi; =1,0") 7, }

I 2=

= [Ty P(sijn—1 1 0%) JL;JL

1357 91..

where ¢’ is chosen so that } ;Y; j = 1. Seaence!

=
I

Maximization Step

(what is the motif?)

Find O maximizing expected value:

Q016" = BygllogP(s,Y | )]
= Ey.gt|log Hf:1 P(si,Yi | 0)]
= By [Xlog P(s;, Y; | 0)]
= Byap[S0, S Y log P(si, Vi = 11 6)]
= Byeo[X, S log(P(si | Yig =1,0)P(Yi; =11 6))]
= YF ST By o[V )log P(s; | Yiy = 1,6) + C
= Y YT log P(si | Vi =1,0)+ C

M-Step (cont.)

QU0 = i ST log P(s; | Yi; =1,0)+ C

Exercise: Show this is s1: ACGGATT...
maximized by “counting”
letter frequencies over all
possible motif instances, Vi ACGG

s GC...TCGGAC

with counts weighted }{92 22%

by Y. j, again the L .

“obvious” thing. K :
Yii-1  CGGA

Yo  GGAC




Initialization

|. Try every motif-length substring, and use as
initial 8 a WMM with, say 80% of weight on
that sequence, rest uniform

2. Run a few iterations of each

3. Run best few to convergence

(Having a supercomputer helps)

Lawrence, et al. “Detecting Subtle Sequence Signals: A
Gibbs Sampling Strategy for Multiple Sequence

Discovery Approach

Another Motif

The Gibbs Sampler

Alignment,” Science 1993
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Fnr 196
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HLKDAAALLGVSEMTIRR
TIKDVARLAGVSVATVSR
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TLKDIAIEAGVSLATVSR
TRAEIAQRLGFRSPNAAE
GQRKVADALGINESQISR
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LORKAVKKLR
IEKRALMKMF
ALKRLRTSLQ
WFQNRRMKWK
KIRDLDIQVY
WERGDSEPTG
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ILKMLEDQONL
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ALMNPDKVSQ
DLNNHSAPVV
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TFPAGDK
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240
111
39
343
466
39
22

116
42
186
32
29
213
213
269
461
28
40
20
22
43
84
512
222
177
20
20
44
42

A25944
A28627
A32837
A23450
B26499
B24328
C29010
A32142
A90983
A03579
A03553
A03577
A25867
A03554
A03552
A00700
A03564
A24963
A24076
A03559
A03558
A03576
A03568
S02513
S07337
S07958
s08477
509205
$11945
B25867

(BVECDA)

(DNECFS)
(JEBY1)
(QCBP2L)
(QRECC)
(RCBPL)
(RGBP22)
(RGECA)
(RGECF)
(RGECH)
(RGKBCP)
(RPECCT)
(RPECDO)
(RPECG)
(RPECL)
(RPECTN)
(RPECW)

(Z1BPC2)

Arg
Lys
Glu
Asp
Gln
His
Asn
sSer
Gly
Ala

Pro
Cys
Val
Leu
Ile
Met
Tyr
Phe
Trp

222
133

104

265

137
380

Position in site

S 6 7 8 9 10 11 12 13 14
9 9 137 137 9 9 9 52 222 94
9 71 380 194 9 133 9 9 71 9
9 9 140 140 9 9 9 53 140 140
9 9 299 125 9 67 9 67 67 9
9 9 224 9 9 9 9 9 278 63
9 9 125 125 9 9 9 9 125 125
9 9 168 89 9 89 9 248 9 168
9 9 9 9 9 9 9 819 63 387
9 151 9 9 9 1141 9 151 9 56
181 901 43 181 215 9 43 9 43 181
251 9 9 9 9 9 9 311 130 70
9 9 9 9 9 9 9 9 210 210
9 9 9 9 295 581 295 9 9 9
500 9 9 .9 156 9 598 9 205 58
149 9 93 149 458 9 149 9 37 37
323 9 114 166 9 9 427 S. 61 9
9 9 9 198 198 9 104 9 9 198
] 9 9 262 262 9 9 136 136 9
9 9 9 9 9 9 108 9 9 9
9 9 9 9 9 9 366 9 9 9

vooB vovowoooo

17

265

[N}
o




Some History

Geman & Geman, IEEE PAMI 1984
Hastings, Biometrika, 1970

Metropolis, Rosenbluth, Rosenbluth, Teller, &
Teller;“Equations of State Calculations by Fast
Computing Machines,” J. Chem. Phys. 1953

Josiah Williard Gibbs, 1839-1903, American
physicist, a pioneer of thermodynamics

How to Average

An old problem:

n random variables: T1,22,...,Tk
Joint distribution (p.d.f.): P(z1,20,...,7)
Some function: fz1,22,...,2k)

Want Expected Value: E(f(z1,22,...,71))

How to Average

E(f(ZL'l,IQ, ey

Approach I:direct integration

(rarely solvable analytically, esp. in high dim)
Approach 2: numerical integration

(often difficult, e.g., unstable, esp. in high dim)
Approach 3: Monte Carlo integration

sample 71 72 .. (™) ~ P(F) and average:

E(f(7)) = 7 X, f(@O)

TE)) =
/// flxy,@a, ... xk) - P(x1,29,. .., 2k)de1desy . . .
] o Tk

d:Ek

Markov Chain Monte
Carlo (MCMCQ)

* Independent sampling also often hard, but not
required for expectation

*MCMC X,.1 ~ P(X, 41| X;) wistationary dist =P

* Simplest & most common: Gibbs Sampling

P(x; | x1,22, ..., @Tie1, Tit1,y .-, Tk)
* Algorithm
fort=1to o t+1 ¢
fori= 1| tokdo:

/N

Tt41,4 ™~ P($t+1,i \ Lt41,15 Lt4+1,25 - -« s Lt41,i—15 Tti41y -« - >xt,k)




| Input: again assume sequences s, s, .., S,
b with one length w motif per sequence
| | Yi; Motif model: WMM
Parameters: Where are the motifs?
77777777777777 p ~ '/ /J  issisu. for lflfk, have IS'xi§|Si|_W+1
Sequence i
“Full conditional”: to calc
””””””””” A P(a:i:j\:pl,xg,...,xi_l,xi+1,...,xk)
build WMM from motifs in all sequences
********** - except i, then calc prob that motif in it seq
occurs at j by usual “scanning” alg.
Randomly initialize x’'s
fort=1to o Burnin - how long must we run the chain to
fori=1tok reach stationarity?
discard motif instance from s; Mixing - how long a post-burnin sample must
recalc WMM from rest we take to get a good sample of the
Similar to forj=1.. |s’.|-w+I stationary distribution? (Recall that individual
MEME, but it ) v , i
would calculate prob that i motif is at j: ‘s‘amplef are not independent, and may not
average over, ——p>  P(z; = j | 21, T2, .., Tio1s Tit1s- - - Th) move” freely through the sample space.

rather than . K . . .
sample from pick new x. according to that distribution

Also, many isolated modes.)




Variants & Extensions

“Phase Shift” - may settle on suboptimal
solution that overlaps part of motif.
Periodically try moving all motif instances a
few spaces left or right.

Algorithmic adjustment of pattern width:
Periodically add/remove flanking positions to
maximize (roughly) average relative entropy
per position

Multiple patterns per string
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NATURE BIOTECHNOLOGY VOLUME 23 NUMBER 1 JANUARY 2005

Assessing computational tools for the
discovery of transcription factor binding
sites

Martin Tompa®2, Nan Li!, Timothy L Bailey?, George M Church*, Bart De Moor?, Eleazar Eskin®,
Alexander V Favorov”$, Martin C Frith?, Yutao Fu®, W James Kent!?, Vsevolod ] Makeev”:$,

Andrei A Mironov”!!, William Stafford Noble!?, Giulio Pavesi'?, Graziano Pesole!?, Mireille Régnier',
Nicolas Simonis!?, Saurabh Sinha!®, Gert Thijs, Jacques van Helden!®, Mathias Vandenbogaert!4,
Zhiping Weng?, Christopher Workman'7, Chun Ye'® & Zhou Zhu*




Methodology

I3 tools

Real ‘motifs’ (Transfac)

56 data sets (human, mouse, fly, yeast)

‘Real’, ‘generic’, ‘Markov’

Expert users, top prediction only
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Lessons

Evaluation is hard (esp. when “truth” is unknown)
Accuracy low

partly reflects limitations in evaluation
methodology (e.g. < | prediction per data set;
results better in synth data)

partly reflects difficult task, limited knowledge (e.g.
yeast > others)

No clear winner re methods or models




Motif Discovery
Summary

Important problem: a key to understanding gene regulation
Hard problem: short, degenerate signals amidst much noise

Many variants have been tried, for representation, search,
and discovery. We looked at only a few:

Weight matrix models for representation & search
Greedy, MEME and Gibbs for discovery

Still much room for improvement. Comparative genomics,
i.e. cross-species comparison is very promising




