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Outline

MLE: Maximum Likelihood Estimators

EM: the Expectation Maximization Algorithm

Next: Motif description & discovery
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Maximum Likelihood Estimators

Learning From Data: 
MLE
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Probability Basics, I

pdf, not 
probability

Ex. Ex.

Sample Space

{1, 2, . . . , 6} R

Distribution

p1, . . . , p6 ≥ 0;
∑

1≤i≤6

pi = 1 f(x) >= 0;
∫

R
f(x)dx = 1

e.g.

p1 = · · · = p6 = 1/6 f(x) =
1√

2πσ2
e−(x−µ)2/(2σ2)
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Probability Basics, II
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Parameter Estimation

Assuming sample x1, x2, ..., xn is from a 
parametric distribution f(x|θ), estimate θ.

E.g.:

f(x) = 1√
2πσ2 e−(x−µ)2/(2σ2)

θ = (µ,σ2)



Likelihood

P(x | θ):  Probability of event x given model θ
Viewed as a function of x (fixed θ), it’s a probability

E.g., Σx P(x | θ) = 1

Viewed as a function of θ (fixed x), it’s a likelihood
E.g., Σθ P(x | θ) can be anything; relative values of interest.  
E.g., if θ = prob of heads in a sequence of coin flips then
    P(HHTHH | .6) > P(HHTHH | .5), 
I.e., event HHTHH is more likely when θ = .6 than θ = .5
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One (of many) approaches to param. est.
Likelihood of (indp) observations x1, x2, ..., xn

As a function of θ, what θ maximizes the 
likelihood of the data actually observed
Typical approach:                   or

Maximum Likelihood 
Parameter Estimation

∂

∂θ
log L(#x | θ) = 0

∂

∂θ
L(#x | θ) = 0
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(Also verify it’s max, not min, & not better on boundary)

Example 1
n coin flips, x1, x2, ..., xn;   n0 tails, n1 heads,  n0 + n1 = n;  

θ = probability of heads

L(x1, x2, . . . , xn | θ) = (1 − θ)n0θn1

log L(x1, x2, . . . , xn | θ) = n0 log(1 − θ) + n1 log θ

∂
∂θ log L(x1, x2, . . . , xn | θ) = −n0

1−θ + n1
θ

Setting to zero and solving:

θ = n1
n

 

ˆ
Observed fraction of 
successes in sample is 
MLE of success 
probability in population
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Ex. 2: xi ∼ N(µ,σ2), σ2 = 1, µ unknown

And verify it’s max, 
not min & not better 
on boundary

 

Sample mean is MLE of population mean
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Ex 3: xi ∼ N(µ,σ2), µ,σ2 both unknown
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Sample mean is MLE of population mean, again
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Ex. 3, (cont.)

lnL(x1, x2, . . . , xn|θ1, θ2) =
∑

1≤i≤n

−1
2

ln 2πθ2 −
(xi − θ1)2

2θ2

∂
∂θ2

lnL(x1, x2, . . . , xn|θ1, θ2) =
∑

1≤i≤n

−1
2

2π

2πθ2
+

(xi − θ1)2

2θ2
2

= 0

θ̂2 =
(∑

1≤i≤n(xi − θ̂1)2
)

/n = s̄2

A consistent, but biased estimate of population variance. 
(An example of overfitting.)   Unbiased estimate is:

Moral: MLE is a great idea, but not a magic bullet

θ̂2 =
∑

1≤i≤n
(xi−θ̂1)

2

n−1
′I.e., limn→∞ 

= correct



Is it?  Yes.  As an extreme, when n = 1, θ2 = 0.

Why?  A bit harder to see, but think about n = 2.  Then 
θ1 is exactly between the two sample points, the 
position that exactly minimizes the expression for θ2.   
Any other choices for θ1, θ2 make the likelihood of the 
observed data slightly lower.  But it’s actually pretty 
unlikely that two sample points would be chosen 
exactly equidistant from, and on opposite sides of the 
mean, so the MLE θ2 systematically underestimates θ2.

Aside: Is it Biased?  Why?
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EM 
The Expectation-Maximization 

Algorithm
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This?

Or this?

(A modeling  decision, not a math problem...)

More Complex Example
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No 
closed-
form
max

Parameters θ

means µ1 µ2

variances σ2
1 σ2

2

mixing parameters τ1 τ2 = 1− τ1

P.D.F. f(x|µ1,σ2
1) f(x|µ2,σ2

2)

Likelihood

L(x1, x2, . . . , xn|µ1, µ2,σ2
1 ,σ2

2 , τ1, τ2)

=
∏n

i=1

∑2
j=1 τjf(xi|µj ,σ2

j )

Gaussian Mixture Models / Model-based Clustering
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Messy: no closed form solution known for 
finding θ maximizing L

But what if we 
knew the 
hidden data?

A What-If Puzzle
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EM as Egg vs Chicken
IF zij known, could estimate parameters θ 

IF parameters θ known, could estimate zij

But we know neither; (optimistically) iterate:

E: calculate expected zij, given parameters

M: calc “MLE” of parameters, given E(zij)

Overall, a clever “hill-climbing” strategy 
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Simple Idea: 
“Classification EM”

If zij < .5, pretend it’s 0;  zij > .5, pretend it’s 1

i.e., classify points as component 0 or 1

Now recalc θ, assuming that partition

then recalc zij , assuming that θ

then re-recalc θ, assuming new zij

etc., etc.
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Full EM
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The E-step
Assume θ known & fixed
A (B): the event that xi was drawn from f1 (f2)

D: the observed datum xi

Expected value of zi1 is P(A|D)

Repeat 
for 

each 
xi

E = 0 · P (0) + 1 · P (1)

}
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Complete Data 
Likelihood
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M-step Details
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2 Component Mixture
σ1 = σ2 = 1;  τ = 0.5
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EM Summary

Fundamentally a max likelihood parameter 
estimation problem
Useful if analysis is more tractable when 0/1 
hidden data z known
Iterate: 

E-step: estimate E(z) given θ
M-step: estimate θ maximizing E(likelihood) 
given E(z) 



32

EM Issues
Under mild assumptions (sect 11.6), EM is 
guaranteed to increase likelihood with every 
E-M iteration, hence will converge.

But may converge to local, not global, max. 
(Recall the 4-bump surface...)

Issue is intrinsic (probably), since EM is often 
applied to NP-hard problems (including 
clustering, above, and motif-discovery, soon)

Nevertheless, widely used, often effective


