
Priority-Based Arithmetic Coding for Wavelets

Dane K. Barney∗

June 10, 2005

Abstract

JPEG-2000, the successor to JPEG, is emerging as an attractive candidate for the
future de facto image compression standard. However, while it offers superior results
over most other image compression techniques, it comes with a long list of features and
options, and consequently a highly complex algorithm. We have developed an image
coder that can compete with the performance of JPEG-2000 while offering a much
simpler design. Priority-Based Arithmetic Coding for Wavelets (PACW) involves a
wavelet transform followed by arithmetic coding of bit-planes in a prioritized order,
achieving lossy compression of grayscale images that can match, and occasionally out-
perform, JPEG-2000.

1 Introduction

The PACW project began in the summer of 2003. The original intent was to develop an im-
age coder that could perform at the level of other wavelet coders, like JPEG-2000, yet would
offer a more elegant and straightforward algorithm than JPEG-2000, making it more suitable
for teaching in an undergraduate data compression course. JPEG-2000 was a common part
of the undergraduate curriculum because it introduced students to many of the important
concepts underlying the latest generation of wavelet coders, such as the discrete wavelet
transform, binary arithmetic bit-plane coding, and Trellis coded quantization. However,
since JPEG-2000 has become a commercial coder rather than a research coder, it contains
countless bells and whistles. Thus, while it may be used to introduce important general
concepts of wavelet-based image compression, to get a full picture of JPEG-2000, students
must also be exposed to a torrent of extra features like progressive transmission by quality,
resolution, component, or spatial locality; random spatial access to the bitstream; dyadic or
packet decomposition; pan and zoom; rotation and cropping; and region of interest coding
by progression. The more streamlined PACW was therefore intended to replace JPEG-2000
in the curriculum. It would include many of JPEG-2000’s important aspects but exclude
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most of its frills, yielding a more user-friendly coder for the introduction of wavelet coding
concepts to an undergraduate class.

The starting point for PACW was the Group Testing for Wavelets (GTW) coder [1]
developed by Hong and Ladner in 2000. GTW, like JPEG-2000, is an embedded wavelet
coder, meaning it employs bit-plane coding of wavelet coefficients. However, its novelty lies
in its use of Hwang’s group testing algorithm [2] as a means of entropy coding, and with
it a method of handling coefficients in the significance pass that is more suited to group
testing. The PACW coder is essentially GTW with the group testing stages removed and
replaced with arithmetic coding, making it more similar to JPEG-2000. Along with this
replacement of the entropy coder, certain features of GTW were dropped, such as pattern
type, while other features were added, such as PACW’s novel use of a priority queue to
dictate the order in which coefficients are coded. The result was a coder which maintained
the simplistic nature of the GTW research coder, and provided a compression performance
that could effectively compete with JPEG-2000, yielding results at or above JPEG-2000’s
level in compressing several different images.

Having met our original goal, a new goal was set in the summer of 2004 to build upon
and improve the original PACW coder through various experiments in context modeling, in
an attempt to establish a more intelligent means of handling coefficients through contexts
during the arithmetic coding stage. Our aim is to push the performance of PACW to its
limit without sacrificing its simplicity. The original version, which did not consider all op-
timizations, is dubbed Version 1, and this new version, which does consider optimizations,
will be called Version 2. It is this move from Version 1 to Version 2 which is the primary
subject of this paper.

The remainder of this paper is arranged as follows. After a brief explanation of rate-
distortion curves, Section 2 gives an overview of the encoding phase of PACW, focusing
primarily on the theory behind the methods involved at each stage and the integration of
progressive stages. Section 3 is then devoted to the research involved in working from Version
1 to Version 2 of PACW, detailing each study in context modeling that was undertaken, and
following the sequential changes in compression performance with each optimization. Finally,
Section 4 gives a brief synopsis of related work in wavelet coding, followed by a rate-distortion
comparison of the overall performance of PACW Version 2 vis-a-vis other wavelet coders.

1.1 Measuring Compression Performance

The standard method of measuring compression performance uses a rate-distortion curve.
Throughout this paper, rate-distortion curves will be shown to visually depict the relative
performance of multiple compression schemes. A rate-distortion curve is a plot of the quality
of a reconstructed image, measured at all possible file sizes for the compressed image. The
size of the compressed image, along the x-axis, is given as a bit rate, which is simply the total
number of bits taken up by the compressed image divided by the total number of pixels in the

2



0 0.2 0.4 0.6 0.8 1
18

20

22

24

26

28

30

32

34

36

38

bit rate (bits/pixel)

P
S

N
R

 (
dB

)

Figure 1: A typical rate-distortion curve.

image, resulting in units of bits per pixel. For example, an uncompressed grayscale image,
which contains 256 possible shades of gray for each pixel, has a bit rate of exactly 8 bits/pixel.

Along the y-axis is the image quality, which is described in terms of peak signal to
noise ratio (PSNR), measured in decibels (dB). Since we are dealing specifically with lossy
compression, the reconstructed image is not necessarily identical to the original image; some
of the data is lost in the compression process. PSNR is intended to measure the perceptible
quality of an image by mathematically describing the pixel difference, or distortion, between
the original image and the reconstructed image. Specifically, PSNR is a logarithmic function
of the inverse mean squared error (MSE) between the pixels of the original and reconstructed
images. If X = (x1, x2, ..., xn) is the set of values for the n pixels of an image and X ′ =
(x′

1, x
′
2, ..., x

′
n) is the set of pixel values for the reconstructed image, then the MSE, σ2, is

defined as

σ2 =
n∑

i=1

(xi − x′
i)

2/n (1)

PSNR can then be defined in terms of MSE with the following equation:

10 log10

(
M2

σ2

)
(2)

where M denotes the maximum possible value for any pixel. In the case of grayscale images,
this value is 255. As PSNR increases, the quality of an image increases. An image with a
PSNR of about 40 dB is of very high quality and visually indistinguishable from the original
image.

Figure 1 shows an example of a rate-distortion curve. As can be seen, the PSNR increases
as the bit rate increases. However, the increase in PSNR is steepest at bit rates near zero,
and begins leveling out as the bit rate gets higher. This is because the very first bits of an
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Figure 2: Block diagram of both the encoding and decoding phases of the PACW algorithm.

embedded bitstream represent the most important information about the overall character-
istics of an image, hence they have a much greater impact on the reconstruction quality than
do the bits farther down in the embedded bitstream. In general, the goal for any coder is
to have the rate-distortion curve as far up and to the left as possible. This indicates that
the coder is able to compress images to an extremely small file size and still maintain a high
level of quality in the reconstructed image.

2 The PACW Architecture

The general algorithm involved in wavelet-based image compression is fairly standardized.
Compressing—or encoding—an image involves a wavelet transform, followed by an optional
quantization step, and finally bit-plane transmission of the wavelet coefficients to some type
of entropy coder. While PACW follows this scheme, its uniqueness among other wavelet
coders lies in:

• Its treatment of coefficients in a significance and refinement pass

• The manner in which coefficients with similar properties are grouped into contexts

• The use of a priority queue to determine the order in which bits are entropy coded

For a full discussion of the details behind PACW’s priority queue, refer to Section 3.6. In this
section, we provide a brief overview of the PACW architecture, walking through each stage
of the encoding procedure. Decompressing—or decoding—an image is simply the inverse
function of encoding, in which each step performed in the encoder is undone in reverse
order. The block diagram of PACW, shown in Figure 2, illustrates this point.
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Figure 3: One-dimensional average transform on two samples.

2.1 Wavelet Transform

The first stage of the PACW algorithm is a wavelet transform. This is a special kind of
linear transform which decomposes an image into a low resolution version with detail data.
Specifically, the image pixels are run through a set of two filters, one which creates a down-
sampled version of the original pixel values, and another which creates complementary detail
pixels. Figure 3 shows a simple one-dimensional average transform. Two adjacent samples
are filtered through a low pass filter (L), which generates the average of the two samples (the
low resolution version), and a high pass filter (H), which generates the difference between
this average and the actual values (the detail data).

This averaging filter can be easily extended to two dimensions by first filtering samples
horizontally and then vertically. This process is illustrated in Figure 4. An image—a two-
dimensional matrix of samples—is first horizontally transformed, creating two half-width
pieces, or subbands: (1) the low resolution subband from the low pass filter (L), containing
the average of every two neighboring pixels, and (2) the detail subband from the high pass
filter (H), containing all the difference values. These two subbands can then be treated to-
gether as a matrix of samples and further decomposed through a vertical transform, resulting
in four total subbands. The upper-left subband now contains a quarter-sized averaging of
the original image, and is referred to as the LL subband since it has gone through two low
pass filters. The other three subbands are considered detail subbands since they have all
been filtered through at least one high pass filter. This two-dimensional transform can then
be repeated on only the LL subband, decomposing it into four subbands, and so on. Each
iteration creates a new subband level consisting of an LL, LH, HL, and HH subband. This
recursive process can continue until the coder instructs it to halt, which in PACW happens
once the width or height of the LL subband becomes smaller than 16 pixels in size. The
end result is a very small version of the image in the final LL subband, and several levels of
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detail subbands.

The purpose of a wavelet transform is to condense the image energy into the LL sub-
band, leaving the majority of the spatial area to contain less important detail data. Thus,
the LL subband contains values much larger in magnitude than the detail subbands, which
are largely comprised of values at or near 0. The LL subband can then be treated with more
importance than the detail subbands, and transmitted first. In PACW, we further decrease
the magnitude of coefficients in the LL subband by subtracting the average value from all of
its members. This value, which we refer to as LLavg , must then be sent as side information
to the decoder.

Additionally, rather than use the simple averaging filter shown in these examples, PACW
employs a more sophisticated set of filters known as Daubechies 9/7 [3]. This is the same
set of wavelet filters used by JPEG-2000 and GTW, among other wavelet coders. Since
the Daubechies 9/7 filters contain floating-point values, the wavelet coefficients in the trans-
formed image are all floating-point numbers. These numbers must be normalized between
-1 and 1 in preparation for bit-plane coding. This normalization is done by dividing every
value by the largest absolute magnitude, which must be sent as side information so that the
decoder will know the value by which to multiply all coefficients.

2.2 Bit-Planes

The next stage in our algorithm is the splitting of coefficients into bit-planes. We now have
an m× n matrix of normalized wavelet coefficients and by treating each value in binary, we
can split up the values into separate bits and form m× n bit-planes which contain only one
bit from each value. Thus, the first bit-plane contains the most significant bit of every coef-
ficient, the second bit-plane contains the next most significant bit, and so on. This concept
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Figure 5: Bit-plane coding of normalized wavelet coefficients.

is illustrated in Figure 5. Additionally, the sign of each coefficient is extracted and used to
form its own bit-plane called the sign plane. We can then transmit the data on a bit-plane
by bit-plane basis, beginning with the most significant bit-plane. Each subsequent bit-plane
provides the decoder with an additional level of refinement by appending one more bit onto
each value. Consequently, we can abort the transmission of the bit-planes prematurely and
the decoder will still have a full reconstruction of the image, just at a coarser level of detail.
This is what is known as an embedded bitstream, wherein data is progressively transmitted
and can be stopped at any point, yielding different approximations of the original image.

The idea behind bit-plane transmission is that the first several bit-planes will contain
mostly “0” bits, given that most wavelet coefficients are equal or close to 0. Segmenting the
data into largely uniform partitions like this greatly enhances the compression performance
attained by the entropy coder in the next stage. However, we can further partition the data
by transmitting each bit-plane in two separate passes: a significance pass and a refinement
pass. During the transmission of bit-planes, each coefficient is labeled insignificant until
its first “1” bit is reached. Once a coefficient becomes significant, all of its subsequent bits
are refinement bits. Figure 6 shows a list of coefficients in binary with the refinement bits
shaded. We see that at bit-plane 3 coefficients 1, 7, and 8 are already significant; coefficients
2 and 9 are becoming significant; and all other coefficients are still insignificant.

For each bit-plane, we first transmit all coefficients which are still insignificant in the
significance pass. Amidst all of the insignificant coefficients transmitted, some will likely
become significant in the current bit-plane. In such a case, the coefficient’s “1” bit is trans-
mitted to the entropy coder followed by the sign bit for that coefficient, to indicate whether
the value for the coefficient is to interpreted as positive or negative. Despite these rare occur-
rences in which a coefficient becomes significant in the significance pass, the majority of bits
encountered during this pass will be 0. This is especially true during the first few bit-planes
when only the largest-magnitude coefficients in the LL subband are becoming significant. In
PACW, we attempt to further optimize the level of compression attainable in the significance
pass by transmitting the bits in a prioritized order. The order is based on how likely a coeffi-
cient is to become significant at the current bit-planes, such that the coefficients which are to
become significant at the current bit-plane will be transmitted before the coefficients which
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Figure 6: The refinement bits in a list of binary coefficients.

will remain insignificant. This prioritized ordering is explained in further detail in Section 3.6.

Following the significance pass is the refinement pass, in which all coefficients which have
previously become significant in a past bit-plane send a bit-plane of refinement bits to the
entropy coder. Unlike the bits encountered in the significance pass, which are mostly 0’s,
the refinement bits exhibit a more random distribution of 0’s and 1’s. Since there is much
less structure within the refinement, it is much more difficult to compress. By far the largest
proportion of an embedded bitstream belongs to refinement bits.

2.3 Entropy Coding with Context Modeling

The final stage of the encoding process is entropy coding of the bit-planes. An entropy coder
is a general purpose lossless compression algorithm. It makes no inference on the type of
data represented, it simply maps input symbols to bit codes with the aid of a probability
model. Thus, an entropy coder takes as input a sequence of source symbols together with
their respective probabilities, and is able to output a compressed binary string by using the
probabilities as a means of prediction. There are many entropy coders of varying complexity,
but the one we chose for PACW is arithmetic coding. Arithmetic coding is also the entropy
coder used in JPEG-2000 and many other wavelet coders. The details of the inner-workings
of arithmetic coding are too involved to explain in this paper; what is most important to
discuss is the specific type of arithmetic coding employed in PACW and its properties.

The type of arithmetic coding used in PACW is called context-based adaptive binary
arithmetic coding (CABAC). “Binary” refers to the fact that there are only two different
input symbols handled: 0 and 1. “Adaptive” refers to the fact that the probability model
changes as each input symbol is encoded. Rather than use fixed values as the probability
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of each input symbol, the values are constantly refreshed and updated to reflect the actual
data being encoded. Thus, we begin with the equal probability model—or alternatively, a
weighted probability model based on empirical data—and upon coding each new input sym-
bol, we increment its frequency by 1, thereby updating its probability to more accurately
represent the true symbol frequencies in the input data.

Finally, “context-based” means that there is more than one probability model used by
the entropy coder. Each represents a different context within the data, based on past input
symbols. For example, there could be a context corresponding to the event in which the most
recently coded symbols were both 1’s, and another context for the event in which they were
both 0’s. Then, instead of only one probability model containing the probabilities P (0) and
P (1), we would have a probability model containing P (0|00) and P (1|00), another containing
P (0|11) and P (1|11), and so forth. By maintaining unique probability models for each of
these different situations, the probabilities are consequently more accurate because they
are custom tailored to a specific situation; they are uncorrupted by potentially conflicting
probabilities contained in some other context. Now, the question of what to base these
contexts on and how many to use is a strategy called context modeling. This is a gray area in
the sense that it is open to ingenuity and experimentation, and can have a dramatic impact
on the overall compression performance of a coder. For this reason, we devote the next entire
section of this paper to our experimentations with context modeling in PACW, as we seek to
optimize PACW’s performance before comparing it with JPEG-2000 and other competitors.

3 Experiments in Context Modeling

We now present the details of the various studies performed on PACW in our attempts to
move from Version 1 to a more optimized Version 2. Virtually every study we undertook with
PACW dealt in some way with context modeling, given that it is the one area of the PACW
architecture with the most room to play while still leaving the general procedure intact.
Context modeling itself occurs during the significance pass. All the coefficients are separated
into different contexts based upon certain criteria, and each context is assigned a unique
probability model for the entropy coder to use in the encoding of that context’s coefficients.
In grouping together coefficients with similar properties, the aim is to improve the prediction
accuracy of a coefficient’s significance, and in so doing increase the compression. Determining
which criteria to use for classification is the key to the amount of compression gain achieved.
Our initial method of coefficient classification was based upon two criteria: (1) the subband
level and (2) the number of significant coefficients around it. From this rudimentary setup,
we experiment with several variations in an effort to locate an optimal point of compression
performance. This is measured through comparative rate-distortion curves from several
different test images. The images selected as our test set are shown and described in Figure 7.
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Figure 7: Test set of images used in the experiments.
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3.1 Subband Levels

As mentioned previously, the effect of the wavelet transform is to condense the energy of
the image into the upper-left corner of the image space. This means the coefficients in the
lower frequency subbands are of much larger magnitude than those in the higher frequency
subbands. Because of this large difference in coefficient magnitude, it follows that classifying
coefficients based on their subband would be advantageous. We seek to verify this theory
by comparing the compression performance yielded from three different context models: (1)
classifying coefficients based upon their subband number, (2) classifying based upon their
subband level, and (3) ignoring subbands entirely during classification. A subband level is
simply the group of three subbands at the same detail resolution, as shown in Figure 8.
Subband 0 is the one exception to this, as it constitutes an entire level alone. Our original
hypothesis was that grouping coefficients by subband level would yield better results than
grouping by subband number, because it would capture the inherent differences in coeffi-
cient significance among the different subbands yet would avoid the effects of context dilution
which might result from treating each subband individually. Context dilution occurs when
such a large number of contexts are used that the data is spread too thin amongst them
and its characteristics are not accurately captured, resulting in a degradation of compression
efficiency.

However, the results, shown in Figure 9, reveal that this is not case. Treating each
subband individually actually yields slightly better compression than combining them into
levels. This is true for all three test images. Yet this difference is negligible, as we see
that all three context models—even the model which ignores subbands completely—give
virtually the same results. For this reason, the Version 2 of PACW keeps the original model
of classifying by subband level.
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Figure 9: Rate-distortion curves of three images which compare three ways of treating sub-
bands during classification: (1) treating each subband individually, (2) grouping them into
subband levels, and (3) ignoring them altogether.

3.2 Significant Neighbors

The second criterion used for coefficient classification in Version 1 of PACW is the number
of significant neighbors surrounding each coefficient. If a given coefficient is surrounded by
many coefficients which have already become significant, it is likely that it will soon become
significant itself, more so than a coefficient which is amongst a patch of insignificant coeffi-
cients. Thus we should treat these different situations with different contexts. This idea is
a very common feature implemented in image coders today, yet it is an idea which involves
a number of variables, such as how many significant neighbors to consider and where these
neighbors should be located relative to the current coefficient. It is these questions which
provide the basis for the next set of studies.

Initially, the significant neighbor metric implemented in PACW was taken directly from
GTW [1]. The GTW significant neighbor metric checks 15 different neighbors for significance
during the classification of a coefficient. These 15 neighbors are specially located based upon
the correlation that exists among coefficients in a wavelet-transformed image. As Figure 10
shows, the set of neighbors include the eight spatially adjacent coefficients immediately sur-
rounding the coefficient in the same subband, the two spatially identical coefficients in the
same local positions of the other subbands at the same level, the parent coefficient in the
corresponding position of the next lower subband, and the four child coefficients in the cor-
responding positions of the next higher subband. In counting the significant neighbors, each
of the eight spatially adjacent, two spatially identical, and one parent contribute individually
to the total, but the four children together only count as one significant neighbor if any of
the four is significant. This is because these four children taken together represent one single
spatially equivalent position in the next higher subband level. Thus, the maximum count
of significant neighbors is 12 even though there are 15 total neighbors. However, this does
not mean that 12 different contexts are created based upon this count. Rather, in GTW,
there are only four different contexts resulting from the significant neighbor count, which
correspond to 0, 1, 2, and ≥ 3 significant neighbors. Grouping all coefficients with ≥ 3
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Figure 10: Neighbors of a coefficient in a wavelet-transformed image, as defined by the GTW
algorithm.

significant neighbors into the same context is based upon the observation that contexts with
that many significant neighbors tend to have very similar properties, and in reducing the
number of contexts to four, possible context dilution is avoided.

With this metric used as a starting point, we attempt to find an optimal level for PACW
by making various adjustments to the GTW metric and comparing the compression perfor-
mance. Four different models are compared: Model 1 looks at only the spatially adjacent
neighbors, model 2 looks at the spatially adjacent and spatially identical neighbors, model
3 looks at the spatially adjacent and parent/child neighbors, and model 4 is the original
GTW metric. Additionally, for each of these four models we study the effect of incremen-
tally increasing the number of the significant neighbor contexts. With only one context,
all coefficients are grouped together based on having ≥ 0 significant neighbors. With two
contexts, coefficients are classified based on whether they have 0 or ≥ 1 significant neighbors.
Three contexts corresponds to 0, 1, ≥ 2 significant neighbors, and so on. The results of this
study are shown in Figure 11, with the performance of the four models at a single bit rate
(0.50 bits/pixel) plotted against the number of contexts.

The relative performance of the four models varies depending on which image is being
compressed. “Barbara” exhibits the most regularity and consistency, whereas with “Man”
and “Zebra” the top-performing model changes with the number of contexts. If there is one
clear thing that can be concluded from all three plots, it is that the inclusion of spatially
identical neighbors in fact hurts the compression performance. If we say models 1 and 2
are counterparts and models 3 and 4 are counterparts, in the sense that they differ only in
the inclusion or exclusion of spatially identical neighbors, then we can see from the plots
that the models which exclude spatially identical neighbors almost always outperform their
counterpart. So, with spatially identical neighbors safely out of the picture, only models 1
and 3 need be considered, and the question becomes whether or not the parent and child
neighbors are worth including. For “Barbara” the answer is no, since model 1 is consistently
better than model 3, but for “Man” and “Zebra” the answer is yes. Now, since model 3
is the best for “Man” and “Zebra” and the second best for “Barbara,” whereas model 1 is
the best for “Barbara” but one of the worst for “Man” and “Zebra,” it seems that the best
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Figure 11: Rate-distortion curves of three images which compare four different context
models, who look at different combinations of neighbor types, across an incrementing number
of significant neighbor contexts. “SpAdj” stands for eight spatially adjacent neighbors,
“SpId” stands for the two spatially identical neighbors, “P” is the parent neighbor, and “C”
represents the four children neighbors.

concession we can make is to use model 3. Therefore, for our optimized version of PACW
we adopt model 3, which looks at the spatially adjacent, parent, and child neighbors, but
not the spatially identical neighbors.

In terms of the number of significant neighbor contexts, the plots show that the compres-
sion performance tends to flatten out once we get up to around four, five, or six contexts,
depending on the image. Table 1 shows an alternative way of representing this information.
It lists the total count of significant coefficients and insignificant coefficients classified as hav-
ing 0 through 8+ significant neighbors, and shows the percentage of significant coefficients
for each context. Note that model 3 was used to generate this table, so only the spatially ad-
jacent, parent, and child neighbors were considered. The significant and insignificant counts
were accumulated across eight bit-planes, and all neighbors which had not yet been encoded
were treated as insignificant. This table reveals that the proportion of significant coefficients
approaches 50% as the number significant neighbors increases, with the last few contexts
exhibiting very similar properties. For example, in the table for “Barbara,” the first several
rows have very different proportions of significant coefficients. This difference tapers off
once we get up to five significant neighbors, where we see that the difference in proportion
between four and five significant neighbors is 8.8% compared to the difference between five
and six significant neighbors, which is only -1.6%. Similarly, in the table for “Zebra,” the
large changes in proportion diminish from 7.8% between four and five significant neighbors,
to 1.9% between five and six significant neighbors. The fact that the last few contexts ex-
hibit the same behavior, with roughly 50% significant coefficients, means that these contexts
can safely be grouped into one context. Furthermore, the cut-off point at which to create
this final catch-all context seems to be at five significant neighbors, giving us a total of six
contexts (0, 1, 2, 3, 4, or ≥ 5 significant neighbors). This is the metric we adopt for Version
2. In contrast, recall that GTW uses four contexts (0, 1, 2, ≥ 3 significant neighbors).
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Sig Barbara Man Zebra
Nbrs # Sig # Insig % Sig # Sig # Insig % Sig # Sig # Insig % Sig

0 1696 1990124 0.09% 2025 8279185 0.02% 899 1669804 0.05%
1 3817 54002 6.60% 3533 61752 5.41% 2620 63225 3.98%
2 4268 11364 27.3% 3192 13922 18.7% 3141 12525 20.0%
3 3204 6462 33.2% 2225 6231 26.3% 2977 7011 29.8%
4 2536 3307 43.4% 1459 2968 33.0% 2591 3932 39.7%
5 1568 1438 52.2% 844 1295 39.5% 1851 2041 47.6%
6 801 784 50.5% 479 605 44.2% 1098 1122 49.5%
7 460 465 49.7% 244 286 46.0% 682 639 51.6%

≥ 8 219 270 44.8% 225 235 48.9% 706 707 50.0%

Table 1: The number of significant coefficients and insignificant coefficients which have 0
through ≥ 8 significant neighbors. The counts were accumulated across eight bit-planes,
and only spatially adjacent, parent, and child neighbors were looked at.

3.3 PACW Classification vs. EBCOT Classification

We now compare the newly-optimized method of classification in PACW to the method
used in Taubman’s EBCOT coder [4]. EBCOT (Embedded Block Coding with Optimized
Truncation) is an image compression algorithm which was adopted for use in the JPEG-2000
standard and effectively serves as its primary foundation. Essentially everything which fol-
lows the wavelet transform and quantization phases of JPEG-2000 is the EBCOT algorithm.
Included among the elements JPEG-2000 takes from EBCOT is the metric used for classi-
fying coefficients. Thus, by implementing the EBCOT metric into PACW and comparing
its performance with our own metric, we are comparing the way coefficients are classified in
JPEG-2000 to the way they are in PACW.

Just like PACW, EBCOT classifies coefficients based upon two criteria. But whereas
PACW classifies first by the subband level of the coefficient, EBCOT classifies by the ori-
entation type of the subband. There are three different orientation types: LH, HH, or HL,
as shown in Figure 12a. A subband is of type LH if it is the result of the low pass from a
horizontal transform and the high pass from a vertical transform. Likewise, a subband is of
type HL if it is the horizontal low pass and the vertical high pass component, and is of type
HH if it is the horizontal high pass and vertical high pass component. Refer to Section 2.1
for a discussion of low and high pass filters in a wavelet transform. The special exception
here is subband 0, the LL subband, which EBCOT classifies as type LH for its purposes.

The second criterion EBCOT uses for classification is the number of significant neighbors
surrounding the coefficient. It only looks at the eight spatially adjacent neighbors, however
it divides them into four diagonal (d), two vertical (v), and two horizontal (h) neighbors.
These three types of spatially adjacent neighbors are weighted differently, depending upon
the orientation type of the current subband, as described in Figure 12b. The table shows
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LH HL

LH HH
HL

LH HH

HL

LH HH

(a) Orientation type of wavelet
subbands.

Assigned LH subband HL subband HH subband
label h v d h v d h + v d

0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 1 0
2 0 0 ≥ 2 0 0 ≥ 2 ≥ 2 0
3 0 1 ≥ 0 1 0 ≥ 0 0 1
4 0 2 ≥ 0 2 0 ≥ 0 1 1
5 1 0 0 0 1 0 ≥ 2 1
6 1 0 ≥ 1 0 1 ≥ 1 0 2
7 1 ≥ 1 ≥ 0 ≥ 1 1 ≥ 0 ≥ 1 2
8 2 ≥ 0 ≥ 0 ≥ 0 2 ≥ 0 ≥ 0 ≥ 3

(b) Context label assigned to coefficients of LH, HL, and HH sub-
bands based upon h, v, and d significant neighbor counts.

Figure 12: EBCOT’s method of coefficient classification based upon the subband orientation
type and the number of horizontal, vertical, and diagonal significant neighbors.

how the h, v, and d neighbors are counted up and used to assign a context label. Since an LH
subband contains the low pass data from the horizontal transform, it values h neighbors more
than v neighbors, since there is greater spatial correlation horizontally than vertically. Like-
wise, in HL subbands the v neighbors are counted as more important than the h neighbors
since there is greater spatial correlation vertically than horizontally. Finally, HH subbands
value d neighbors more than either h or v neighbors, since such subbands contain only high
pass data and have almost no spatial correlation either horizontally or vertically.

With three different orientation types and nine possible context labels for each orientation
type, there are a total of 27 contexts used in EBCOT. By comparison, the number of contexts
in PACW varies depending upon the size of the image being compressed, due to the fact
that PACW classifies by subband level. For each subband level, there are six contexts (see
Section 3.2). For an image such as “Barbara,” which is 512 × 512 pixels, there are seven
subband levels and thus 42 contexts. “Man” is four times the size of “Barbara,” but has only
one additional subband level and hence six more contexts, making a total of 48. We now
compare the compression performance of EBCOT’s classification scheme versus PACW’s
classification scheme, both implemented within PACW. Rate-distortion curves of this study
are presented in Figure 13. The results show that, despite EBCOT’s attempts to exploit the
horizontal and vertical spatial correlation patterns within each subband orientation type,
its performance is actually slightly worse than the PACW classification method. Moreover,
the fact that PACW is able to outperform EBCOT, albeit negligibly, shows that PACW’s
tendency to create many more contexts than EBCOT’s fixed number of 27 does not actually
result in context dilution.
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Figure 13: Rate-distortion curves of three images which compare the performance of
EBCOT’s method of classification to PACW’s method of classification, both implemented
within PACW.

Barbara Man Zebra
0’s 1’s % 1’s 0’s 1’s % 1’s 0’s 1’s % 1’s

Refin Bit 1 65421 36277 64.3% 122906 56656 68.4% 66185 35253 65.2%
Refin Bit 2 36326 26300 58.0% 47147 32167 59.4% 30919 21077 59.5%
Refin Bit 3 19637 16807 53.9% 19513 15722 55.4% 15267 12885 54.2%
Refin Bit 4 9711 8858 52.3% 7404 6822 52.0% 8660 7905 52.3%
Refin Bit 5 3824 3613 51.4% 2642 2509 51.3% 4738 4550 51.0%
Refin Bit 6 1000 916 52.2% 879 909 49.2% 2355 2331 50.3%
Refin Bit 7+ 488 526 48.1% 465 499 48.2% 1821 1834 49.8%

Table 2: The frequency of 0’s and 1’s among refinement bits which were accumulated across
12 bit-planes. Each row corresponds to the relative bit position of the refinement bit for a
given coefficient (i.e. Refin Bit 1 = the position of the first refinement bit in each individual
coefficient).

3.4 Refinement Bit Contexts

Up to this point, our discussion of contexts in PACW has pertained solely to the significance
contexts—the contexts used to classify coefficients during the significance pass. However,
some type of context is also needed for the arithmetic coding of refinement bits during the
refinement pass. Prediction of refinement bits is much trickier because once a coefficient
becomes significant, the values of its subsequent refinement bits tend to be fairly random.
For this reason, PACW Version 1 used only a single context for all refinement bits.

However, looking at Table 2, we see that there is actually some structure present in the
refinement data. The first couple of refinement bits in each coefficient have a higher frequency
of 1’s than 0’s and it is not until the later refinement bits that the data starts to become
truly random, with an equal probability of 1’s and 0’s. Based upon this information, we use
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two refinement contexts for Version 2, rather than one. The first context is used for only
the first refinement bit of each coefficient, and the second context encapsulates all following
refinement bits. This way, the slight bias toward bit 1 in the first refinement bit will be more
accurately captured and predicted by its own context, and we avoid it becoming muddied
by the more even distribution of 0’s and 1’s which occurs in the subsequent refinement bits.

3.5 Inter-plane Prediction

Each context is responsible for keeping track of the behavior of the coefficients associated with
it. This is done by maintaining frequency counts for the number of 0’s and 1’s encountered
so far, and using these counts to form probabilities for future 1’s and 0’s, so that it is able
to predict future bits and thus enhance compression. However, because PACW encodes the
data on a bit-plane by bit-plane basis, there is the question of whether or not to use inter-
plane prediction, in which the frequency counts of previous bit-planes are carried over for
the prediction of the current bit-plane. On one hand, different bit-planes contain different
structure and therefore the behavior of previous bit-planes may not apply to the current
bit-plane. On the other hand, it takes a number of bits for a context to learn the behavior
of its data, and starting the learning process over again from scratch for each bit-plane may
hurt the compression performance. One option is to divide the frequency counts of each
context by a certain factor at the start of each new bit-plane. In so doing, a fraction of
the counts will be remembered and applied to the current bit-plane, but the sheer size of
these accumulated counts will be diminished so that it is easier for the current bit-plane to
influence them in its own favor. At the start of a new bit-plane pi+1, we compute F (pi+1),
the context’s frequency count at that bit-plane, using a multiplying factor α, according to
the following equation:

F (pi+1) = max (1, �α × F (pi)�) where 0 ≤ α ≤ 1 (3)

Note that the use of the max function is needed to avoid the situation in which F (pi+1) =
0; the frequency count must always be at least 1 in order for the entropy coder to handle it
properly. Thus, according to the above equation, α = 0 corresponds to completely resetting
the counts back to their initial value of 1, α = 1 corresponds to completely remembering
the counts, and values in between 0 and 1 correspond to remembering a percentage of the
counts. Note that this computation occurs only on the significance contexts; the sign and
refinement contexts’ frequency counts are always carried across bit-planes.

Up to this point, all tests run on PACW have had α = 0. However, in order to determine
which value of α is the best choice, we now study the effect of α on the compression perfor-
mance. The results are shown in Figure 14, with PSNR plotted against α at a single bit rate
(0.50 bits/pixel). In all three images, the trend is a gradual decline in compression perfor-
mance as α increases to 1. However, all three images also show a big jump when moving from
0 to the next closest data point. Thus we can conclude that neither completely resetting nor
completely remembering frequency counts is the best choice. Rather, we should remember
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Figure 14: PSNR plotted against the value of α at a single bit rate.

a very small percentage. The true peak in compression performance varies slightly among
these three plots, and as a compromise we settle upon α = 0.15 for Version 2 of PACW.

3.6 The Priority Queue

PACW Version 1 includes the use of a priority queue during the significance pass to dictate
the order in which coefficients are coded, in an attempt to get the coefficients which become
significant in the current bit-plane sent to the encoder before those that remain insignificant.
A priority key is assigned to each context rather than to each individual coefficient, however.
This priority key is equal to the proportion of significant coefficients already encountered
within that context. If we let P (Ck) be the priority of some context Ck, and F (Sk) and
F (Ik) be the frequency counts for the significant and insignificant coefficients, respectively,
within Ck, then:

P (Ck) =
F (Sk)

F (Sk) + F (Ik)
(4)

By using this value as the priority key of each context, those contexts which have a high
probability of containing significant coefficients are given precedence over others. Once a
context is selected from the priority queue, an arbitrary coefficient belonging to that context
is encoded.

However, the use of this priority queue adds overhead to the run-time of both encoding
and decoding, and it was originally unknown whether or not an improvement in compression
was even achieved. Therefore, we now seek to validate our use of a priority queue by
comparing its performance to a version of PACW with the priority queue removed. Without
a priority queue, coefficients are simply coded in subband order, from lowest to highest,
and in straight raster order within each subband. The performance comparison is shown in
Figure 15. The advantages of the priority queue are most evident for “Barbara” where it is
able to consistently outperform the non-priority queue version. There are a few bit rates in
the coding of “Man” and “Zebra” where the non-priority queue version actually does better,
but the difference is extremely small. Based on the overall trend seen in these plots, we deem
the priority queue a beneficial asset to PACW, and keep it intact for Version 2.
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Figure 15: Rate-distortion curves for three images comparing the compression performance
of PACW with and without the use of a priority queue to dictate the order coding coefficients.

GTW PACW Version 1 PACW Version 2
Entropy coder group testing arithmetic coding arithmetic coding
Classification 1. subband level 1. subband level 1. subband level

criteria 2. sig neighbor metric 2. sig neighbor metric 2. sig neighbor metric
3. pattern type

Sig neighbors 8 spatially adjacent, 8 spatially adjacent, 8 spatially adjacent,
1 parent, 4 children, 1 parent, 4 children, 1 parent, 4 children
2 spatially identical 2 spatially identical

# Sig contexts 4 (0, 1, 2, ≥ 3) 4 (0, 1, 2, ≥ 3) 6 (0, 1, 2, 3, 4, ≥ 5)
# Refin contexts 1 1 2

α 0 0 0.15
Priority queue no yes yes

Table 3: An overview of the differences between GTW, PACW Version 1, and PACW Ver-
sion 2.

3.7 Version 1 vs. Version 2

As an overview of all of the changes that have been made to our original coder, we now
present a performance comparison between Version 1 and Version 2 of PACW. In addition,
we include GTW in our comparisons. GTW can be thought of as Version 0 of PACW since
it was the precursor to PACW and the only major differences between the two coders are the
replacement of group testing with arithmetic coding and the addition of a priority queue.
The details of these three coders are outlined in Table 3. A rate-distortion comparison is
shown in Figure 16 and the corresponding PSNR values are given in Table 4 as a clearer
representation of the results. The good news from these results is that, with all of the changes
combined together in the optimal version, performance is improved across the board; PACW
Version 2 comes out over both Version 1 and GTW for every bit rate. The improvement
from Version 1 to Version 2 is certainly nothing drastic, but we should not expect it to be,
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Figure 16: Rate-distortion curves on three images comparing the compression performance
of GTW, PACW Version 1, and PACW Version 2. See Table 4 for the PSNR values.

bit Barbara Man Zebra
rate GTW Ver 1 Ver 2 GTW Ver 1 Ver 2 GTW Ver 1 Ver 2
0.1 24.41 24.54 24.58 28.84 28.83 28.88 27.66 27.80 27.96
0.2 26.85 26.65 26.96 31.17 31.25 31.28 31.34 31.58 31.76
0.3 28.69 28.78 29.02 32.82 32.83 32.89 33.95 34.03 34.34
0.4 30.12 30.22 30.40 33.91 33.94 33.96 35.96 35.98 36.18
0.5 31.58 31.58 31.84 34.88 34.81 34.92 37.42 37.40 37.68
0.6 32.76 32.86 33.05 35.66 35.67 35.72 38.50 38.69 38.87
0.7 33.62 33.84 34.04 36.27 36.42 36.45 39.62 39.60 39.75
0.8 34.67 34.78 35.00 36.93 37.02 37.04 40.30 40.39 40.58
0.9 35.73 35.67 35.95 37.42 37.48 37.49 41.05 41.11 41.33
1.0 36.46 36.60 36.83 37.96 38.05 38.07 41.62 41.79 41.91

Table 4: PSNR (dB) values corresponding to the rate-distortion curves of Figure 16. The
top performer at each bit rate is shown in bold.
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since we are merely fine-tuning the context modeling details of our coder at this stage. What
is most important is that we have settled upon a set of values for all of the variables in our
coder which yields a consistent dominance over the original set of values.

4 Related Work

PACW belongs to a family of image coders known as wavelet coders, named in reference to
their use of a wavelet transform at the beginning of their algorithm. Other notable wavelet
coders include EZW, SPIHT, ECECOW, JPEG-2000, and GTW. All of these coders are
similar in that they all transmit wavelet coefficients bit-plane by bit-plane, with the most
significant bit-plane first. The primary difference between them is the method they use to
encode the bit-planes.

The Embedded Zerotree Wavelet (EZW) coder [5] was introduced by Shapiro in 1993, as
a new technique for image compression which offered a very effective and computationally
simple algorithm. Using bit-plane coding of wavelet coefficients, it generated an embedded
bitstream wherein bits were coded using zerotrees during a significance pass and remaining
bits were coded in a refinement pass. Both passes used an adaptive arithmetic coder for the
entropy coding.

This algorithm was improved upon with Said and Pearlman’s Set Partitioning in Hier-
archical Trees (SPIHT) coder [6] in 1996. SPIHT built upon the original concepts of EZW,
but used a different wavelet, a different method of organizing the coefficients into zerotrees,
and a different type of adaptive arithmetic coder which used several contexts. The result
was an improvement in rate-distortion performance and an even faster runtime than EZW.

In 1997, Wu’s Embedded Conditional Entropy Coding of Wavelet Coefficients (ECE-
COW) algorithm [7] was introduced. Rather than using zerotrees to code each bit-plane, as
done in EZW and SPIHT, ECECOW focused instead on a more sophisticated and intelligent
system of adaptive context modeling to push the limit of rate-distortion performance. The
contexts were based upon the significance level of surrounding neighbors of a given coeffi-
cient, and a separate adaptive arithmetic coder was used to entropy encode each context.
Additionally, to avoid context dilution, ECECOW used training data to identify contexts
with similar properties and merge those contexts together. The rate-distortion results of
ECECOW were the best to date, with improvements of 0.4 to 1.3 dB over SPIHT. However,
the downside to ECECOW was the need for training data, as well as an increase in compu-
tational complexity resulting in slower runtime performance.

In 2000, Taubman introduced the EBCOT coder [4], which featured several new concepts
such as resolution scalability, embeddedness, and spatial accessibility through the use of an
identifiable bitstream. Constructing such a bitstream involved several sub-divisions of the
image. First, before even doing the wavelet transform, the image was split into rectangles
called “tiles,” each of which underwent the wavelet transform separately. Following the

22



transform, each subband was then divided into smaller rectangles called “packet partitions,”
and the three spatially related rectangles of the same subband level together comprised a
single “packet partition location” which was further divided into smaller rectangles called
“code-blocks.” It was these code-blocks that served as the fundamental unit of data sent as
input to the entropy coder.

In addition to the novelty of an identifiable bitstream, EBCOT brought a slight improve-
ment in compression performance over SPIHT, ranging anywhere from 0.0 dB to 1.1 dB, with
an average improvement of about 0.4 dB. Eventually EBCOT was adopted as the foundation
for the JPEG-2000 standard. JPEG-2000 is essentially a superset of EBCOT, with the main
difference being improvements in runtime speed at the expense of a slight loss in PSNR
performance. In addition, JPEG-2000 offers many more options and settings than EBCOT.
For example, the wavelet transform can use one of many possible filters, even user-defined
filters, and can operate in either floating point or integer space based on user specification.
A variety of quantization methods are offered: Trellis coded quantization (TCQ) using either
a Lagrangian rate allocation procedure or a simpler fixed quantization table, or even scalar
quantization. The structure of the embedded bitstream allows the extraction of different
resolutions, pixel fidelities, regions of interest, components, and more. In short, JPEG-2000
took the EBCOT algorithm and added a slew of extra user-customizable features, increasing
the flexibility (and complexity) of the coder.

4.1 Rate-Distortion Comparison

We now present rate-distortion curves comparing the overall compression performance of
PACW Version 2 against other wavelet coders. In addition to the images “Barbara,” “Man,”
and “Zebra” (Figure 7), we include three more images in our comparisons to see how well
PACW can compete in compressing images outside of its own test set. These three additional
images are “Boat,” “Couple,” and “Lena,” which all come from the USC Image Database [8].

We compare our new PACW with results from JPEG-2000, SPIHT, and ECECOW. The
particular version of JPEG-2000 used to generate these results comes from the implemen-
tation found in the Java Advanced Imaging API v1.1.2 01 [9]. All default options were in
effect for the execution of the encoder. The SPIHT program used was the C++ version 8.01
of Said and Pearlman’s CODETREE/DECDTREE executables [10]. For ECECOW, PSNR
results were taken from [7] because an executable of the program is not publicly available.
As a result, we are only able to present the six PSNR values given for ECECOW in [7], cor-
responding to three bit rates from the “Barbara” image and three bit rates from the “Lena”
image.

The PSNR results are represented as both rate-distortion curves in Figure 17 and as
numbers in Table 5 for additional clarity. First off, we see that at every bit rate available
for ECECOW, it yields the highest PSNR values among all coders. From this it is probably
safe to infer that ECECOW is the top performer among the four coders being compared here.
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Figure 17: Rate-distortion curves of six images comparing Version 2 of PACW with SPIHT,
JPEG-2000, and (where known) ECECOW.
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(a) Barbara

bit rate PACW J2K SPIHT ECECOW
0.1 24.58 24.54 24.26
0.2 26.96 27.12 26.66
0.25 28.08 28.33 27.58 28.85
0.3 29.02 29.12 28.56
0.4 30.40 30.74 30.10
0.5 31.84 32.12 31.40 32.69
0.6 33.05 32.93 32.53
0.7 34.04 33.87 33.75
0.8 35.00 35.21 34.66
0.9 35.95 36.20 35.60
1.0 36.83 36.97 36.41 37.65

(b) Man

bit rate PACW J2K SPIHT
0.1 28.88 28.27 28.80
0.2 31.28 30.77 31.21
0.3 32.89 32.61 32.72
0.4 33.96 33.77 33.91
0.5 34.92 34.29 34.84
0.6 35.72 35.48 35.60
0.7 36.45 36.17 36.29
0.8 37.04 36.80 36.91
0.9 37.49 37.37 37.43
1.0 38.07 37.87 38.01

(c) Zebra

bit rate PACW J2K SPIHT
0.1 27.96 27.14 26.99
0.2 31.76 31.09 31.00
0.3 34.34 34.03 33.72
0.4 36.18 35.51 35.69
0.5 37.68 37.43 37.23
0.6 38.87 38.52 38.44
0.7 39.75 39.40 39.40
0.8 40.58 40.42 40.26
0.9 41.33 41.18 40.98
1.0 41.91 41.75 41.63

(d) Boat

bit rate PACW J2K SPIHT
0.1 26.85 26.44 26.74
0.2 29.30 29.03 29.12
0.3 30.98 30.42 30.86
0.4 32.34 32.22 32.13
0.5 33.34 33.01 33.22
0.6 34.20 34.11 34.09
0.7 34.96 34.75 34.82
0.8 35.67 35.52 35.47
0.9 36.27 36.07 36.04
1.0 36.76 36.57 36.57

(e) Couple

bit rate PACW J2K SPIHT
0.1 27.06 26.61 26.84
0.2 29.69 29.17 29.51
0.3 31.35 31.34 31.23
0.4 32.85 32.89 32.59
0.5 34.08 34.10 33.93
0.6 35.14 35.17 34.98
0.7 36.06 36.14 35.90
0.8 37.01 37.09 36.77
0.9 37.80 37.79 37.61
1.0 38.43 38.56 38.31

(f) Lena

bit rate PACW J2K SPIHT ECECOW
0.1 30.38 29.79 30.22
0.2 33.32 32.83 33.15
0.25 34.35 34.02 34.11 34.81
0.3 35.10 34.65 34.95
0.4 36.36 35.75 36.24
0.5 37.40 36.03 37.21 37.92
0.6 38.14 36.55 38.01
0.7 38.83 38.65 38.73
0.8 39.45 39.18 39.33
0.9 40.02 39.71 39.87
1.0 40.56 40.28 40.41 40.85

Table 5: PSNR (dB) results on six images compressed by PACW Version 2, JPEG-2000
(J2K), SPIHT, and (where known) ECECOW.
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However, for our purposes, what is most important to see is that PACW is able to outperform
JPEG-2000 at almost every single bit rate, except in the cases of the “Barbara” and “Couple”
images which seem to be the anomalies in this set of images. Thus, although the PSNR
improvements we saw from Version 1 to Version 2 in Section 3.7 were unsubstantial, we see
in Table 5 how extremely close the relative performance of each wavelet coder is, and the
importance of the extra PSNR boost given to Version 2 through our various studies is made
more significant.

5 Conclusion

In this paper we have introduced PACW, a new wavelet-based image compression algorithm
based on a priority-based arithmetic coding of bit-planes. The original goal of the coder was
to provide a simpler and more elegant alternative to JPEG-2000, such that it could replace
JPEG-2000 in an undergraduate course as a means of introduction to advanced wavelet-based
image coding concepts. We have shown that such a coder can exist; without implementing
any of the frills of JPEG-2000, PACW is still able to perform at the level of JPEG-2000. In
fact, after investigating and optimizing the context modeling details of PACW, we are able to
push its PSNR performance to a point at which it can fairly consistently outperform JPEG-
2000. Furthermore, avoiding all the complexities of JPEG-2000 involved in the production of
an identifiable, spatially accessible bitstream, PACW is a much cleaner and more teachable
image coder.
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