Wavelet Transform

- Wavelet Transform
 - A family of transformations that filters the data into low resolution data plus detail data.

Wavelet Transform Coding

- **Wavelet Transform**
 - Filters the data into low resolution data plus detail data.

- **Wavelet Transformed Barbara (Enhanced)**

- **Wavelet Transformed Barbara (Actual)**

- **Wavelet Transform Compression**

- **Bit Planes of Coefficients**

Wavelet coder transmits wavelet transformed image in bit plane order with the most significant bits first.

Coefficients are normalized between –1 and 1.
Why Wavelet Compression Works

- Wavelet coefficients are transmitted in bit-plane order.
 - In most significant bit planes most coefficients are 0 so they can be coded efficiently.
 - Only some of the bit planes are transmitted. This is where fidelity is lost when compression is gained.
- Natural progressive transmission

Wavelet Coding Methods

- EZW - Shapiro, 1993
 - Embedded Zerotree coding.
- SPIHT - Said and Pearlman, 1996
 - Set Partitioning in Hierarchical Trees coding. Also uses “zerotrees”.
- ECOCOW - Wu, 1997
 - Uses arithmetic coding with context.
- EBCOT – Taubman, 2000
 - Uses arithmetic coding with different context.
- JPEG 2000 – new standard based largely on EBCOT
- GTW – Hong, Ladner 2000
 - Uses group testing which is closely related to Golomb codes
- PACW - Ladner, Askew, Barney 2003
 - Like GTW but uses arithmetic coding

Wavelet Transform

A wavelet transform decomposes the image into a low resolution version and details. The details are typically very small so they can be coded in very few bits.

One-Dimensional Average Transform

(1) \[(x + y)/2\]
(2) \[(y - x)/2\]

How do we represent two data points at lower resolution?

One-Dimensional Average Transform

(2)

(\[(y + y)/2 = L\]&\[(y - y)/2 = H\])

Low pass filter

High pass filter

Transform

Inverse Transform
One-Dimensional Average Transform (3)

Note that the low resolution version and the detail together have the same number of values as the original.

One-Dimensional Average Transform (4)

\[
L[i] = \begin{cases}
\frac{1}{2} A[2i] + \frac{1}{2} A[2i+1], & 0 \leq i < \frac{n}{2} \\
A[n+2i] - A[2i+1], & 0 \leq i < \frac{n}{2}
\end{cases}
\]

\[
H[i] = \begin{cases}
\frac{1}{2} A[2i] + \frac{1}{2} A[2i+1], & 0 \leq i < \frac{n}{2} \\
A[n+2i] - A[2i+1], & 0 \leq i < \frac{n}{2}
\end{cases}
\]

CSEP 590 - Lecture 9 - Autumn 2007

One-Dimensional Average Inverse Transform

\[
A[2i] = B[i] - B[n/2+i], \quad 0 \leq i < \frac{n}{2}
\]

\[
A[2i+1] = B[i] + B[n/2+i], \quad 0 \leq i < \frac{n}{2}
\]

CSEP 590 - Lecture 9 - Autumn 2007

Two Dimensional Transform (1)

Transform each row in LL
Transform each column in L and H

2 levels of transform gives 7 subbands.
\(k\) levels of transform gives \(3k + 1\) subbands.

CSEP 590 - Lecture 9 - Autumn 2007

Two Dimensional Average Transform

Transform each row in LL
Transform each column in L and H

\(3\) detail subbands

CSEP 590 - Lecture 9 - Autumn 2007
Wavelet Transformed Image

- 2 levels of wavelet transform
- 1 low resolution subband
- 6 detail subbands

Wavelet Transform Details

- Conversion to reals.
 - Convert gray scale to floating point.
 - Convert color to Y U V and then convert each band to floating point. Compress separately.
- After several levels (3-8) of transform we have a matrix of floating point numbers called the wavelet transformed image (coefficients).

Wavelet Transforms

- Technically wavelet transforms are special kinds of linear transformations. Easiest to think of them as filters.
 - The filters depend only on a constant number of values. (bounded support)
 - Preserve energy (norm of the pixels = norm of the coefficients)
 - Inverse filters also have bounded support.
- Well-known wavelet transforms
 - Haar - like the average but orthogonal to preserve energy. Not used in practice.
 - Daubechies 9/7 - biorthogonal (inverse is not the transpose). Most commonly used in practice.

Haar Filters

\[
\text{low pass} = \frac{1}{\sqrt{2}} A[n/2] + \frac{1}{\sqrt{2}} A[n/2+1], \quad 0 \leq i < \frac{n}{2}
\]

\[
\text{high pass} = \frac{1}{\sqrt{2}} A[n/2] \quad \frac{1}{\sqrt{2}} A[n/2+1], \quad 0 \leq i < \frac{n}{2}
\]

Want the sum of squares of the filter coefficients = 1

Daubechies 9/7 Filters

\[
\text{low pass} = \sum_{j=0}^{4} h_j A[n/4+j], \quad 0 \leq i < \frac{n}{8}
\]

\[
\text{high pass} = \sum_{j=0}^{4} g_j A[n/4+j], \quad 0 \leq i < \frac{n}{8}
\]

Reflection used near boundaries

Linear Time Complexity of 2D Wavelet Transform

- Let \(n \) = number of pixels and let \(b \) be the number of coefficients in the filters.
- One level of transform takes time \(\mathcal{O}(bn) \)
- \(k \) levels of transform takes time proportional to \(\mathcal{O}(bn + bn/4 + \ldots + bn/4^k) = (4/3)bn \)
- The wavelet transform is linear time when the filters have constant size.
 - The point of wavelets is to use constant size filters unlike many other transforms.
Wavelet Transform

Bit-Plane Coding

- Normalize the coefficients to be between –1 and 1
- Transmit one bit-plane at a time
- For each bit-plane
 - Significance pass: Find the newly significant coefficients, transmit their signs.
 - Refinement pass: transmit the bits of the known significant coefficients.

Wavelet coder transmits wavelet transformed image in bit plane order with the most significant bits first.

Divide into Bit-Planes

Significant Coefficients

Significance & Refinement Passes

- Code a bit-plane in two passes
 - Significance pass
 - codes previously insignificant coefficients
 - also codes sign bit
 - Refinement pass
 - refines values for previously significant coefficients
- Main idea:
 - Significance-pass bits likely to be 0;
 - Refinement-pass bit are not
bit plane 1
bpp .0014
PSNR 15.3

bit planes 1 – 2
bpp .0033
PSNR 16.8

bit planes 1 – 3
bpp .0072
PSNR 18.8

bit planes 1 – 4
bpp .015
ratio 533 : 1
PSNR 20.5

bit planes 1 – 5
bpp .035
ratio 229 : 1
PSNR 22.2

bit planes 1 – 6
bpp .118
ratio 68 : 1
PSNR 24.8
PACW

- A simple image coder based on
 - Bit-plane coding
 - Significance pass
 - Refinement pass
 - Arithmetic coding
 - Careful selection of contexts based on statistical studies
- Implemented by undergraduates Amanda Askew and Dane Barney in Summer 2003.

Arithmetic Coding in PACW

- Performed on each individual bit plane.
 - Alphabet is $\Sigma = \{0, 1\}$
 - Signs are coded as needed
- Uses integer implementation with 32-bit integers. (Initialize $L = 0$, $R = 2^{32} - 1$)
- Uses scaling and adaptation.
- Uses contexts based on statistical studies.
Encoding the Bit-Planes

- Code most significant bit-planes first
- Significance pass for a bit-plane
 - First code those coefficients that were insignificant in the previous bit-plane.
 - Code these in a priority order.
 - If a coefficient becomes significant then code its sign.
- Refinement pass for a bit-plane
 - Code the refinement bit for each coefficient that is significant in a previous bit-plane

Decoding

- Emulate the encoder to find the bit planes.
 - The decoder knows which bit-plane is being decoded
 - Whether it is the significant or refinement pass
 - Which coefficient is being decoded.
- Interpolate to estimate the coefficients.

Context Modeling (per bit plane)

- Significance pass contexts:
 - Contexts based on
 - Subband level
 - Number of significant neighbors
 - Sign context
- Refinement contexts
 - 1st refinement bit is always 1 so no context needed
 - 2nd refinement bit has a context
 - All other refinement bits have a context
- Context Modeling Principles
 - Bits in a given context have a probability distribution
 - Bits in different contexts have different probability distributions

Subband Level

- Image is divided into subbands until LL band (subband level 0) is less than 16x16
- Barbara image has 7 subband levels

Statistics for Subband Levels

<table>
<thead>
<tr>
<th>Subband Level</th>
<th># significant</th>
<th># insignificant</th>
<th>% significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>144</td>
<td>364</td>
<td>28.3%</td>
</tr>
<tr>
<td>1</td>
<td>272</td>
<td>1048</td>
<td>20.6%</td>
</tr>
<tr>
<td>2</td>
<td>848</td>
<td>4592</td>
<td>15.6%</td>
</tr>
<tr>
<td>3</td>
<td>3134</td>
<td>23568</td>
<td>11.7%</td>
</tr>
<tr>
<td>4</td>
<td>12268</td>
<td>113886</td>
<td>9.7%</td>
</tr>
<tr>
<td>5</td>
<td>48282</td>
<td>50463</td>
<td>8.7%</td>
</tr>
<tr>
<td>6</td>
<td>190003</td>
<td>2226904</td>
<td>7.8%</td>
</tr>
</tbody>
</table>

Significant Neighbor Metric

- Count # of significant neighbors
 - children count for at most 1
 - 0, 1, 2, 3+
Number of Significant Neighbors

<table>
<thead>
<tr>
<th>Significant neighbors</th>
<th># significant</th>
<th># insignificant</th>
<th>% significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4849</td>
<td>2252468</td>
<td>.2%</td>
</tr>
<tr>
<td>1</td>
<td>13319</td>
<td>210695</td>
<td>5.9%</td>
</tr>
<tr>
<td>2</td>
<td>22276</td>
<td>104252</td>
<td>17.6%</td>
</tr>
<tr>
<td>3</td>
<td>30206</td>
<td>78899</td>
<td>27.7%</td>
</tr>
<tr>
<td>4</td>
<td>33244</td>
<td>55841</td>
<td>37.3%</td>
</tr>
<tr>
<td>5</td>
<td>27354</td>
<td>39189</td>
<td>41.1%</td>
</tr>
<tr>
<td>6</td>
<td>36482</td>
<td>44225</td>
<td>45.2%</td>
</tr>
<tr>
<td>7</td>
<td>87566</td>
<td>91760</td>
<td>48.8%</td>
</tr>
</tbody>
</table>

Refinement Bit Context Statistics

<table>
<thead>
<tr>
<th></th>
<th>0's</th>
<th>1's</th>
<th>% 0's</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^nd Refinement Bits</td>
<td>146,293</td>
<td>100,521</td>
<td>59.3%</td>
</tr>
<tr>
<td>Other Refinement Bits</td>
<td>475,941</td>
<td>433,962</td>
<td>53.3%</td>
</tr>
<tr>
<td>Sign Bits</td>
<td>128,145</td>
<td>120,100</td>
<td>49.8%</td>
</tr>
</tbody>
</table>

- Barbara at 2bpp: 2^nd Refinement bit % 0’s = 65.8%

Context Model Details

- Significance pass contexts per bit-plane:
 - Max neighbors’ num subband levels contexts
 - For Barbara: contexts for sig neighbor counts of 0 - 3 and subband levels of 0 6 = 4^7 = 28 contexts
 - Index of a context:
 - Max neighbors’ subband level + num sig neighbors
 - Example: num sig neighbors = 2, subband level = 3, Index = 4^3 + 2^3 = 14
 - Sign context
 - 1 contexts
 - 2 Refinement contexts
 - 1st refinement bit is always 1 not transmitted
 - 2nd refinement bit has a context
 - all other refinement bits have a context
 - Number of contexts per bit-plane for Barbara = 28 + 1 + 2 = 31

Priority Queue

- Used in significance pass to decide which coefficient to code next
 - Goal code coefficients most likely to become significant
 - All non-empty contexts are kept in a max heap
 - Priority is determined by:
 - # sig coefficients coded / total coefficients coded

Reconstruction of Coefficients

- Coefficients are decoded to a certain number of bit planes
 - .101110XXXXX What should X’s be?
 - .101110000... < .101110000... < .101110111...<.1011110000 is halfway
 - Handled the same as SPIHT and GTW
 - if coefficient is still insignificant, do no interpolation
 - if newly significant, add on .38 to scale
 - if significant, add on .5 to scale

Original Barbara Image
Barbara at .5 bpp (PSNR = 31.68)

Barbara at .25 bpp (PSNR = 27.75)

Barbara at .1 bpp (PSNR = 24.53)

Results

Compression of Barbara

Results

Compression of Lena

Results

Compression of RoughWall
PACW Notes

- PACW competitive with JPEG 2000, SPIHT-AC, and GTW.
- Developed in Java from scratch by two undergraduates, Dane Barney and Amanda Askew, in 2 months.
- Dane’s final version is slightly different than the one described here. See his senior thesis.