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The Human Parts List, circa 2001

3 billion nucleotides, containing:

+25,000 protein-coding genes
(only ~1% of the DNA)

*Messenger RNAs made from each
*Plus a double-handful of other RNA genes

Noncoding
RNAs

Dramatic discoveries in
last 5 years

" Newrotes L 100s of new families

{ 'RNAs * Many roles: Regulation,

transport, stability, catalysis, ...

“ ?ﬁq ‘ 1% of DNA codes for
é Breakthrough protein, but 30% of it is
\\

of the Year

copied into RNA, i.e.
ncRNA >> mRNA




“RNA sequence analysis using

covariance models”

Eddy & Durbin

Nucleic Acids Research, 1994

vol 22 #1 1, 2079-2088
(see also, Ch 10 of Durbin et al.)

What

A probabilistic model for RNA families
The “Covariance Model”
= A Stochastic Context-Free Grammar
A generalization of a profile HMM
Algorithms for Training
From aligned or unaligned sequences
Automates “comparative analysis”
Complements Nusinov/Zucker RNA folding
Algorithms for searching

Main Results

Very accurate search for tRNA

(Precursor to tRNAscanSE - current favorite)
Given sufficient data, model construction
comparable to, but not quite as good as,
human experts
Some quantitative info on importance of
pseudoknots and other tertiary features

Probabilistic Model Search

As with HMMs, given a sequence, you calculate
likelihood ratio that the model could generate the
sequence, vs a background model

You set a score threshold
Anything above threshold — a “hit”
Scoring:
“Forward” / “Inside” algorithm - sum over all paths

Viterbi approximation - find single best path
(Bonus: alignment & structure prediction)
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Alignment Quality

Trusted:

AUCUGGAG GUCCUGUGUUCGAUCCACAGAAUUCGCACCH

AUACUUCGGUC:

ceuaccac
c ACCCGAAG
ci AGAA AUCUUUU  GGGCUUUGCE

GCGGAUUUAGCUCH AGAGCGCCAGACU AUCUGGA

UCCGUGAUAGUUUA
CGCGGGGUGGAGC?

GCGGAUUUAGCUCH

CGCGGGGUGGAGC.

Comparison to TRNASCAN

Fichant & Burks - best heuristic then

97.5% true positive E
0.37 false positives per MB g
CM Al415 (trained on trusted alignment) :5
> 99.98% true positives )

o

<0.2 false positives per MB

Current method-of-choice is “tRNAscanSE”, a CM-
based scan with heuristic pre-filtering (including
TRNASCAN?) for performance reasons.

evaluation criteria

Profile Hmm Structure
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Figure 5.2 The rransition structure of a profile HUM.

Mj: Match states (20 emission probabilities)
li  Insert states (Background emission probabilities)
Dj: Delete states (silent - no emission)




CM Structure

A: Sequence + structure
B: the CM “guide tree”

C: probabilities of
letters/ pairs & of indels

Think of each branch
being an HMM emitting
both sides of a helix (but
3’ side emitted in
reverse order)
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CM Viterbi Alignment

x;,  =i"letter of input
j  =substring ..., j of input
. = P(transition y — z)

E; . = P(emission of x;,x; fromstate y)
i

=max,, log P(x; gen'd starting in state y via path 1)

v o .
S, =max, log P(x; generated starting in state y via path 1)

rmaXZ[S fjo tlogT +logE} ] match pair

max [S;,; +logT +logE; ]  match/insert left
y=qmax[S;;, +logT, +logE)]  match/insert right

max [S;;  +logT] delete

max,_,_;[S;¢" + 8.1 bifurcation

t Time O(gn?), q states, seq lenn




Model Training

I unaligned sequences ‘

'/allgnment\

I multiple alignment Covariance model
\

\ parameter |
\ reestimation /
\ \\ /

\ o /

model construction /
(structure prediction)
-

random
alignment

Mutual Information

f;cix'
Mij = Exi,xj fxi,xj 10g27,]; O = Mij = 2

xiJ xj

Max when no seq conservation but perfect pairing
MI = expected score gain from using a pair state
Finding optimal Ml, (i.e. opt pairing of cols) is hard(?)

Finding optimal Ml without pseudoknots can be done
by dynamic programming

/

- M.l. Example (Artificial)
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MI-Based Structure-Learning

Find best (max total Ml) subset of column pairs
among i...j, subject to absence of pseudo-knots

S, ; =max

i,j-1

max, ;.4

Si,k—l + Mk,j + Sk+1,j—l

“Just like Nussinov/Zucker folding”

BUT, need enough data---enough sequences at right
phylogenetic distance

Pseudoknots
disallowed allowed (3, max, )2

Avg. Min Max ClustalV 1°info 2° info

Dataset id id id accuracy  (bits)  (bits)
TEST 402 144 1.00  64% 13.7 30.0-32.3
SIM100 .396  .131 986 54% 39.7

SIM65 362 111 .685 37T% 31.8

Table 1: Statistics of the training and test sets of 100 tRNA sequences each. The average
identity in an alignment is the average pairwise identity of all aligned symbol pairs, with
gap/symbol alignments counted as mismatches. Primary sequence information content is
calculated according to [48]. Calculating pairwise mutual information content is an NP-
complete problem of finding an optimum partition of columns into pairs. A lower bound is
calculated by using the model construction procedure to find an optimal partition subject
to a non-pseudoknotting restriction. An upper bound is calculated as sum of the single best
pairwise covariation for each position, divided by two; this includes all pairwise tertiary
interactions but overcounts because it does not guarantee a disjoint set of pairs. For the

meaning of multiple alignment accuracy of ClustalV, see the text.

score  alignment
Model training set iterations  (bits) accuracy
Al1415  all sequences (aligned) 3 58.7  95%
A100  SIM100 (aligned) 3 57.3 9%
A6H SIMG65 (aligned) 3 16.7  93%
U100 SIM100 (degapped) 23 56.7  90%
U65 SIM65 (degapped) 29 172 9%
Table 2: Training and multiple alignment results from models trained from the trusted

alignments (A models) and models trained from no prior knowledge of tRNA (U models).

Rfam — an RNA family DB

Griffiths-Jones, et al., NAR ‘03,'05

Biggest scientific computing user in Europe -
1000 cpu cluster for a month per release
Rapidly growing:

Rel 1.0, 1/03: 25 families, 55k instances

Rel 7.0, 3/05: 503 families, >300k instances
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Rfam

IRE (partial seed alignhment): O¢

AR ¢

Input (hand-curated):

Hom.sap. GUUCCUGCUUCAACAGUGUUUGGAUGGAAC

MSA “seed alignment” Hom.sap. UUUCUUC.UUCAACAGUGUUUGGAUGGAAC
Hom.sap. UUUCCUGUUUCAACAGUGCUUGGA .GGAAC

SS_cons Hom.sap. UUUAUC..AGUGACAGAGUUCACU.AUAAA
Score Thresh T Hom.sap. UCUCUUGCUUCAACAGUGUUUGGAUGGAAC
Hom.sap. AUUAUC..GGGAACAGUGUUUCCC .AUAAU

Window Len W Hom.sap. UCUUGC..UUCAACAGUGUUUGGACGGAAG
Hom.sap. UGUAUC..GGAGACAGUGAUCUCC .AUAUG

Output: Hom.sap. AUUAUC..GGAAGCAGUGCCUUCC .AUAAU
Cav.por. UCUCCUGCUUCAACAGUGCUUGGACGGAGC

CM Mus.mus. UAUAUC. .GGAGACAGUGAUCUCC .AUAUG

Mus.mus. UUUCCUGCUUCAACAGUGCUUGAACGGAAC

.
scan resu ItS & fu” Mus.mus. GUACUUGCUUCAACAGUGUUUGAACGGAAC

. m
ali gn ment Rat.nor. UAUAUC..GGAGACAGUGACCUCC.AUAUG
Rat.nor. UAUCUUGCUUCAACAGUGUUUGGACGGAAC
SS_cons <<, . . <K<K L. SO35> .555>>
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Figure 2. Taxonomic distribution of Rfam family members in the hree kingdoms of life.

Faster Genome Annotation

of Non-coding RNAs
Without Loss of Accuracy

Zasha Weinberg
& W.L. Ruzzo

Recomb ‘04, ISMB ‘04, Bioinfo ‘06

Root node

Covariance
Model

Key difference of CM vs HMM:
Pair states emit paired symbols,
corresponding to base-paired
nucleotides; 16 emission
probabilities here.
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CM'’s are good, but slow

Rfam Reality

1 month,

1000 computers

Our Work Rfam Goal

~2 months, 10 years,
1000 computers 1000 computers

Oversimplified CM

(for pedagogical purposes only)
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CM to HM

CM , , HMM
A A A A
C (o} (o} 5 C
G G G G
U U U I U

->
A A A A
G G G G
U U U I U
! ! 1
N

25 emisions per state

5 emissions per state, 2x states

Key Issue: 25 scores — 10

CM | | 4+ HMM
A A A ; ; A
c c c c
G G - | G G
u u u T u
A

Need: log Viterbi scores CM < HMM




Viterbi/Forward Scoring

Path TT defines transitions/emissions
Score(TT) = product of “probabilities” on TT
NB: ok if “probs” aren’t, e.g. 2 #1

(e.g. in CM, emissions are odds ratios vs

Oth-order background)

For any nucleotide sequence x:
Viterbi-score(x) = max{ score(TT) | TT emits x}
Forward-score(x) = 2 { score(TT) | TT emits x}

Key Issue: 25 scores — 10

CM | HMM

IrcoOoO>
ICcCOO>
IrcoOoO>

«f%‘

4,4@2;*
IC®O>

v Y

Need: log Viterbi scores CM < HMM
Pan = Lo * RA Pea<sLlc + Ry
Pac = Ls +Re Pee = Lc +Re
Pac = Ls + Rg Pes = Lc +Rg
Paws=sLs+Ry Pou=Lc +Ry
P, <L, +R_ Po sLc+R.

‘ NB: HMM not a prob. model ‘

P =La
Pac=La
Rigorous Filtering ~ Fro=l»
Py =L,

Any scores satisfying the linear inequalities
give rigorous filtering

Proof:
CM Viterbi path score
< “corresponding” HMM path score
Viterbi HMM path score

(even if it does not correspond to any CM path)

IA

+ o+ 4+ o+ o+
\mcmmm(')m)m

Some scores filter better

Pua=1 = Ly +R,
Pug=4 = L, +Rg
Assuming ACGU =~ 25%
Option I: Opt I:
L, =Ry=R;=2 L+ Ry +Rg)/2=4
Option 2: Opt 2:
L,=0,R,=1,R;=4 L+ Ry +Rg)/2=25




Optimizing filtering

For any nucleotide sequence x:
Viterbi-score(x) = max{ score(TT) | TT emits x }
Forward-score(x) = > { score(TT) | TT emits x }

Expected Forward Score

E(Li' RI) = zaII sequences x For'ward-score(x)*Pr(x) -
NB: E is a function of L, R; only Under Oth-order
optimization, background model

Minimize E(L, R;) subject to score Lin.Ineq.s
This is heuristic (“forward| = Viterbi| = filter|”)
But still rigorous because “subject to score Lin.Ineq.s”

Calculating E(L;, R)

E(L, R) = = Forward-score(x)*Pr(x)

Forward-like: for every state, calculate
expected score for all paths ending there,
easily calculated from expected scores of
predecessors & transition/emission
probabilities/scores

Minimizing E(L, R)

Calculate E(L;, R;) symbolically, in terms of
emission scores, so we can do partial
derivatives for numerical convex optimization
algorithm

JE(L,, L,,...)
JL,

1

Estimated Filtering Efficiency
(139 Rfam 4.0 families)

Filtering # families # families
fraction (compact) (expanded)
<10+ 105 110

[04- 102 8 17 }
0l -.10 I 3

.10-.25 2 2

25-.99 6 4
99-1.0 7 3

~100x
speedup
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Results: New ncRNA’s?

# found # found # new
Name BLAST rigorous filter

+CM +CM
Pyrococcus snoRNA 57 180 123
Iron response element 201 322 121
Histone 3’ element 1004 1106 102
Purine riboswitch 69 123 54
Retron msr nl 59 48
Hammerhead | 167 193 26
Hammerhead Il 251 264 13
U4 snRNA 283 290 7
S-box 128 131 3
U6 snRNA 1462 1464 2
U5 snRNA 199 200 |
U7 snRNA 312 313 |

Results: With additional work

“Additional work”

Profile HMM filters use no 227 structure info

They work well because, tho structure can be critical to
function, there is (usually) enough primary sequence

conse

rvation to exclude most of DB

But not on all families (and may get worse?)

Can we

exploit some structure (quickly)?
Idea I: “sub-CM” for some
Idea 2: extra HMM states remember mate hairpins

Idea 3: try lots of combinations of “some hairpins”
Idea 4: chain together several filters (select via Dijkstra)

# with # with rigorous # new
BLAST+CM | filter series + CM
Rfam tRNA 58609 63767 5158
Group Il 5708 6039 331
intron
tRNAscan-SE 608 729 121
(human)
tmRNA 226 247 21
Lysine 60 71 I
riboswitch
And more...
Filter Chains
Store-pair Sub-CM Selected
3 3 3
gg 2r 2}’ Lo e
X g - :
S | iy | +
0 : \ 0 b - o L - .
0.0001 0.01 1 0.0001 0.01 1 0.0001 0.01 1

Filtering fraction

Filtering fraction

Filtering fraction

Fig. 2. Filter creation and selection. Filters for Rfam tRNA (RF00005) generated
by the store-pair and sub-CM techniques and those selected for actual filtering
are plotted by filtering fraction and run time. The CM runs at 3.5 secs/kbase.
The four selected filters are run one after another, from highest to lowest

fraction.
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Heuristic Filters

Rigorous filters optimized for worst case
Possible to trade improved speed for small
loss in sensitivity?

Yes — profile HMMs as before, but optimized
for average case

“ML heuristic”: train HMM from the infinite
alignment generated by the CM

Often |0x faster, modest loss in sensitivity

Heuristic Filters

(A) (B) (©)
RF00174 RF00005 RF00031
1 T T T >
ML-heuristic /4
. 08 L Rigorous HMM*---——//
3 o6 1 L BLAST
E
2 04 E /4
& ML-heuristic /
02 igorous HMM*----- - /
0 BLAST 7 -
1e-08 1e-06 1e-04 001 1 1e-06 1e-04 0.01 1 1e-08 1e-06 1e-04 0.01 1
Filtering fraction Filtering fraction Filtering fraction

* rigorous HMM, not rigorous threshold

Fig. 1. Selected ROC-like curves. All plot sensitivity against filtering fraction, with filtering fraction in log scale. (A) RF00174 is typical of the other families;
the ML-heuristic is slightly better than the rigorous profile HMM, and both often dramatically exceed BLAST. (B) Atypically, in RF00005, BLAST is superior,
although only in one region. (C) BLAST performs especially poorly for RF00031. (Recall that rigorous scans were not possible for RF00031, so only ~90%
of hits are known; see text.) The supplement includes all ROC-like curves, and the inferior ignore-SS.

cobalamine T
. . Seam,  SECIS
(Bj,) riboswitch e,
- o <
s e

Cmfinder--A Covariance
Model Based RNA Motif
Finding Algorithm

Bioinformatics, 2006, 22(4): 445-452

Zizhen Yao

Zasha Weinberg

Walter L. Ruzzo
University of Washington, Seattle

Searching for noncoding RNAs

CM’s are great, but where do they come from?

An approach: comparative genomics
Search for motifs with common secondary structure in a
set of functionally related sequences.

Challenges

Three related tasks
Locate the motif regions.
Align the motif instances.
Predict the consensus secondary structure.
Motif search space is huge!
Motif location space, alignment space, structure space.

12



Approaches

Align sequences, then look for common
structure

Predict structures, then try to align them
Do both together

Pitfall for sequence-alignment-
first approach

Structural conservation # Sequence conservation

Alignment without structure information is unreliable

CLUSTALW alignment of SECIS elements with flanking regions

same-colored boxes should be aligned

Approaches

Align sequences, then look for common
structure
Predict structures, then try to align them

single-seq struct prediction only ~ 60% accurate;
exacerbated by flanking seq; no biologically-
validated model for structural alignment

Do both together

Sankoff — good but slow
Heuristic

Design Goals

Find RNA motifs in unaligned sequences

Seq conservation exploited, but not required
Robust to inclusion of unrelated sequences
Robust to inclusion of flanking sequence
Reasonably fast and scalable

Produce a probabilistic model of the motif
that can be directly used for homolog search

13



CMfinder Outline

' Folding |
predictions \ e
- Candidate | | o\ |, search

/' alignment

Realign

Heuristics E step

M-step uses M.I. + folding energy for structure prediction

CMfinder Accuracy

(on Rfam families with flanking sequence)

A pipeline for RNA motif genome scans

Bacillus subtilis genes

CMfinder

op dataset:

Search
Genome

database

o

Upstream I Footprinter
sequences Rank datasets

o _ o
- o
~5 0o—2%—0 o /
21 pfE e o e/
t A -~
a \ At -\,* g\ / & - : o o
7 © \ /8 ARSI ° ' v AN
8 o y iy e ,g i \ o
3 W AT S / ,
g = | vt ® DB 4o N —o— CMfinder
< o § | NNy ! : ' 4 Plold/cw
+ “ e LA RNAalifold/cw
o i A A + A % CARNAC
e , K S N L |-= FoLpALiGh
4. ‘ N A " - A= =N 7'&
2 x Xoo Hmo X = X=X N Heme Hm X - T
T L T | R B R 1
14 19 16 4 15 10 12 8 9 2 3 7 11 17 13 5 6 18 1
Families
Upstream of folC
11S_MUTANS_UA159
165_AGALACTLAE NEM316
| | [ ] [ ] 155_PYOGENES_SSI-1
| | [ | [ ] [ | 65_AUREUS_SUBSP
[ | J_| SL_LACTIS
9E_FAECALIS V583
[ | | | | | 190_YELLOWS_PHYTOPLASMA
[ | 17S_PNEUMONIA_R6
10L_PLANTARUM
| | 2B_THURINGIENSIS_SEROVAR_KONEU
[ ] 3B_CEREUS_ATCC_10987
[ ] [ ] 4L_INNOCUA_CEROMOSOME
[ N [ [ ] 5L_MONOCYTOGENES_STR
1B SUBTILIS
[ ] [ ] 13C_ACETOBUTYLICUM_ATCCE24
14C_TETANI_Eg8

18C_PERFRINGENS
[ | [ | | 12T_TENGCONGENSIS
7B_HALODURANS
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1ST genome scan:
2ND genome scan:

A blind test

234 sequences
447 sequences

The motif turned out to be T box

Match to RFAM T box family:
False Positives:

AUALC . CUUACGU. . UCCAGAGA

299 OF 342
89/148 are probable (upstream of
annotated tRNA-synthetase genes)

GECCEEUEARA . BUEAECACAE ACCCAUATAY

jo———_ el
Eren AOSERTAG

e
ueRA.

ueRR.

. CBGUUCAU

. CBaU

tyrS T box structure

o CMfinder: 9 instances

® Found by Scan: 447 hits

Ghioroflexus aurantiacus @

Geobacter sulphurreducens

Salmonella enterica

Yersinia pestis
Hasmophius nfluenzae

Chloroflexi

Geobacter metallreducens : & -Proteobacteria

Vibrio cholerae
Buchnera aphidicola

olla fasfidiosa

nihomonas axofopods
essori menintids

Rickoltsia conoril
ickoltsia prowazokii
aulobacter croscontus

Brucolla meftensis

e-Prc

fojuni
i

Chlamydophiapnoumoniae
oy mdarum

pamyia Fachomars

Jorobum fapium

Chlamydiae

cobaclorium tuberculos|

Syhiblobactarium thermophid@
Streptomyces coelicolor °®

Joc dongatus

ssobs
si
Glostrdium porringons

Mycoplasma genitalium
Mycoplasma peumoniae
reaplasma parvum

st
Closndium scaisbuicim l

Streptococcus pnoumoniae

®
Lactococcus laciis
Staphy
Bacilus halodurans

®

Bacills subli

iteria innocua
Listeria monocytogenes

Aquifox aeolicus

45 40 35 3.0

1 1
25 20 15 10 05 0
Billion years ago

| (high GC)

| Cyanobacteria

Firmicutes
(low GC)

Some Preliminary Actino Results
8 of 10 Rfam families found

Rfam Family
THI
ydaO-yuaA
Cobalamin
SRP_bact
RFN
yybP-ykoY
gevT
S_box
tmRNA
RNaseP

Type (metabolite)
riboswitch (thiamine)
riboswitch (unknown)
riboswitch (cobalamin)
gene

riboswitch (FMN)
riboswitch (unknown)
riboswitch (glycine)
riboswitch (SAM)

Rank
4

19

21

39
48
53
401

gene Not found
gene Not found

not cis-
regulatory
(got one
anyway)

Protein

Alberts, et al, 3e. D NA
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More Prelim Actino Results

Many others (not in Rfam) are likely real
of top 50:

known (Rfam, 23S) 10
probable (Tbox, CIRCE, LexA, parP, pyrR) 7
probable (ribosomal genes) 9
potentially interesting 12
unknown or poor 12

One bench-verified, 2 more in progress

g The
3 «= protein
4
E way
<
. . P2
Riboswitch i
. —) J o v
alternative Zane- v s
A0c-caR ““ZO AG—V-RRCG o
VA 0-0 :
P1y-R PIYE °
U-A G-¢ &
$e sd "L—on
sd-1
Corbino et al., Genome Biol. 2005
Preliminary results of genome scan
Top |15 datasets (some are redundant)
13 T box, 22 riboswitches, 30 ribosomal genes
RNase P, tRNA, CIRCE elements and other DNA binding sites
metK 13 150 |S_box 71 151 145 0.967 0.960
ribB 9 106 |RFN 48 114 97 0915 0.851
folC 9 447 | T_box 67 342 299 0.669 0.874
Xxpt 14 106 [Purine 37 100 97 0915 0.970
glmS 16 33 [gImS 14 37 33 1.000 0.892
thiA 16 305 |THI 237 366 305 1.000 0.833
ykoY 10 34 |yybP-ykoY 74 127 33 0971 0.260

Summary

ncRNA - apparently widespread, much interest
Covariance Models - powerful but expensive tool
for ncRNA motif representation, search, discovery
Rigorous/Heuristic filtering - typically 100x speedup
in search with no/little loss in accuracy

CMfinder - CM-based motif discovery in unaligned
sequences
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Course Wrap Up

What is DNA? RNA?
How many Amino Acids are there?

Did human beings, as we know them, develop
from earlier species of animals?

What are stem cells?

What did Viterbi invent?

What is dynamic programming?
What is a likelihood ratio test?
What is the EM algorithm?

How would you find the maximum of f(x) = ax3 +
bx2 + cx +d in the interval -10<x<25?

“High-Throughput
BioTech”

Sensors

DNA sequencing

Microarrays/Gene expression

Mass Spectrometry/Proteomics

Protein/protein & DNA/protein interaction

Controls - S
Cloning k
Gene knock out/knock in
RNAi
Floods of data
R

Al “Grand Challenge” problems

CS Points of Contact

Scientific visualization

Gene expression patterns
Databases

Integration of disparate, overlapping data sources

Distributed genome annotation in face of shifting underlying coordinates
AI/NLP/Text Mining

Information extraction from journal texts with inconsistent
nomenclature, indirect interactions, incomplete/inaccurate models,...

Machine learning

System level synthesis of cell behavior from low-level heterogeneous data
(DNA sequence, gene expression, protein interaction, mass spec,

Algorithms
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Frontiers & Opportunities

New data:

Proteomics, SNP, arrays CGH, comparative
sequence information, methylation, chromatin
structure, ncRNA, interactome

New methods:
graphical models? rigorous filtering?
Data integration

many, complex, noisy sources

Frontiers & Opportunities

Open Problems:

splicing, alternative splicing

multiple sequence alignment (genome scale, w/ RNA etc.)
protein & RNA structure

interaction modeling

network models

RNA trafficing

ncRNA discovery

Exciting Times

Lots to do
Various skills needed

| hope I've given you a taste of it

Thanks!
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