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Lecture 6

Markov Models and Hidden
Markov Models



DNA Methylation

CpG - 2 adjacent nts, same strand (not NH2
Watson-Crick pair; “p” mnemonic for the XN
phosphodiester bond of the DNA backbone) | R

NS0

C of CpG is often (70-80%) methylated in i

mammals i.e., CH3 group added (both strands) cytosine

Why? Generally silences transcription.
X-inactivation, imprinting, repression of mobile elements,

some cancers, aging, and developmental differentiation

How! DNA methyltransferases convert hemi- to fully-
methylated

Major exception: promoters of housekeeping genes



“CpG Islands”

NH,

~N
|
. N/gO
Net: CpG is less common than H
expected genome-wide: cytosine

f(CpG) < f(C)*f(G)

Methyl-C mutates to T relatively easily

BUT in promoter (& other) regions, cH, ]
CpG remain unmethylated, so CpG — | /'E
TpG less likely there: makes “CpG N O

Islands”; often mark gene-rich regions thymine



CpG Islands

CpG Islands

More CpG than elsewhere
More C & G than elsewhere, too

Typical length: few 100 to few 1000 bp

Questions
Is a short sequence (say, 200 bp) a CpG island or not?
Given long sequence (say, 10-100kb), find CpG islands?



Markov & Hidden
Markov Models

References:

Durbin, Eddy, Krogh and Mitchison, “Biological
Sequence Analysis”, Cambridge, 1998

Rabiner, "A Tutorial on Hidden Markov Models and
Selected Application in Speech Recognition,”
Proceedings of the IEEE, v 77 #2,Feb 1989,
257-286



Independence

A key issue: All models we've talked about so
far assume independence of nucleotides in
different positions - definitely unrealistic.



Markov Chains

A sequence 1, X2, ... of random variables is a
k-th order Markov chain if, for all i, " value is
independent of all but the previous k values:

P(x’i | L1y L2y - ,5132'_1) — P(:cz- | Li—kyLi—k+1y--- ,mi_l)
Example |: Uniform random ACGT Oth
order

Example 2: Weight matrix model

Example 3: ACGT, but 1 Pr(G following C) } Ist
order




A Markov Model (Ist order)

States: ACGT
Emissions: corresponding letter
Transitions: a, =P(x. =t|x, ,=s) <—lstorder



A Markov Model (Ist order)

States: ACGT

Emissions: corresponding letter
Trar?smons: a,=Px,=t|x_,=s)
Begin/Ttnd states



Pr of emitting sequence x

= X1 X T,
P(x) = P(x1,z2,...,Zp)
= P(x1) - Plxo|z1) - Plxp | Tn—1,...,21)
= P(x1) - P(xo | x1) - P(xy, | Tp_1)
= P(21) [T aaeirs

n—1

= |L.-o @z,2,., (with Begin state)



+

Training

Max likelihood estimates for transition
probabilities are just the frequencies of
transitions when emitting the training
sequences

E.g., from 48 CpG islands in 60k bp:
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Discrimination/Classification

Log likelihood ratio of CpG model vs background model
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CpG Island Scores
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Figure 3.2 The histogram of the length-normalised scores for all the se-
quences. CpG islands are shown with dark grey and non-CpG with light

grey.



Aside: |5t Order “WMM”
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Questions

QI: Given a short sequence, is it more likely from
feature model or background model? Above

Q2: Given a long sequence, where are the
features in it (if any)
Approach |: score 100 bp (e.g.) windows

Pro: simple
Con: arbitrary, fixed length, inflexible

Approach 2: combine +/- models.



Combined Model
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Emphasis is “Which (hidden) state?!” not “Which model?”



Hidden Markov Models
(HMMs)

States: 1,2,3,...

Paths: sequences of states m = (7, 7o, ...)
Transitions: axy = P(mi=1|m_1=k)
Emissions: ex(b) =P(x; =b|m =k)

Observed data: emission sequence
Hidden data: state/transition sequence



The Occasionally
Dishonest Casino

1 fair die, 1

.95(:::

“loaded” die, occasional

y swapped

1:1/6
2:1/6
3:1/6
4:1/6
5:1/6
6:1/6

.05

|~
——

10

1:1/10
2:1/10
3:1/10
4:1/10
5:1/10
6:1/2

“).90
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Figure 3.5 The numbers show 300 rolls of a die as described in the exam-
ple. Below is shown which die was actually used for that roll (F for ﬁir and
L for loaded). Under that the prediction by the Viterbi algorithm is shown.



Inferring hidden stuff

Joint probability of a given path t & emission

sequence X
n

P(CE, 7T) = Q0,m; H Ems (SEZ) "Qry,miga
i=1
But 1t is hidden; what to do? Some alternatives:

Most probable single path
7" = arg max P(x, )
Sequence of most probable states

i = argm’?xP(m =k | xz)



The Viterbi Algorithm:
The most probable path

Viterbi finds: T = arg mgxp(wa )

Possibly there are 107? paths of prob 10-%°

More commonly, one path dominates others.
(If not, other approaches may be preferable.)

Key problem: exponentially many paths &t



Unrolling an HMM

G 3 6 6 2
00900
St Y il
sgeezs F 4 F 4 F/4F

O

2 t=0 t=| t=2 t=3

Conceptually, sometimes convenient

Note exponentially many paths



Viterbi

v;(7) = probability of the most probable path

emitting z;, zo, ..., z; and ending in state /
Initialize: .
1 if | = Begin state —
v (0) = o8 ©
0 otherwise @ -

General case:

() (Z + 1) = el(xz'_H) - mI?,X(’Uk(Z) ak,l)



Viterbi Traceback

Above finds probability of best path

To find the path itself, trace backward to the
state k attaining the max at each stage



Rolls
Die
Viterbi

Rolls
Die
Viterbi

Rolls
Die
Viterbi

Rolls
Die
Viterbi
Rolls
Die
Viterbi

315116246446644245311321631164152133625144543631656626566666
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLL

651166453132651245636664631636663162326455236266666625151631
LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF

222555441666566563564324364131513465146353411126414626253356
FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLL
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL

366163666466232534413661661163252562462255265252266435353336
LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

233121625364414432335163243633665562466662632666612355245242
FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

Figure 3.5 The numbers show 300 rolls of a die as described in the exam-
ple. Below is shown which die was actually used for that roll (F for ﬁir and
L for loaded). Under that the prediction by the Viterbi algorithm is shown.



Is Viterbi “best’’?

Viterbi finds .

7" = arg max P(x, )

Most probable (Viterbi) path goes through 5,
but most probable state at 2nd step is 6
(l.e., Viterbi is not the only interesting answer.)



An HMM (unrolled)

States

O O 0N, O O ©
ASASASIAT

i 3‘""“"!'{/"“!'/5"%/5"
ST N N NT K

7N O Orrane Orane Osrane ®

X1 X2 X3 X4

Emissions/sequence positions —,



Viterbi: best path to each state

TAVAYS 8

oy Vao\VrotVrs Wiy Yig
AR AT N AT N
YAV T AT

X1 X2 X3 X4

vi(t+ 1) = ei(xi+1) - max(ve(?) ak,1)



The Forward Algorithm

For each Oww.Oww. OO
S Wy
emissions v ow

£u0) = Plzy...ws m=k)

fGE+1) = el(ziv1) Do fe(t)ak,

Pz) = ¥,P@m) = S fu(n)arg



The Backward Algorithm

Similar: for () ()
each W‘\\l} \' / \ l
state/time, %’!@.%’!g.%’!‘.“,i/a‘{\'h

| NPT NPT N I NALY
of all paths Nt
from it, ‘/"\\!/,‘\\'/,‘\'/' ‘\!/,“\.
with given
emissions, X1 N X2 A3 A
conditional be(i) = P(Tig1- T |m=k)

h

str;tteoat br(t) = > aks e(ziv1) bi(z +1)

be(n) = ako



In state k at step i !

P(z, m; = k)

P(:El,...,xi, 7I'z'=k:)°P(CU7;+1,...,CEn L1yeeoyLigy 71'7;:]{3)

= P(a:l,...,:ci,7rz-=/€)°P(£Uz'+1,---a$n Ty = )

= fr(1) - bx(2)

P(z,mi=k) _ fu(3) - bi(i)
P(z) P(z)

Plm,=k|x) =



Posterior Decoding, |

Alternative 1: what’s the most likely state at step i?

T; = arg m,?xP('/ri =k | x)

Note: the sequence of most likely states # the most
likely sequence of states. May not even be legal!
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Posterior Decoding

P(fair)

1 L

0 50 100 150 200 250 300

Figure 3.6 The posterior probability of being in the state corresponding to
the fair die in the casino example. The x axis shows the number of the roll.
The shaded areas show when the roll was generated by the loaded die.



Posterior Decoding, |l

Alternative 1: what’s most likely state at step i ?

A

T; = arg m’?xP('/rz- =k | x)

Alternative 2: given some function g(k) on states,

what’s its expectation. E.g., what's probability of
“+” model in CpG HMM (g(k)=1 iff k is “+” state)?

G(i | z) ZP i =k|z)-gk)



CpG Islands again

Data: 4] human sequences, totaling 60kbp, including 48
CpG islands of about | kbp each

Viterbi: Post-process:

Found 46 of 48 46/48
plus 121 “false positives” 67 false pos

Posterior Decoding:

same 2 false negatives 46/48

plus 236 false positives 83 false pos
(merge v:;chin 500;
discard < 500)

7




Training

Given model topology & training sequences,
learn transition and emission probabilities

If T known, then MLE is just frequency observed

in training data
a _ count of k — [ transitions -
k,l ~ count of k — anywhere transitions
ex(b) =

If 1 hidden, then use EM:
given TT, estimate 0; given O estimate .

} 2 ways

+ pseudocounts?



Viterbi Training

given 1, estimate 0; given 0 estimate 7t

Make initial estimates of parameters 0

Find Viterbi path &t for each training sequence

Count transitions/emissions on those paths,
getting new 0

Repeat

Not rigorously optimizing desired likelihood, but

still useful & commonly used.
(Arguably good if you're doing Viterbi decoding.)



Baum-Welch Training

given 0, estimate t ensemble; then re-estimate 0

P(m; =k, mip1=1]z,0)

fr(i]0) ag e(zipr) bi(e+1]6)
P(z | 0)

Estimated # of k — [ transitions flk,l

— Ztraining seqs x’ Zz P(ﬂ-z =k, miy1 =1 | xj79)
Ag.1
21 Ak,

New estimate ar; =

Emissions: similar



True Model

0.95

1/6
1/6
1/6
1/6
1/6
1/6

Fair

oarNp=

Log-odds per roll
True model 0.101 bits

300-roll est. 0.097 bits
30k-roll est. 0.100 Bits
(NB: overfitting)

B-W Learned Model
— (300 rolls)

0.19
0.19
0.23
0.08
0.23
0.08

RN

Fair Loaded

B-W Learned Model
ses (30,000 rolls)




HMM Summary

Viterbi — best single path (max of products)
Forward — Sum over all paths (sum of products)

Backward — similar

Baum-Welch — Training via EM and

forward/backward (aka the forward/backward
algorithm)

Viterbi training — also “EM”, but Viterbi-based



HMMs in Action: Pfam

Proteins fall into families, both across & within
species

Ex: Globins, GPCRs, Zinc Fingers, Leucine zippers,...

|dentifying family very useful: suggests function,
etc.

So, search & alignment are both important

One very successful approach: profile HMMs



Helix
HBA_HUMAN
HBB_HUMAN
MYG_PHYCA
GLB3_CHITP
GLBS5_PETMA
LGB2_LUPLU
GLB1_GLYDI
Consensus

Helix
HBA_HUMAN
HBB_HUMAN
MYG_PHYCA
GLB3_CHITP
GLBS_PETMA
LGB2_LUPLU
GLB1_GLYDI
Consensus

Helix
HBA_HUMAN
HBB_HUMAN
MYG_PHYCA
GLB3_CHITP
GLBS5_PETMA
LGB2_LUPLU
GLB1_GLYDI
Consensus

AAAAAAAAAAAAAARA BBBEBBBBBBBBBBBBBCCCCCCCCCCC
————————— VLSPADKTNVKAAWGKVGA--HAGEYGAEALERMFLSFPTTKTYFPHF
———————— VHLTPEEKSAVTALWGKV--~--NVDEVGGEALGRLLVVYPWTQRFFESF
————————— VLSEGEWQLVLHVWAKVEA--DVAGHGQODILIRLFKSHPETLEKFDRF
—————————— LSADQISTVQASFDKVKG-~-~---~DPVGILYAVFKADPSIMAKFTQF

PIVDTGSVAPLSAAEKTKIRSAWAPVYS--TYETSGVDILVKFFTSTPAAQEFFPKF
-------- GALTESQAALVKSSWEEFNA--NIPKHTHRFFILVLEIAPAAKDLFS-F
————————— GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-F

Ls.... v.aWkv . . g . L.. £ . P F F
DDDDDDDEEEEEEEEEEEEEEEEEEEEE FFFFFFFFFFFF
-DLS-==~- HGSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKI,-

GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHL---D--NLKGTFATLSELHCDKL-

KHLKTEAEMKASEDLKKHGVTVLTALGAILKK----K-GHHEAELKPLAQSHATKH-

AG-KDLESIKGTAPFETHANRIVGFFSKIIGEL--P---NIEADVNTFVASHKPRG-

RGLTTADQLKKSADVRWHAERIINAVNDAVASM——DDTEKMSMKLRDLSGKHAKSF—

LK-GTSEVPONNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG-

SG----AS---DPGVAALGAKVLAQIGVAVSHL--GDEGKMVAQMKAVGVRHKGYGN
t .. « V..Hg kv. a a...l1l d al. 1l H

FFGGGGGGGGGGGGGGGGGGG HHHHHHHHHHHHHHHHHHHHHHHHHH
—RVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR-~--—-——
~HVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH------
~KIPIKYLEFISEAITIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG
~=-VTHDQLNNFRAGFVSYMKAHT--DFA-GAEAAWGATLDTFFGMIFSKM---—-——
-QVDPQYFKVLAAVIADTVAAG-~== === —— DAGFEKLMSMICILLRSAY--——--~-
--VADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA - - —
KHIKAQYFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYADISGALISGLQS-----

V. £ 1 . .. C e f aa. k. 1 sky

Alignment of 7 globins. A-H mark 8 alpha helices.
Consensus line: upper case = 6/7, lower = 4/7, dot=3/7.
Could we have a profile (aka weight matrix) w/ indels!?



Profile Hmm Structure

Figure 5.2 The transition structure of a profile HMM.

Mj: Match states (20 emission probabilities)
i Insert states (Background emission probabilities)
Dj: Delete states (silent - no emission)



Silent States

Example: chain of
states, can skip
some

Problem: many parameters.

A solution: chain

of “silent” states; \( kr
fewer parameters

—O

T

(but less detailed control)

Algorithms: basically the same.

{*silent” states)




Using Profile HMM'’s

Search
Forward or Viterbi

Scoring
Log likelihood (length adjusted)
Log odds vs background next slides

Z scores from either
Alignment
Viterbi



LU/length

Likelihood vs Odds Scores
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Figure 5.5 To the left the length-normalized LL score is shown as a function
of sequence length. The right plot shows the same for the log-odds score.
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Z-Scores

non-globins - 90 + non-globins 1
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Figure 5.6 The Z-score calculated from the LL scores (left) and the log-odds (right).



Pfam Model Building

Hand-curated “seed” multiple alignments
Train profile HMM from seed alignment
Hand-chosen score threshold(s)

Automatic classification/alignment of all other
protein sequences

7973 families in Rfam 18.0, 8/2005
(covers ~75% of proteins)



Model-building

refinements
Pseudocounts (count = 0 common when training
with 20 aa’s)

ei(a) = Ciat+ 4 4o
(/ - Zaoi,a_I_A)

A ~ 20, g, = background

(~50 training sequences)

Pseudocount “mixtures”, e.g. separate
pseudocount vectors for various contexts
(hydrophobic regions, buried regions,...)

(~10-20 training sequences)



More refinements

Weighting: may need to down weight highly
similar sequences to reflect phylogenetic or
sampling biases, etc.

Match/insert assignment: Simple threshold, e.g.
“> 50% gap = insert”, may be suboptimal.
Can use forward-algorithm-like dynamic
programming to compute max a posteriori
assignment.



Numerical Issues

Products of many probabilities = 0
For Viterbi: just add logs

For forward/backward: also work with logs, but
you need sums of products, so need
“log-of-sum-of-product-of-exp-of-logs”,

e.g., by table/interpolation

Keep high precision and perhaps scale factor

Working with log-odds also helps.



The Bio Interlude:

Chromatin Codes
& some DNA binding
experiments



Chromatin

(A)

(B)




cific
proteins

sequence-spe
DNA-binding

nucleosome



core hist
linker DNA
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“beads-on-a-string”  nucleosome |

form of chromatin ~200 nucl
pairs of

NUCLEASE
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LINKER DNA

released T
nucleosome 11 nm
core particle ¥

released =
nucleosome 11 nm
core particle v

DISSOCIATION
WITH HIGH
CONCENTRATION
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—

octameric 146-nucleoti
histone core DNA double
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Histone Codes

N-terminal tail modification state

910 14 18 23 28
| B |

e
histone-fold
domain




G-C preferred here
(minor groove outside)

A-T preferred here
(minor groove inside)

histone core DNA of
of nucleosome nucleosome
(histone octamer)



A genomic code for
nucleosome
positioning

Eran Segal, Yvonne Fondufe-Mittendorf,
Lingyi Chen, AnnChristine Thastrom, Yair
Field, Irene K. Moore, Ji-Ping Z. Wang
and Jonathan Widom
doi:10.1038/nature04979 (7/19/06)



AA/TT/TA (fraction)

© oo
NN N
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A

i~
- O
N

0.341
0.311 |
0.28+
0.25%

0.22
-70

-50 -30 -10} 10 30
e
Position on nucleosome (bp)

Method: ~ “I st order
WMM” (as above)
trained on 200 aligned
nucleosome binding
seqgs; alt: MEME-like
EM algorithm



Experimental approaches
to learning DNA binding
proteins & their targets



Gel Mobility Shift Assay
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S == .. DNA 10 . 20 30 40
(B) fraction number from column

gel result eluted with increasing salt concentration



Chromatin Immuno-
Precipitation

o

¢ regulatory protein A

many other DNA fragments
that comprise the rest of
the genome

PRECIPITATE DNA USING
ANTIBODIES AGAINST GENE
S . REGULATORY PROTEIN A
living
cell

gene 1

regulatory protein B

' REVERSE FORMALDEHYDE
L geneZ2 CROSSLINKS:
REMOVE PROTEIN

CROSS-LINK PROTEINS TO
DNA WITH FORMALDEHYDE

LYSE CELLS AMPLIFY THE PRECIPITATED
\/ DNA BY PCR

BREAK DNA INTO SMALL
(~ 300 NUCLEOTIDE)
Y FRAGMENTS

DNA REPRESENTING POSITIONS
IN THE GENOME THAT WERE
OCCUPIED BY GENE REGULATORY
PROTEIN A IN THE ORIGINAL CELLS




