CSEP 590 A

Lecture 6

Markov Models and Hidden
Markov Models

DNA Methylation

CpG - 2 adjacent nts, same strand (not CHy  NH,
Watson-Crick pair; “p” mnemonic for the RSN N
phosphodiester bond of the DNA backbone) | /g

NT o

C of CpG is often (70-80%) methylated in H

mammals i.e., CH3 group added (both strands) cytosine

Why? Generally silences transcription.
X-inactivation, imprinting, repression of mobile elements,
some cancers, aging, and developmental differentiation

How? DNA methyltransferases convert hemi- to fully-
methylated

Major exception: promoters of housekeeping genes

“CpG Islands”

CH, NH,
. . N
Methyl-C mutates to T relatively easily | \/L
. N o
Net: CpG is less common than H

expected genome-wide: cytosine

f(CpG) < f(C)*H(G)

BUT in promoter (& other) regions, CH
CpG remain unmethylated, so CpG — ‘\fLNH
TpG less likely there: makes “CpG N ©

Islands”; often mark gene-rich regions thymine

CpG Islands

CpG Islands
More CpG than elsewhere
More C & G than elsewhere, too
Typical length: few 100 to few 1000 bp
Questions
Is a short sequence (say, 200 bp) a CpG island or not?
Given long sequence (say, 10-100kb), find CpG islands?




Markov & Hidden
Markov Models

References:

Durbin, Eddy, Krogh and Mitchison, “Biological
Sequence Analysis”, Cambridge, 1998
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Selected Application in Speech Recognition,"
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257-286

Independence

A key issue: All models we’ve talked about so
far assume independence of nucleotides in
different positions - definitely unrealistic.

Markov Chains

A sequence 1, Z2,...of random variables is a
k-th order Markov chain if, for all i, i value is
independent of all but the previous k values:

P(z; | 71,%2,. .., Ti—1) = P(%s | Ticks Timkt1, -+, Ti1)
Example |: Uniform random ACGT } Oth
order

Example 2: Weight matrix model

Example 3: ACGT, but | Pr(G following C) } I'st
order

A Markov Model (Ist order)

States: ACGT
Emissions: corresponding letter
Transitions: a, = P(x;, =t|x, ;=) <—lstorder




A Markov Model (Ist order)

States: AC.GT

Emissions: corresponding letter
TrarTsitions: a,=P(x;=t|x.;=s)
Begin/End states

Pr of emitting sequence x
= mas ... 3
P(z) = P(z1,z2,...,%n)
= P(z1)-P(z2|z1) - P(@n | Tn-1,...,21)
= P(z1) P(@2 | z1) - P(@p | 2n-1)
= P(@1) [[i5 Gosmins

= II° @zizs,,  (with Begin state)

Training

Max likelihood estimates for transition
probabilities are just the frequencies of
transitions when emitting the training
sequences

E.g., from 48 CpG islands in 60k bp:

+ A C G T - A C G 4

A 0.180 0.274 0426 0.120 A 0300 0205 0.285 0.210
c 0171 0368 0274 0.188 c 0322 0.298% 0.078 0.302
G 0161 0339 0375 0.125 G 0248 0246 0298 0.208
T 0.079 0355 0384 0.182 T 0177 0239 0292 0292

Discrimination/Classification

Log likelihood ratio of CpG model vs background model

e + L
. P(x|model +) giii,
0 = e m R~ D0
i=1 225 e i=1
BEE e G e

A -0.740 0419 0580 -—0.803
c -—-0913 0302 1.812 -—0.685
—0.624 0.461 0331 -0.730
—1.169 0573+ 0.393 —0.679

H @




CpG Island Scores
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Figure 3.2 The histogram of the length-normalised scores for all the se-
quences. CpG islands are shown with dark grey and non-CpG with light

grey.

Aside: ISt Order “WMM”

4 params |6 params |6 params

Questions

QI: Given a short sequence, is it more likely from
feature model or background model? Above
Q2: Given a long sequence, where are the
features in it (if any)
Approach |: score 100 bp (e.g.) windows
Pro: simple
Con: arbitrary, fixed length, inflexible
Approach 2: combine +/- models.

Combined Model

Emphasis is “Which (hidden) state?” not “Which model?”




Hidden Markov Models
(HMMs)

The Occasionally
Dishonest Casino

1 fair die, 1 “loaded” die, occasionally swapped

:1/6 1:1/10
:1/6 05 2:1/10
:1/6 | ——|3:1/10 :)_90
:1/6 ‘\1-0/4: 1/10
:1/6 | ° 5:1/10
:1/6 6:1/2

95 ()

OO~ WN =

States: 1,2,3,...
Paths: sequences of states m = (7, o, .. .)
Transitions: aky = P(mi=1|mi—1=k)
Emissions: ex(b) =Pz, =b|m=k)
Observed data: emission sequence
Hidden data: state/transition sequence

Roll

Viterbi FFF

Figure 3.5 The numbers show 300 rolls of a die as described in the exam-
ple. Below is shown which die was actually used for that roll (F for fair and
L for loaded). Under that the prediction by the Viterbi algorithm is shown.

Inferring hidden stuff

Joint probability of a given path 7 & emission
sequence X:

n
P(xvﬂ-) = ao,m He'lri (.’Ez) C Qi

i=1
But 7t is hidden; what to do? Some alternatives:

Most probable single path
m* = argmax P(z, )
Sequence of most prol;TabIe states
7ty = argm’?xP(m =k|z)




The Viterbi Algorithm:
The most probable path

Viterbi finds: " = arg max P(z,)

Possibly there are 10°? paths of prob 10-°

More commonly, one path dominates others.
(If not, other approaches may be preferable.)

Key problem: exponentially many paths &t

Unrolling an HMM

Conceptually, sometimes convenient

Note exponentially many paths

Viterbi

v (i) = probability of the most probable path

emitting ¢, z,, ..., z; and ending in state /
Initialize: o
u(0) = { é ic\:ta:mie;gin state — g
General case: @

u(i+1) = e(zit1) - max(ve(i) ar,)

Viterbi Traceback

Above finds probability of best path

To find the path itself, trace backward to the
state k attaining the max at each stage




Rolls 1164564466=47 53113216311641521 JJSA“IIJS«JU“E 6626566666
Die F FF F
Viterbi FFF

Rolls 65116645313265
Die LLLLLLFFFFFF
Viterbi LLLLLLFFFFFFFF

Rolls
Die
Viterbi

Rolls

Viterbi
Rolls 23312162536441443233516324363
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFF

6556246666263266661235 15¢42

L;LLLL;LL LLMME

Figure 3.5 The numbers show 300 rolls of a die as described in the exam-
ple. Below is shown which die was actually used for that roll (F for fair and
L for loaded). Under that the prediction by the Viterbi algorithm is shown.

Is Viterbi “best”?

Viterbi finds .
™

= argmax P(z,7)

Begin Etnd

Most probable (Viterbi) path goes through 5,
but most probable state at 2nd step is 6
(l.e., Viterbi is not the only interesting answer.)

An HMM (unrolled)

X ‘ 'A\'i‘}\v‘\

\«'» \&5« \w '\«»“
0‘,%"%0!,%"\:0!;“"\: !,“‘"\: A% D
PPN

X1 X2 X3 X4

Emissions/sequence positions __,

Viterbi: best path to each state

(N
XA

VN \«'» \‘«' w»' ‘»\'»“
40\.40; 4&.

‘Oxv v ' ' .' .

-/ -/
X1 X2 X3 X4

u(i+1) = e(zit1) - max(ve(i) ar,)




The Forward Algorithm

The Backward Algorithm

Similar: for
each

‘\ ’A'/‘\'/l.‘.‘

state/time, .
want total \\" \\’ '\\N.‘ e
probability .‘,A‘A“ ”A‘A‘\‘ "‘ .\;6\ ‘A‘A‘ﬁ.
of all paths
from Ii:::, /, \'/, \'/,\\'/' ' \

. . N\ -/
with given N o s M
emissions, A :
conditional (i) = P@it1-zn|m=k)
on that ) ]
state. be(i) = X akg e(@ipr) bi(i+1)

bk(n) = ako

For each
tate/time, \ \
s~ S O,»A ‘, s
probability *’" \\ '\ XX ‘\\N \\’
of all paths .‘AA\ “ \\ )'AA‘.."A‘A&‘.
leading to 9‘ ,“\ ;“\
it, with §
given
emissions X x2 x3 x4
fk(l) = P(.Tl...:L‘i, m-:k)
fi+1) = el@irn) X fr(D)ar,
P) = 2, P(7) = X fu(n)ako
In state k at step i ?
Pz, m;=k)
= P(a:l,...,wi, T = k) -P(wi+1,...,xn | Lly.eeyLgy Ty = k})

= P(ml ..... Zi, WiZk)'P(mH_l ..... Tn |7Ti=k)
Ji(@) - bk ()

Pz, mi =k) _ fi(i) - bk(3)

Plm=klo) = ="pGay = 7 P@

Posterior Decoding, |

Alternative 1: what'’s the most likely state at step i?
T = argmgxP(m =k | x)

Note: the sequence of most likely states # the most
likely sequence of states. May not even be legal!

Begin 0 e e

O

tnd




The Occasionally
Dishonest Casino

1 fair die, 1 “loaded” die, occasionally swapped

1:1/6 1:1/10
:1/6 05 2:1/10

2

95 C i: 1/6 ——[3:1/10 :)90
5
6

:1/6 ‘\1-0/4: 1/10
$1/6 |7 5:1/10

:1/6 6:1/2

Rolls
Die
Viterbi

Rolls
Die
Viterbi

Rolls
Die
Viterbi
Rolls
Die
Viterbi
Rolls
Die
Viterbi

315116246446644245311321631164152133625144543631656626566666
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLL
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FFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

Figure 3.5 The numbers show 300 rolls of a die as described in the exam-
ple. Below is shown which die was actually used for that roll (F for fair and
L for loaded). Under that the prediction by the Viterbi algorithm is shown.

Posterior Decoding

P(fair)

0 50 100 150 200 250 300

Figure 3.6 The posterior probability of being in the state corresponding to
the fair die in the casino example. The x axis shows the number of the roll.
The shaded areas show when the roll was generated by the loaded die.

Posterior Decoding, I

Alternative 1: what’s most likely state at step i ?

T = argm’?xP(m =k|x)

Alternative 2: given some function g(k) on states,
what’s its expectation. E.g., what’s probability of
“+” model in CpG HMM (g(k)=1 iff k is “+” state)?

G(i|z) =Y P(mi=k|z)-g(k)
k




CpG Islands again

Data: 41 human sequences, totaling 60kbp, including 48
CpG islands of about | kbp each

Viterbi: Post-process:

Found 46 of 48 46/48
plus 121 “false positives” 67 false pos

Posterior Decoding:

same 2 false negatives 46/48

plus 236 false positives 83 false pos
(merge within 500;
discard < 500)

Training

Given model topology & training sequences,
learn transition and emission probabilities

If T known, then MLE is just frequency observed

in training data
a — count of k — [ transitions -
k,l count of k& — anywhere transitions
ex(b) =

If ™ hidden, then use EM:
given I, estimate 0; given O estimate . } 2 ways

+ pseudocounts?

Viterbi Training

given m, estimate 0; given 0 estimate &

Make initial estimates of parameters 0

Find Viterbi path &t for each training sequence

Count transitions/emissions on those paths,
getting new 0

Repeat

Not rigorously optimizing desired likelihood, but

still useful & commonly used.
(Arguably good if you're doing Viterbi decoding.)

Baum-Welch Training

given 0, estimate it ensemble; then re-estimate 0

P(my =k, mip1 =1|z,0)

fk(i | 9) ak,l 6[(.’Ei+1) bl(l+ ]. | 9)
P(z|0)

Estimated # of k — [ transitions /Alk,l
= Ztraining seqs 7 Zz P(W‘L =k, miy1 =1 | xj,e)
Ak,

New estimate ay; = ——=—
21 Ak

Emissions: similar




True Model B-W Learned Model

0.95 0.9 073 (300 rolls) 0.71 H M M Su m mar.y
Ct 1/6 1: 110 C: 0.19 1: 0.07
2 16 005 |2:110 2:019] 027 |2 010
3 s P W3 110 3: 023 3: 0.10 ) . .
4 16 N~ 4:1/10 4: 008 f___~] 4 017 Viterbi — best single path (max of products)
5 1/6 01 |s:1/10 5: 0.23 029 |5: 0.05
6: 1/6 6 112 8: 0.08 6: 0.52 I h
Fair Loaded Fair Loaded Forward — Sum over all paths (sum of products)

B-W Learned Model Backward — similar

e (30,000, rolls) ey Baum-Welch — Training via EM and

Log-odds per roll
g P T 010 forward/backward (aka the forward/backward
True model 0.101 bits 20171 o007 |2 o011 algorithm)
. 3017 A3 010 8
300-roll est. 0.097 bits 4: 017 fe A 4 0.11 . . bi-based
. 5: 017 012 |5 0.10 i i training — EM”, but Viterbi-base
30'('r0” est. O I 00 Blts 6: 0.15 6: 0.48 Vlterbl tralnlng aISO ’
(NB: overfitting) Fair Loaded
Helix AAAAAAAAAAAAAAAA BBBEBBBBBBBBBBBBBCCCCCCCCCCC
HBA_HUMAN --------- VLSPADKTNVKAAWGKVGA--HAGEYGAEALERMFLSFPTTKTYFPHF
HBB_HUMAN ~VHLTPEEKSAVTALWGKV - - --NVDEVGGEALGRLLVVYPWTQRFFESF
MYG_PHYCA =--------= VLSEGEWQLVLHVWAKVEA--DVAGHGQDILIRLFKSHPETLEKFDRF
. ° GLB3_CHITP =--=-=-=--- LSADQISTVQASFDKVKG--~~~~ DPVGILYAVFKADPSIMAKFTQF
I I I\/I I\’I . GLBS5_PETMA PIVDTGSVAPLSAAEKTKIRSAWAPVYS--TYETSGVDILVKFFTSTPAAQEFFPKF
S I n Actl o n (] Pfal I I LGB2_LUPLU -------— GALTESQAALVKSSWEEFNA--NIPKHTHRFFILVLEIAPAAKDLFS-F
GLB1_GLYDI --=-===-—— GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-F
Consensus Ls.... vawkv . . g.L..f.P. F F
Helix DDDDDDI FFFFFFFFFFFF
HBA_HUMAN -DLS=-==-- HGSAQVKGHGKKVADALTNAVAHV - - -D~ -DMPNALSALSDLHAHKL -
H 1 HH 1 H HBB_HUMAN GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHL~~~D--NLKGTFATLSELHCDKL~
PFOteIns fa” Into famllles’ bOth across & Wlthln MYG_PHYCA KHLKTEAEMKASEDLKKHGVTVLTALGAILKK- - - -K-GHHEAELKPLAQSHATKH-
. GLB3_CHITP AG-KDLESIKGTAPFETHANRIVGFFSKIIGEL--P---NIEADVNTFVASHKPRG-
SPeCIeS GLBS_PETMA KGLTTADQLKKSADVRWHAERIINAVNDAVASM--DDTEKMSMKLRDLSGKHAKSF -
LGB2_LUPLU LK-GTSEVPQNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG-
. . GLB1_GLYDI SG----AS---DPGVAALGAKVLAQIGVAVSHL--GDEGKMVAQMKAVGVRHKGYGN
Ex: Globins, GPCRs, Zinc Fingers, Leucine zippers,... Consensus £ ... v.Hgkv.a a...1 4 .al.l H
Helix FFGGGGGGGGGGGGGGGGGGG
. . . . HBA_HUMAN -RVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR-—--———
Identlfylng famll)’ very useful: SUggestS functlon, HBB_HUMAN -HVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH- - -
MYG_PHYCA -KIPIKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIA}\KYKELGYQG
etc GLB3_CHITP --VTHDQLNNFRAGFVSYMKAHT--DFA-GAEAAWGATLDTFFGMIFSKM--
* GLBS_PETMA -QVDPQYFKVLAAVIADTVAAG-~-~=-===~~ DAGFEKLMSMICILLRSAY----
LGB2_LUPLU --VADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA.
. . GLB1_GLYDI KHIKAQYFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYADISGALISGLQS —————
So, search & alignment are both important Consensus  v. £ 1 . £ .aa k.. o 1sky
. Alignment of 7 globins. A-H mark 8 alpha helices.
One very successful approach: profile HMMs
Consensus line: upper case = 6/7, lower = 4/7, dot=3/7.
Could we have a profile (aka weight matrix) w/ indels?




Profile Hmm Structure

\

M; > »1 End

A\

Begin

Figure 5.2 The transition structure of a profile HMM.

Mj: Match states (20 emission probabilities)
lii  Insert states (Background emission probabilities)
Dj: Delete states (silent - no emission)

Silent States

Example: chain of
states, can skip

Problem: many parameters.

A solution: chain
of “silent” states;
fewer parameters
(but less detailed control)

(slont states)

Algorithms: basically the same.

Using Profile HMM’s

Search
Forward or Viterbi
Scoring
Log likelihood (length adjusted)
Log odds vs background next slides
Z scores from either
Alignment
Viterbi

LUlength

Likelihood vs Odds Scores

0 500
non-globins non-globins
1 training data  © 400 training data
- other globins  + other globins  +
300
8 200
B
Q
8 100
0
-100
- -200 L
[ 50 100 150 200 250 300 0 50 100 150 200 250 300
protein length protein length

Figure 5.5 To the left the length-normalized LL score is shown as a function
of sequence length. The right plot shows the same for the log-odds score.
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Figure 5.6 The Z-score calculated from the LL scores (left) and the log-odds (right).

Pfam Model Building

Hand-curated “seed” multiple alignments
Train profile HMM from seed alignment
Hand-chosen score threshold(s)

Automatic classification/alignment of all other
protein sequences

7973 families in Rfam 18.0, 8/2005
(covers ~75% of proteins)

Model-building

refinements
Pseudocounts (count = 0 common when training
with 20 aa’s)
_ Ci,a +A4- 9a

ei(a) = m, A ~ 20, g, = background

(~50 training sequences)
Pseudocount “mixtures”, e.g. separate
pseudocount vectors for various contexts
(hydrophobic regions, buried regions,...)
(~10-20 training sequences)

More refinements

Weighting: may need to down weight highly
similar sequences to reflect phylogenetic or
sampling biases, etc.

Match/insert assignment: Simple threshold, e.g.
“> 50% gap = insert”, may be suboptimal.
Can use forward-algorithm-like dynamic

programming to compute max a posteriori
assignment.




Numerical Issues

Products of many probabilities = 0
For Viterbi: just add logs

For forward/backward: also work with logs, but
you need sums of products, so need
“log-of-sum-of-product-of-exp-of-logs”,

e.g., by table/interpolation

Keep high precision and perhaps scale factor

Working with log-odds also helps.

The Bio Interlude:

Chromatin Codes
& some DNA binding
experiments

Chromatin

50 nm

sequence»speciﬂc _
DNA-binding pr\otems
\

nucleosome




released

A
core hist nucleosome 11 nm
linker DNA core particle ¥
3 DISSOCIATION
WITH HIGH
“beads-on-a-string” CONCENTRATION
form of chromatin J OESALT
pairs of D
NUCLEASE
DIGESTS @
LINKER DNA octameric 146-nucleoti
histone core DNA double
DISSOCIATION

By
e
P ¥y o6

released L)
nucleosome 11 nm
core particle v

|

H2A H2B H3
N@M { c
««++ . Histone Codes

N-terminal il modification state

R e® O 910 14 18 unmodified g lencing?
N c
SREICL K T K acetylated gene expression
histone old acetylated histone deposition
gene silencing/
mothylated heterochromatin
"“"mz{;‘”‘” gene expression
higher-order 2
unmodified gene silencing?
acetylated histone deposition
acetylated gene expression

G-C preferred here
(minor groove outside)

A-T preferred here
{minor groove inside)

histone core DNA of
of nucleosome nucleosome
(histone octamer)




A genomic code for
nucleosome
positioning

Eran Segal, Yvonne Fondufe-Mittendorf,
Lingyi Chen, AnnChristine Thastrom, Yair
Field, Irene K. Moore, Ji-Ping Z. Wang
and Jonathan Widom
doi:10.1038/nature04979 (7/19/06)
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L - o Method: ~ “Ist order
0.34{ Yeast /" WMM?” (as above)
o3t{[| A, )| A ML LA trained on 200 aligned
028 41 L A AALS VT nucleosome binding
oesf Wy ¥V Ly seqs; alt: MEME-like

‘ 4
0.22 '
70 50 <30 -io! jo do so 7o EMalgorithm

Position on nucleosome (bp)
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Experimental approaches
to learning DNA binding
proteins & their targets

radioactive

Gel Mobility Shift Assay

DNA fragment
+cell extract T
v )
40 @ ca
Cs
*_C" ! cs
+Cz [
3 (s

4C5
+C3
C————0Cs

2
S— free DNA ~ §

2 |C1—
S c1 g
— . - —ca
— 4 % c2 -
S Sbee- —
= £ |3« wmigiph 1oee= Cs
— 5 g 5
i C3 i - —C6
S  iroc DNA
. Y n 1
-— o 10 20 30 20
TT ®) fraction number from column

eluted with increasing salt concentration




Chromatin Immuno-

Precipitation

_,/regulatory protein A %\\

INE oo
gene 1

regulatory protein B

| living
cell

|
|
|
|
/
/
N— I

CROSS-LINK PROTEINS TO
DNA WITH FORMALDEHYDE

1 LYSE CELLS

(~ 300 NUCLEOTIDE)

l BREAK DNA INTO SMALL
FRAGMENTS

L=

.@—..TL__.

many other DNA fragments
that comprise the rest of
the genome

ANTIBODIES AGAINST GENE
REGULATORY PROTEIN A

Lo

REVERSE FORMALDEHYDE
CROSSLINKS;
REMOVE PROTEIN

[ PRECIPITATE DNA USING

|- o— ]

AMPLIFY THE PRECIPITATED
DNA BY PCR

DNA REPRESENTING POSITIONS
IN THE GENOME THAT WERE
OCCUPIED BY GENE REGULATORY
PROTEIN A IN THE ORIGINAL CELLS




