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Summer 2006

Lecture 4
MLE, EM, RE, Expression
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An evolutionary scheme
for the globin chains that carry
oxygen in the blood of animals. The
scheme emphasizes the B-like globin
gene family. A relatively recent gene
duplication of the y-chain gene
produced Y6 and y#, which are fetal
B-like chains of identical function.
The location of the globin genes in
the human genome is shown at the
top of the figure. Alberts etal., 3rd ed.,pg389

Tonight
MLE: Maximum Likelihood Estimators
EM: the Expectation Maximization Algorithm

Bio: Gene expression and regulation

Next week: Motif description & discovery

MLE

Maximum Likelihood Estimators




Probability Basics, |

Ex. Ex.

Sample Space
{1,2,...,6} R

Distribution
D1y ype > 05 Zpizl f(:(:)>:0;/f(ac)dm:1

1<i<6 R
e.g.
L —G-w?/eo?)

pi==pe=1/6 f@) = e

V2ro?

s os sa s pdf, not
probability
5

Probability Basics, Il

Ex
Expectation  Eg)= > g(i)p E(9) = [ ga)f(w)de
1<i<6 R
Population
mean W= Z ip; = / xf(z)dx
1<i<6 R
variance e Z (i — p)*ps o2 = /(.L — )2 f(x)dx
1<i<6 R
Sample
mean = Z x;/n
1<i<n
variance 52 = (z; — %)% /n

Parameter Estimation

« Assuming sample x|, x,, .., x, is from a

parametric distribution f(x|0), estimate ©.

* Eg:

flz) = —L_e @/

2mo?2

0 = (:uv 02)

Maximum Likelihood
Parameter Estimation

* One (of many) approaches to param. est.
» Likelihood of (indp) observations x/, X, ..., X,

L(z1,29,...,2n) = [ [ (i | 0)
i=1

* As a function of 6, what 6 maximizes the
likelihood of the data actually observed
* Typical approach: %L(ﬂ 6)=0 or %logL(ﬂ 6)=0




Example |

n coin fllps,xl, Xps e X5 N tails, n, heads, ngtn, =n

)

0 = probability of heads
L('I‘laxZ,---,wn | 0) = (1_9)"7«097’1«1 unu::;{ E

0.2 0.4 0.6 0.8

log L(z1,22,..., 20 [ 0) = nolog(l —0)+ nylogh
%logL($1,$2>--.,$n|0) = 1*113_,_%

Setting to zero and solving:

—
v = n

(Also verify it’s max, not min, & not better on boundary)

1

EX. 2: z; ~ N(p,0%), 0? =1, punknown

11 1 —(@i-0/2
V2T

L(.%'l,.%'g,...,ﬂﬁn’e) =

1<i<n
1 x; — 0)?
In L(zq,z9,...,2,]0) = Z —§1n27r—( 5 )
1<i<n
LInL(zy,22,...,2,]0) = Z (x; — 0)
1<i<n

And verify it’s max,
not min & not better
on boundary

Lbhdbd
w
m
-
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Ex 3: z; ~ N(p,0?), p,0? both unknown

1I1L(£U1,£l?2,...,$n|91,92) =

1<i<n 20,
z;, — 0
%1HL($1,ZE2,...,$n|61’92) — Z ( 92 1) -0
1<i<n

1 ;— 01)?
> Lz, - 200

Ex. 3, (cont.)

]. (l’l — 01)2
InL(zy,x9,...,2,]01,02) = g —— In27fy — — -
2 2 205
1 27 (; — 61)2
o] _ E ? _
%IHL(ZE]_,.TJQ,...,ZE”|91,92> = _5271_92 + 20% = O

1<i<n

b2 = (Zgign(xi*él)Z) /n = 5

A consistent, but biased estimate of population variance.
(An example of overfitting.) Unbiased estimate is:

A~ . (-’Ei_él)Z
b = Zlgz‘gn n—1

Moral: MLE is a great idea, but not a magic bullet




More Complex Example

The Expectatlor?-MaX|m|zat|on This? //_\
Algorithm

Or this?

Gaussian Mixture Models / Model-based Clustering

Parameters 6 \\\\\
o
means H1 2 \\\§§‘§Z§fi$:::?~.
variances o2 o2 o =] \\zt‘t&%ﬁéf::%’;’#zﬁ.
1 2 N
mixing parameters Ty m=1—m7 ' “\&E 7
P.D.F. f(xlpr,0f)  f(x|p2,03)
Likelihood
L(xy, 29, ..., Tn|p1, to, 0%, 03,71, T2) No
R closed-
form

2
= H?:l Zj:l ij(xi‘p,j,o?) max

15
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A What-If Puzzle

« Likelihood 0

A

-~

-

. L(l‘l,l‘g,...,{L’n‘/,Ll,ILLQ,O'%,O'%,Tl,T2>
2

. = [[i=, Zj:1 ij(xin?sz)

* Messy: no closed form solution known for
finding © maximizing L

* But what if we 1
knew the Zij =
hidden data?

if z; drawn from f;
0 otherwise

EM as Egg vs Chicken

o IF Z; known, could estimate parameters 0
« IF parameters O known, could estimate Z;

* But we know neither; (optimistically) iterate:

« E: calculate expected Zp given parameters

o M:calc “MLE” of parameters, given E(Zij)

20




The E-step

* Assume 6 known & fixed
« A (B):the event that x;, was drawn from f, (f,)
X'PO\

« D:the observed datum X; 0,?&0\*

=

« Expected value of z; is P(A|D) -

The M-Step

Goal is to find MLE 8 of:
L(zq,...,%n, 211,212, - - -, Zn2 | 0)

xz;'s are known;

PP ~ Would be easy if z;;'s also known, but they aren't.
P(AID) = W Repeat Instead, maximize expected likelihood of visible data
for
P(D) = P(DIAP(A) + P(DIB)P(B) [ each (L, an |0))
Fu(@il00) 71+ Fa(il0) 7 X where expectation is over distribution of hidden data (z;;'s)
= Ji(zil01) 11 + f2(2i|02) T2
K] K] J
21 22
M-Step Details EM Summary
(For simplicity, assume 01 = 09 = 0371 = T3 = .5)
- 1 (i — ) o Fund tall likelihood t
L(Z,7]6) = H — exp (_ Z 2 2023 ) Ul"l an‘Ten ally a max likelinood parameter
1<i<n Y 1<5<2 estimation problem
Ellog L(Z,Z|0) =E | Y. g ome? > ) « Useful if analysis is more tractable when 0/
’ - ()
1<i<n 2 1<5<2 20 hidden data z known
- 1 , (i — ;)2 * Iterate:
B 1;1-;71 (_QIOg 2mo” = IZJ;QE[Z”} 207 ) * E-step: estimate E(z) given O

Find & maximizing this as before, using E|z;;] found in E-step. Result:

‘,uj =" Elzijlri/ Y Elzij] ‘ (intuit: avg, weighted by subpop prob)

23

« M-step: estimate 8 maximizing E(likelihood)
given E(z)

24




EM Issues

* Under mild assumptions (sect | 1.6),EM is
guaranteed to increase likelihood with every
E-M iteration, hence will converge.

* But may converge to local, not global, max.
(Recall the 4-bump surface...)

* Issue is probably intrinsic, since EM is often
applied to NP-hard problems (including
clustering, above, and motif-discovery, soon)

* Nevertheless, widely used, often effective

25

Relative entropy

26

Relative Entropy

* AKA Kullback-Liebler Distance/Divergence,
AKA Information Content

« Given distributions P Q

H(PIIQ) = 3 Plo)los

x€e

Notes:

N Pl) N fs : _
Let P(x)log o0 - 0 if P(z) = 0 [since ili%ylogy = 0]

Undefined if 0 = Q(z) < P(x) 27

—Inz > 1-—x
In(l/xz) > 1-—=z
Inz > 1-1/x+

28




Theorem: H(P||Q) > 0

HPIQ) = X, P(a)los ] Gene Expression &
> 5, P (1-99) Resulati
(P - Q) egulation
= >, P@) -3, Q@)
= 1-1
= 0
Furthermore: H(P||Q) =0 ifand only if P = Q
Bottom line: “bigger” means “more different” 0
Gene Expression Transcription ¥
e ,:,l:r —
* RNA polymerase complex ,  mb

* Recall a gene is a DNA sequence

* To say a gene is expressed means that it
. is transcribed from DNA to RNA
2. the mRNA is processed in various ways
3. is exported from the nucleus (eukaryotes)
4. is translated into protein

* A key point: not all genes are expressed all
the time, in all cells, or at equal levels

31

* E.coli: 5 proteins (2, B, B’, 0)
O is initiation factor; finds

promoter, then released/replaced . m =

by elongation factors
* Eukaryotes: 3 pols, each >10 BINDING OF
subunits

FACTORS

* attaches to DNA, melts helix, makes slongating form
i

RNA copy (5 — 3’) of template
(3° = 5’) at ~30nt/sec

RELEASE OF
o SUBUNIT

—— =

nasent
5 RNA
molecus

EXTENSIVE RNA SYNTHESIS

Alberts, et al.

32




attached

RNA Some genes are heavily
S transcribed (but many

direction of polymerase

movement and RNA chain growth are not).
RNA polymerase ’ f f }
R’ S

Star(
signal

DNA double helix

Tum
Alberts, et al.

5’ Processing: Capping

* methylated G added to 5’ end, and methyl
added to ribose of |st nucleotide of
transcript

* probably helps distinguish protein-coding
mRNAs from other RNA junk

* prevents degradation

* facilitates start of translation

34

3’ Processing: Poly A

(Eukaryotes)

* Transcript cleaved after AAUAAA (roughly)

* pol keeps running (until it falls off) but no 5’
cap added to strand downstream of poly A
site, so it’s rapidly degraded

* |0s - 100s of A’s added to 3’ end of
transcript - its “poly A tail”

35

More processing:
Splicing

* Also in eukaryotes, most genes are spliced:
protein coding exons are interrupted by
non-coding introns, which are cut out &
degraded, exons spliced together

* More details about this when we get to
gene finding

36




/ poly-A addition site

o DN
1ascent RNA
A CAPPING
ranscrip
—
-
\v}v:,\‘/
l CHAIN ELONGATION
ap
B
///—’
PR CONTINUED ELONGATION BUT

Gppp ~ 5'-UNCAPPED TRANSCRIPT IS
CLEAVAGE RAPIDLY DEGRADED
A 7/
poly-A ~ -~
ADDITION Sz ©

\ TERMINATION

Alberts, et al.

Nuclear Export

* In eukaryotes, mature mRNAs are actively
transported out of the nucleus & ferried to
specific destinations (e.g., mitochondria,
ribosomes)

38

Regulation

* In most cells, pro- or eukaryote, easily a 10,000-fold
difference between least- and most-highly
expressed genes

» Regulation happens at all steps. E.g.,some
transcripts can be sequestered then released, or
rapidly degraded, some are weakly translated, some
are very actively translated, some are highly
transcribed, some are not transcribed at all

* Below, focus on Ist step only:
transcriptional regulation

39

DNA Binding Proteins

A variety of DNA binding proteins
(“transcription factors”; a significant fraction,
perhaps 10%?, of all human proteins)
modulate transcription of protein coding
genes

40




The Double Helix

(a) Computer-generated
Image of DNA
(by Mel Prueitt)

(b) Uncoiled DNA

residue

hydrogen bonds (pink rods) linking each
base projecting from one backbone to its
so-called complementary base projecting
from the other backbone. The base A
always bonds to T (A and T are comple-

Fragment

Deoxyribose residue -
==

Phosphate
to 3' carbon
of sugar 9roUpy
resi \‘due F
(\)
o— T:O
(‘)
108 carbon
of sugar

As shown, the two strands coil fitciectido
about each other in a fashion such that all

the bases project inward toward the helix

axis. The two strands are held together by ~ Shown in (b)

is an uncoiled fragment of (a
three complementary base pai
chemist's viewpoint, each stral
a polymer made up of four re

called deoxyribonucleotides 4

Los Alamos Science
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Helix-Turn-Helix DNA Binding Motif

. (S )
\ T 7
e
/ [ -
La / l o .‘ :
/ NH, [ 4 !
| recognition { N—— 2
\ helix D
5
’ <ih
// i i 2 » "
COOH —
A (B) &
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Alberts, et al.

H-T-H Dimers

inyptophan repressor

lambda cro lambda repressor CAP

fragment fragment

Bind 2 DNA patches, ~ | turn apart
Increases both specificity and affinity

Alberts,

etal.
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Alberts, et al.

Leucine Zipper Motif

ALL

Homo-/hetero-dimers
and combinatorial
control

Alberts, et al.
erts, et al 46

Bacterial Met Repressor
a beta-sheet DNA binding domain

Negative feedback loop:
high Met level = repress Met synthesis genes

Summary

* Learning from data:
* MLE: Max Likelihood Estimators
* EM: Expectation Maximization (MLE w/hidden
data)
* Expression & regulation
* Expression: creation of gene products
* Regulation: when/where/how much of each gene
product; complex and critical
* Next week: using MLE/EM to find regulatory motifs
in biological sequence data

48




