
CSEP 590A: Computational Biology Assignment #3
due: Thursday, July 27

Due date is set for 7/27, but lecture five will make more sense if you have time to start before
7/20, and I will likely have some more to hand out this week. Turn this one in on paper; handwritten
is fine, I don’t recommend trying to typeset it. Extra credit is for extra practice and glory; it is
not a big component of your grade.

1. Bayes Rule: In a certain population, an obese person has a 30 percent chance of having
high blood pressure and a non-obese person has a 10 percent chance of having high blood
pressure. Twenty percent of the population is obese. What is the conditional probability that
a person is obese, given that the person has high blood pressure?

2. Maximum Likelihood: Let x1, x2, . . . , xn be n samples of a normal random variable X
with mean θ1 and variance θ2. In class I showed that the maximum likelihood estimates of
θ1 and θ2 when both are unknown give a biased estimate of θ2. What is the MLE of θ2 = σ2

if θ1 = µ is assumed to be known? Extra Credit: Is it biased, i.e., does the expected value of
θ̂2 differ from θ2?

3. EM: In class, I sketched the EM algorithm for the two-component Gaussian Mixture Model
only in the special case when both subpopulations were assumed to share the same variance
and the mixing proportions were assumed to be 50/50. Carry out the analysis for the general
case where σ2

1, σ
2
2 and 0 ≤ τ1 ≤ 1 (τ2 = 1− τ1) are arbitrary.

4. Maximum Likelihood: Suppose X is a discrete random variable with three possible out-
comes, say A1, A2 and A3. Let θ = (p1, p2, p3) be the probabilities of outcomes A1, A2, A3,
resp., (where p1 + p2 + p3 = 1, of course). Suppose you have collected n independent random
samples x1, x2, . . . , xn drawn from this distribution. Using the same basic approach as in the
coin-flipping example in the class notes (Lec 4, slide 9), show that the maximum likelihood
estimators for the parameters θ are θ̂ = (n1/n, n2/n, n3/n), where ni is the number of occur-
rences of outcome Ai among x1, x2, . . . , xn. Hint: The algebra is mildly easier if you happen
to remember Lagrange multipliers, but it’s certainly not essential. (FYI, this result general-
izes to arbitrary multinomial distributions, not just 2 or 3 outcomes; see the slick proof in
Chapter 11.)

5. EM: Recall that an allele of a gene is one variant of its DNA or protein sequence. Individuals
generally carry two (possibly identical) alleles of each gene, one inherited from mother, one
from father (genes on the X/Y chromosomes being exceptions). The ABO blood type gene has
three common alleles in the human population: A, B and O. The blood type of an individual
depends as follows on the pair of alleles that he or she has: type A if the pair is A/A or A/O;
type B if the pair is B/B or B/O; type AB if the pair is A/B; type O if the pair is O/O. Let
p(A) be the fraction of A alleles in the population, p(B), the fraction of B alleles and p(O),
the fraction of O alleles. These fractions are nonnegative and sum to 1. Under the standard
assumption in genetics of independent assortment, the probability that an individual has a
given pair of alleles is the same as the probability of obtaining that pair in two random draws
from the set of all alleles in the population: for example, the probability of the pair A/B is
2p(A)p(B). In a sample of 20 individuals, 9 have blood type A, 2 have blood type B, 1 has
blood type AB and 8 have blood type O. Derive the appropriate formulas needed to use the
EM algorithm to determine the values of p(A), p(B) and p(O) most likely to have given rise
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to this data. Then run the algorithm for a few iterations on the given data. Try it with a
couple of very different starting estimates for the parameters. You may write a program to do
the iteration, do it by hand, or give a spreadsheet with the relevant formulas and “fill down”
a few rows to iterate. If you use a spreadsheet, turn in a printout of the formulas as well as
the numbers; I think CONTROL-backquote causes Excel to show all formulas. Hint: The
parameters are p(A), p(B) and p(O), the observed data are the blood types of the individuals
and the hidden data are the pairs of alleles possessed by the individuals. The solution to
problem 4 will help. Depending on how you set up the likelihood function, you might (or
might not) need the multinomial distribution from pg 300 of the text.

(If you’d like info on the genetics of the ABO blood group sys-
tem, the 1930 Nobel prize in Physiology or Medicine, have a look at
Wikipedia http://en.wikipedia.org/wiki/Abo_blood_group or OMIM
http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=110300. In a nutshell, they are
3 alleles of a single gene on the ninth chromosome (9q34), which encodes a glycosyltransferase
- an enzyme that modifies the carbohydrate content of the red blood cell antigens. The A
and B alleles perform slightly (but immunologically significantly) different modifications; the
O allele has a 1 base deletion, hence an altered reading frame, producing a very different
protein with no apparent function at all, a so-called “null” allele. Aside from issues with
blood transfusions, people with O blood type are apparently more susceptible to cholera.
And, no, the “independent assortment” assumption for this gene is not well justified in the
human population; prevalence is strongly dependent on geography. But we’ll ignore that for
this problem...)

Extra Credit Problems:

6. Maximum Likelihood: Suppose X is a random variable uniformly distributed between 0
and θ > 0 for some unknown θ. Based on a sample x1, x2, . . . , xn of X, what is the maximum
likelihood estimator of θ? Is it biased?

7. EM: Generalize the EM algorithm from problem 3 to allow a fixed but arbitrary number
k ≥ 1 of components in the mixture, preferably allowing a choice of either a common variance
σ2 shared by all clusters, or a separate variance per cluster. Implement it and experiment
with simulated data to see how well it recovers the parameters you used to generate the data.
How quickly does the iteration converge? Does it ever seem to be converging to a local,
not global, max? How well does it work with sparse data? Well-separated clusters? Highly
overlapping clusters?
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