The Past and Present of Supercomputing
by David Mortenson and Luis Cabrera-Cordon
Introduction
The definition of a supercomputer that makes the most sense to me, and was mentioned by Burton Smith and also used in Gordon Bell’s slides, is that a supercomputer is “among the fastest computers at the time it is released”. This paper briefly describes some of the developments in supercomputers from the 1950’s to the present and the interactions between the supercomputer market and the general computing market. At the conclusion it will also explore some of the current challenges in both hardware and software.

1. A brief history of supercomputer architecture evolution
If a supercomputer is the fastest computer for its time then it makes sense to say that a supercomputer, in the earlier days of computing when there was only a handful of computer systems, should be not only the fastest but also be designed with that goal in mind. With that definition in mind, the first recorded supercomputer was the IBM’s Navel Ordnance Research Calculator (NORC) [1], released in 1954 and built under the direction of Wallace Eckert.

There are many that consider the CDC 6600, a computer designed by Seymour Cray at Control Data Corporation (CDC) and released in 1964 to be the first supercomputer. In fact it was around this period of time that the term “supercomputer” was coined [2]. Seymour Cray had a very clear goal to deliver the fastest performance possible. It is said that Cray believed he was put on earth to design and develop large-scale high performance systems [3]. Cray was focused on this goal at Advanced Research Associates (ERA), CDC, and later at his own company, Cray Research Inc. One of the decisions that was innovative in Cray’s designs was the use of a reduced instruction set architecture, later called RISC by David Patterson[4].

The successor of the CDC 6600, the CDC 7600, used pipelining -- the ability to run several stages of an instruction at the same time -- to increase performance by about a factor of 3[5].

Another way to increase performance, besides the use of pipelining, is to increase parallelism. In 1976, the ILLIAC IV came out to the market. The ILLIAC IV was a supercomputer project at the University of Illinois funded by DARPA. The ILLIAC IV had many processors and was a Single Instruction Multiple Data Stream (SIMD) computer. This means that the same instruction would be applied to all processors at once.

Another approach to increase parallelism is the concept of a vector computer. This approach was used by the CRAY-1, a supercomputer announced in 1975 that was the fastest computer in the world until 1981. A vector computer does not necessarily have many processors (in fact the CRAY-1 had only one main processor), but is optimized to do the same instruction on several pieces of data. Many scientific programs need to do the same operation to arrays of data, so the vector computer suited these programs well.

There were many other technological breakthroughs during the 1970s and 1980s that helped increase performance of general computers. A few of these are: (a) magnetic core memory that increased performance in accessing data, (b) transistor logic circuits -- that could be used to perform logical operations much faster than what achieved by vacuum tubes and (c) the ability to do floating point operations in hardware instead of software.

Even though in the 1970s, performance was the main, if not the only, selling point of supercomputers, in the 1980s the integration of these systems with the conventional computer environment became more important[6]. During the 1980s there was also an increase in parallel computers. One of the successful companies during this period of time was Thinking Machines with its CM-2 supercomputer. The CM-2 computer was one of the first major Massive Parallel Processor (MPP) systems. MPP systems, in contrast with SMP systems, allow each processor to have its own memory in order to prevent possible hold ups[7].The CM-2 computer had 64000 one bit processors that were designed specifically for that machine.

In contrast with Thinking Machines there were other companies that started using standard off-the-shelf microprocessors for their MPP systems. In 1985 Intel introduced the iPSC/1, which used 80286 microprocessors connected through Ethernet controllers[8]. By the 1990s the supercomputer market was not a vector market anymore; it was instead a parallel computer market[9].

The use of RISC design in microprocessors, the change from ECL (emitter-coupled logic) chip technology to CMOS (complementary metal-oxide semiconductor) and the ability to sell high quantities of them, made MPPs not only performant enough, but also cheaper than vector computers. These factors put pressure on traditional supercomputing companies to make significant changes. They were forced to come up with their own MPP systems or at least to change from ECL to CMOS. These pressures made many supercomputer companies go out of business and only a few survived as it is discussed in section 3.

During the last decade, there has been an increase in supercomputers as clusters of general purpose computers. In fact, as of November 2006, 376 out of the Top 500 supercomputers were based on either Intel or AMD processors [10]. This trend and other current trends in supercomputer are described more thoroughly in Section 4.
2. The Supercomputer market
Supercomputer market growth
Data about the growth of the supercomputer market in the early days is hard to find. The graph below is a non-scientific merge of the known number of Cray systems sold until 1985 and the Mannheim computer statistics[11] that run until 1992. We can see two patterns in the graph. The first one is that growth has been somewhat linear since 1985. (Although exponential could be argued). There is a catch though, that even though there has been a linear increase in the number of systems sold, the systems sold have had an exponential increase in performance.
[image: image1.emf]Early Market Growth and Mannheim Supercomputer

Statistics

0

100

200

300

400

500

600

1975 1980 1985 1990 1995

Year

Number of Installed ddd Supercomputers e

Driving the supercomputer market
During the 1970s, the mainframe market was shared by IBM and a few competitors. The success of IBM was a mix of several factors. One of them stands out: the ability to provide a line of products targeting different price points, yet offering compatibility across the line of products (System 360). IBM looked at its customers and designed systems that they could buy or lease.
The supercomputer market was different, at first it was really just based on the vision of Seymour Cray and a few other CDC former employees. Instead of asking customers what they needed, they built the fastest computer possible and then showed the world the need for such a system. As a matter of fact, the CRAY-1 with serial number 001 was given for a six-month free trial to Los Alamos. Soon, institutions realized the need for fast computers. Even though the company planned to sell about a dozen computers, they sold over 80 systems [12].

The development of supercomputers is not cheap, but it allows for technical leadership and the solution of challenges that could not be solved before. Historically, the main clients of supercomputers have been scientific institutions and the government. In 2003, the Department of Defense, the Department of Energy, and the National Science Foundation were working on independent project to address technology and resource issues. The Office of Science and Technology Policy decided to start the “High End Computing Revitalization Task Force” (HECRTF) in order to coordinate such efforts. One of the outcomes of the HECRTF is the “Federal Plan for High End Computing”, which outlines the need for supercomputing, and the benefit to different scientific areas.

Another government institution that has played a central role both the demand for supercomputers and the funding of related research is the Defense Advanced Research Project Agency (DARPA). One of the DARPA programs is the High Productivity Computing Systems program. Some of the goals of this program are: 1. Increasing real (not peak) performance, 2. Reduce cost of software development for high performance systems, 3. Increase portability and reliability of high performance systems [13].
The United States government is not the only one interested in supercomputing. During the last few years there has been an increasing interest in other nations on the development of supercomputers. One country worth pointing out is Japan. The Japanese government and private companies have invested considerable money in the development of supercomputers. For example, in 1993 and 1994, the Japanese government spent over 250 million US Dollars in supercomputing related R&D. The government has also managed to get different companies to work together on development projects. For example, the High Speed Computing System for Scientific and Technological Uses Project got six companies (including Hitachi, NEC and Fujitsu) to work together to assemble a 10 GFlops/s supercomputer [14].
Supercomputing companies over time.
Even though Cray Research is the most popular supercomputer manufacturer, there have been many players in the supercomputer business over time. The 20 Years Supercomputer Market Analysis written by Erich Strohmaier shows this chart of the main active manufacturers in supercomputing market.

[image: image2.png]oy Researan

- Cray Computer

ot
ncuse
Aliant
s
Meiko
Parsytee
MasPar
e—sECiCompaa
i
Lenovo

—uc

lelen [=——Crs

Notice the number of companies that joined the list of supercomputer manufacturers in the late 1980s, and also the number of companies that stopped producing supercomputers in the mid to late 1990s. The 1980s increase in the number of companies is related to DARPA’s increased support for the development of MPP systems. The drop in the 1990s had to do with the increase of performance of the microprocessor, and how companies that did not used it to their advantage could not compete in the new playing field.
As it can be seen from the disruption of several supercomputing companies in the 1990s, the general computer market affects the supercomputer market directly. In the 1990s, it served as competitor to some of the vector computers of the time. In the 2000s, when many of the supercomputers are really grids of general purpose processors, any advance in the speed of general purpose processors affects directly the speed of supercomputers. Note that research in supercomputing affects the general computer market as well. For example, currently most of the development in microprocessors has to do with multi-core processors, where two or more processors work in parallel. Sounds familiar? Other examples of principles that were used first in supercomputers that affect other areas of computing today are:

1. Pipelining and RISC architectures used in personal computers.

2. The use of vector computing in Graphical Processing Units (GPUs).

3. The research in low power consumption processors that is promising for mobility solutions.

4. The MPP communication research that has affected computer communications today.
The Value and Cost of Supercomputing

Doing a Value versus Cost market analysis for supercomputing to define whether supercomputing has provided a “profit” to society is not trivial. The reason is that many of the values needed to compute such an equation cannot really be measured. We can however come up with a list of the values and the costs to society. Some of the values for instance have been developments in military defense and nuclear research. It is not possible for us to know if had we not invested in supercomputers, there could have been a devastating war. Sometimes just having the leadership in technology is enough to deter other countries from considering attacking us. On the other hand, it is debatable whether the increased knowledge in nuclear research is a benefit to humanity or not. There are many other scientific areas where supercomputing promises to do a lot for us, and perhaps the investment of the last 40 years in supercomputing could be worth it. Supercomputers are used in the Life Sciences to develop computation models and simulations. The Federal Plan for High End Computing outlines that if we had 100 to 1000 times the current processing capacity, we could perhaps understand the initiation of cancer and other diseases and their treatment. Also, imagine the human value of promised benefits like being able to predict a drought, or an earthquake. Until we have such results, it is not possible to really calculate the value of supercomputing.

Another value that we should point out is that developments in supercomputing are really tightly coupled with developments in the computing industry in general. For example, the RISC architecture ideas started in supercomputing, but provided value to the industry as a whole.
It is also hard to calculate the “cost” of supercomputing for humanity, although it is probably easier to calculate than the value. The most definite cost is the financial cost of developing supercomputing systems. Like we mentioned, governments have literally spend billions of dollars developing supercomputers. If it had not been spent on supercomputing, that money could have been spent in other ways, like providing more tangible services like health, transportation or providing for food for those in need. But we cannot guarantee that governments would have used the funds in such noble causes either.
Either way, the “High End Computing Revitalization Force” believes the V-C value is definitely positive (if not for the world, at least for the nation), and that the government needs to invest much more in supercomputing.

Benchmarks and the Supercomputer Market
Since the goal of supercomputer design is to produce the fastest computer possible, it makes sense to have some way to compare supercomputer performance. Since different benchmarks measure the performance of different kind of operations, there is not one benchmark that can definitely identify the fastest computer.
The Top 500 project was started in 1993 with the goal of ranking the 500 fastest unclassified supercomputers in the world. The list is updated twice a year. It uses LINPACK, a benchmark based on the solution of linear systems of equations, to compare the performance of the different systems. Even though LINPACK is really based on measuring a system’s floating point computing power, the Top 500 ranking is very useful because of the historical record it provides since 1993.
Sometimes companies designing a supercomputer are influenced by benchmarks like LINPACK. Being one of the top 500, especially being at the top, is prestigious and can help a company secure publicity and grants for further development. In that sense, benchmarks like LINPACK are a two edged sword. On the one hand, they push supercomputer manufacturers to be as fast as possible to top the list; but on the other hand, they detract from focusing on the real performance of a supercomputer on real problem mixes.

Benchmarks can be beneficial if they intend to show how fast a computer really is when solving real world problems. They can help to show what a computer’s sustained performance is as opposed to the computer’s peak performance. As previously mentioned, one of DARPA’s goals is to increase real (not peak) performance. One of the ways DARPA is doing this, is by establishing the HPC Challenge (HPCC), a competition that uses a benchmark that consists of 7 different tests [15] that measure different aspects of performance.
3. Software development for supercomputers

Early supercomputer languages

Applications for early supercomputers (IBM 7030 & 7950, CDC 6600 & 7600) were mostly developed in existing high level languages such FORTRAN and ALGOL with a small set of performance critical portions developed in assembler. However in order to take advantage of the superscalar nature of these machines, significant work went into creating optimizing compilers that would identify parallelism in the program and leverage the multiple functional units that could operate in parallel to increase the performance of the program.

Given the relatively modest level of parallelism in these early supercomputers, this approach was mostly successful; however it has limits and could not fully exploit all the parallelism available in the applications. To demonstrate this, let’s consider the following simple FORTRAN program:

DO 10 I = 1,N

IF(A (I). NE.0) GO TO 10

J=I

GO TO 2O

10 CONTINUE

This is the representation of a sequential process looking for the first null element in an array, which was also the only way that a FORTRAN programmer could test if at least one element of the array is null. Although this last action is purely parallel the parallelism could not be uncovered by the optimizing compilers of the time [16].

Explicitly parallel languages

With its much higher number of arithmetic processing units, the designers of the Illiac IV recognized that optimizing compilers would not be sufficient to extract the required parallelism to effectively drive the machine. This started the development of computer languages that allowed the parallelism to be explicitly expressed. Numerous such languages have been developed since then. As described in [17], a useful categorization of the languages that have been developed is based on whether their programming model is synchronous or asynchronous.

Synchronous programming model languages

A synchronous programming model is one where the execution spread out between the different processes
 is strictly controlled; similar, if not identical, computations occur on each processor simultaneously, or at least do proceed at an arbitrary rate. Languages in this model are based on exploiting data parallelism which is inherently fine grained. One of the major advantages of synchronous programming model languages is that they guarantee sequential consistency which means that sequentially correct applications written in these languages are guaranteed to run properly when run on parallel computers. The downside of this model is that the type of parallelism it can take advantage of is limited.

Based on the research we’ve done, it appears that synchronous programming model languages have existed since the late 1960s. The first synchronous programming model languages were IVTRAN and Glypnir which were parallel versions of FORTRAN and ALGOL respectively. Quite a number of synchronous programming model languages have been developed since then including:

· ILLIAC Computational Fluid Dynamics (CFD) FORTRAN

· VECTRAN

· Distributed Array Processor (DAP) FORTRAN

· CM FORTRAN

· C*

· *LISP

· MasPar FORTRAN

· FORTRAN 90

Since the current state of the art in synchronous programming model languages is High Performance FORTRAN, we will use it to demonstrate how synchronous programming model languages work. Let’s look at a simple piece of HPF code that increments all the elements of a 128 element array by 1.

real x(128)

!HPF$ DISTRIBUTE x(BLOCK)

do i = 1, 128

x(i) = x(i) + 1

enddo

The 2nd line is the most interesting; it indicates that the computation should be distributed amongst the available processors so that it proceeds in parallel. This parallelization is done by the compiler which ensures that data dependencies are respected.

Synchronous programming model languages work best on shared memory computers; however most (such as HPF) also work reasonably efficiently on distributed memory computers. In order to achieve reasonable efficiency however they generally require additional work on the part of the programmer to ensure that the data used by a given processor is affinitized to that processor.

Asynchronous programming model languages & libraries

Asynchronous programming models are ones where processes coordinate less tightly. Arbitrary processes can be initiated, merged or terminated and proceed independently during execution. This model requires that the programmer explicitly specify when and how data should be exchanged between processes. It provides quite a bit of flexibility but requires a significant amount of developer vigilance in order to maintain correctness.

It appears that the first high level asynchronous programming model language (ALGOL-68) was introduced in 1968 [16]. Numerous other asynchronous programming model languages & libraries have been developed since then including:

· Thread libraries (such as Posix threads)

· PL/I

· OpenMP

· MPI

· IPFortran

· IPC (IP version of the C language)

With its ability to express parallelism at the statement level, ALGOL-68 represents an extreme in the asynchronous programming language spectrum. From [16], “a simplifying explanation of the latter is to say that whenever a ‘;’ is replaced by a ‘,’ when separating syntactical units, the actions implied by these syntactical units can be done in parallel instead of sequentially. For example in:

realx: = 1.1, inty: = 2, z;

(x: = x + 4.3, z: = y);

the declarations and initializations cf x, y, and z can be performed in parallel; and, after their terminations, the two assignations can in turn be done in parallel.”

Most languages & libraries in this model use message passing to communicate between processes. Even the IP languages (IPFortran and IPC) use message passing in the form of the x@y syntax where processor y will send a message to the other processor executing the statement. To help clarify this, here is a contrived example of IPFortran that sets the value of the variable x at processor 1 with the value of variable y at processor 2.

x@1 = y@2

This operation involves the following:

1. Process 1 waiting for a message from process 2.

2. Process 2 sending the value of its copy of y to process 1.

3. Process 1 setting the value of its copy of value of x to the value in the message from processor 2.

Languages & libraries that use message passing work equally well on shared memory computers and on distributed memory computers. Furthermore, they will generally have a performance advantage over synchronous programming model languages. This comes however at the cost of significantly increased complexity.

4. Current Trends in supercomputing

Hybrid supercomputers that use both custom & off the shelf components

As described in section 2.6.3, the switch to commodity CPUs provided significant cost savings to the development of supercomputers. This trend is continuing today with technologies from both Intel and AMD that allow specialized coprocessors to run in spare CPU sockets on commodity motherboards and have a high bandwidth / low latency connection with the CPUs. In addition to providing a very efficient interconnect with the CPU, these technologies elevate the coprocessors to the same level as the CPUs and provide them with equal access to system resources (RAM, system bus, etc).
Cray has already announced that it is building two supercomputers that leverage AMD’s technology in this space (called Torrenza). The first one is the Cray XMT: a scalable massively multithreaded platform with a shared memory architecture for large-scale data analysis and data mining that can scale from 24 to over 8000 processors providing over one million simultaneous threads and 128 terabytes of shared memory. In order to be cost effective, the Cray XMT will use Torrenza compatible massively multithreaded processor chips extended from the XT3 and XT4 systems that will be seated in AMD Opteron sockets.
The other supercomputer is the Cray XT4 which uses up to 30,000 AMD Opteron dual-core processors running a highly scalable operating system and interfaced to the Cray SeaStar2 Torrenza compatible interconnect chip to provide unsurpassed scalability and performance. Unlike typical cluster architectures, in which many microprocessors share one communications interface, each AMD Opteron processor in the Cray XT4 system is coupled with its own interconnect chip via a very high bandwidth / low latency link which is expected to significantly increase the performance of the system.
IBM also announced the development of a supercomputer called Roadrunner that will leverage the AMD Torrenza technology to couple more than 16000 AMD Opteron cores with a comparable number of IBM Cell processors.

General purpose programming on GPUs

Over the last couple of years, graphics processing units (GPUs) have transitioned from being fixed function processors to becoming increasingly programmable. They are now quite close in capability to general purpose vector / stream processing units. Coupled with commodity pricing and rapidly increasing performance, this has attracted quite a bit of attention from the HPC research community; by 2003, people started to realized that GPUs might serve as commodity replacements for proprietary floating point vector processors, representing a real opportunity to bring these devices into the HPC world.
Several HPC applications have been written to run on GPUs, including a protein sequence matching application (ClawHMMER) and a protein folding (Folding@Home). The results were pretty impressive:

· As described in [18], for ClawHMMER: “On the latest GPUs, our streaming implementation is on average three times as fast as a heavily optimized PowerPC G5 implementation and twenty-five times as fast as the standard Intel P4 imple- mentation.
· As described in [19], for Folding@Home: “However, after much work, we have been able to write a highly optimized molecular dynamics code for GPU's, achieving a 20x to 40x speed increase over comparable CPU code for certain types of calculations.”
The GPU vendors (ATI & NVidia) as well 3rd party companies have started building tools & technology to facilitate general purpose programming on GPUs. As these technologies mature and the GPUs become true fully featured stream processors, this trend has the potential to have as large if not larger an impact on the supercomputing field as the adoption of commodity CPUs did in the 1990s. The impact of this trend is compounded by the fact that the performance increase curve of CPUs is currently much steeper than the one for CPUs (GPU performance doubles about every 1.5 years).
Grid computing
According to Ian Foster, in his article [20], a grid computing system is a system that:

1- Coordinates resources that are not subject to centralized control

2- Uses standard, open, general-purpose protocols and interfaces

3- Delivers nontrivial qualities of service.

Grid computing offers a model for solving massive computational problems by making use of the unused resources (CPU cycles and/or disk storage) of large numbers of disparate computers, often desktop computers, treated as a virtual cluster embedded in a distributed telecommunications infrastructure. Grid computing's focus on the ability to support computation across administrative domains sets it apart from traditional computer clusters or traditional distributed computing.
There is currently a strong push to define standards around grid computing centered on the Open Grid Forum (OGF). In addition to making it possible for multiple grid computing systems to interoperate, the formation of a standard for grid computing services will help foster the development of more powerful tools to simplify the development of applications for grid computing systems.

Grid computing has the design goal of solving problems too big for any single supercomputer, whilst retaining the flexibility to work on multiple smaller problems. Thus Grid computing provides a multi-user environment. Its secondary aims are better exploitation of available computing power and catering for the intermittent demands of large computational exercises. As grid computing matures, it has the potential to allow us to solve scientific & other problems that are significantly more complex than what we can solve today.
5. Supercomputing: Areas for Future Research

We now present an overview of some of the most active areas of research in supercomputing hardware and software.

Hardware
· Addressing the memory wall problem
Innovative architectures are needed to increase memory bandwidth – or perhaps memory bandwidth per unit of cost to. In addition architecture & software improvements are needed to support increasing memory latency since memory latency is expected to increase relative to processor cycle time.

· Inter-node interconnection
The interconnections between computing nodes in supercomputers is becoming an increasingly significant bottleneck, especially with distributed memory architectures. New inter-node interconnects that increase bandwidth, reduce latency & allow for more performance network topologies are needed.

· Optical computing

Light is an ideal medium for information transport. Light beams can travel very close to each other, and even intersect without any measurable interference. Hence dense arrays of interconnections can be built using optical systems. Light travels fast – faster than anything. Therefore it can provide extremely high bandwidth with low latency. In additional, light is able to be converted to and from electronics signal, which allows it to be integrated into existing electronic technologies. This is the key in its role in the future. Research in this field is very active currently, especially around creating low cost & reliable processor to processor interconnects.

· Quantum computing
A quantum computer is any device for computation that makes direct use of distinctively quantum mechanical phenomena, such as superposition and entanglement, to perform operations on data. It is widely believed that if large-scale quantum computers can be built, they will be able to solve certain problems asymptotically faster than any classical computer.

Software

· Parallel languages

Research is needed to find fresh approaches to expressing both data and control parallelism at the application level, so that the strategy for achieving latency tolerance, locality, and parallelism is devised and expressed by the application developer, while separating out the low-level details that support particular platforms.
· Algorithms research
While many good algorithms exist for problems solved on supercomputers, needs remain for a number of reasons: (1) because the problems being attempted on supercomputers have difficulties that do not arise in those being attempted on smaller platforms, (2) because new modeling and analysis needs arise only after earlier supercomputer analyses point them out, and (3) because algorithms must be modified to exploit changing supercomputer hardware characteristics.
Conclusion

Supercomputing has been of great importance throughout its history because it has been the enabler of important advances in crucial aspects of national defense, in scientific discovery, and in addressing problems of societal importance. At the present time, supercomputing is used to tackle challenging problems in stockpile stewardship, in defense intelligence, in climate prediction and earthquake modeling, in transportation, in manufacturing, in societal health and safety, and in virtually every area of basic science understanding. The role of supercomputing in all of these areas is becoming more important, and supercomputing is having an ever-greater influence on future progress.
However, despite continuing increases in capability, supercomputer systems are still inadequate to meet the needs of these applications. Supercomputing has also played a key role in driving developments in computing that have subsequently greatly benefited mainstream computing. For both of these reasons, it is essential that as a society, we keep investing actively in both fundamental research in key fields that supercomputing depends upon as well as in applying this research to produce more & more powerful supercomputers.
References

[1] Cruz, Frank da (Oct 18 2004). The IBM Naval Ordnance Research Calculator. Columbia University Computing History. Retrieved on October 2006.

[2] The IBM Naval Research Calculator.

http://www.columbia.edu/acis/history/norc.html
[3] Breckenridge, Charles. A Tribute to Saymour Cray.

http://www.cgl.ucsf.edu/home/tef/cray/tribute.html
[4] Ceruzzi, Paul E. A History of modern computing. Page 288.
[5] The CDC 7600.

http://en.wikipedia.org/wiki/CDC_7600
[6] 20 year supercomputer market environment.
http://amrit.ittc.ku.edu/tclark/class2006fall/eecs700/papers/strohmaierSC2005.pdf
[7] MPP Definition.

http://www.computerhope.com/jargon/m/mpp.htm
[8] The History of the Development of Parallel Computing.

http://ei.cs.vt.edu/~history/Parallel.html
[9] Top 500 Report 1993.

http://www.top500.org/reports/1993/chapter2_4.html#SECTION0040000000000000000
[10] AMD gains, Intel fights back on supercomputer list.
http://news.com.com/AMD+gains%2C+Intel+fights+back+on+supercomputer+list/2100-1006_3-6135018.html
[11] These numbers can be found at
http://www.top500.org/reports/1993/chapter2_4.html#SECTION0040000000000000000 and http://amrit.ittc.ku.edu/tclark/class2006fall/eecs700/papers/strohmaierSC2005.pdf
[12] History of Cray-1.
http://en.wikipedia.org/wiki/Cray-1
[13] Information Processing Technology Programs
http://www.darpa.mil/ipto/Programs/hpcs/objectives.htm
[14] Top 500 report 1994. Japan, Inc.

http://www.top500.org/reports/1994/Japan/node2.html#SECTION00020000000000000000
[15] The HPC Challenge Benchmark.
http://icl.cs.utk.edu/hpcc/
[16] A Survey of Some Theoretical Aspects of Multiprocessing

http://doi.acm.org/10.1145/356612.356615
[1] Cruz, Frank da (Oct 18 2004). The IBM Naval Ordnance Research Calculator. Columbia University Computing History. Retrieved on October 2006.

[17] Scott, L. Ridgway, Clark, Terry, Bagheri, Babak. Scientific Parallel Computing

[18] ClawHMMER: A Streaming HMMer-Search Implementation

http://graphics.stanford.edu/papers/clawhmmer/hmmer.pdf

[19] Folding@Home high performance client FAQ

http://folding.stanford.edu/FAQ-highperformance.html
[20] What is the Grid? A Three Point Checklist

http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf

� We define a process as a task executing a unit of work

