The Decline of CASE

D.G. Christensen

The term CASE was coined in the early 1980’s but CASE tools had been around earlier. In the late 70’s Informatics unveiled Mark IV and IBM debuted its own tool; TELON was introduced in 1981. Previously, development on mainframes was difficult and awkward. Because processing time was so expensive, application development required that most of the design be created using paper-driven processes. Interactive environments like TSO had become viable in the mid-70’s and led to development tools like ISPF but they didn’t reduce the complexity of design. The transaction processing systems like CICS and IMS were poor development platforms and much of the work was done in TSO. This created a lot of extra work for engineers as they were effectively developing in two different environments. The early CASE tools attempted to take the advantages of the interactive environments one step further and use processing power to actively aid in the design of an application.
TELON partly grew out of the natural frustration of the developers working in the hybrid development environment. Its initial goal was just to make it easier for the engineers to design a system once and TELON would generate the COBOL code for the multiple target systems. TELON took advantage of the improved productivity possible in TSO and moved some of the work to the processor. In this light it was strictly a tool to make the developers more productive, an observation that will become important later.
As the product grew, TELON would far outstrip its original goals as a programming aid to become a design tool. Because of the way it generated COBOL programs using assembler macros, the resulting code was very structured. Two different TELON applications would have many similarities even if they served two very different functions. This structure allowed the developers to put less effort into creating the low-level code and put more effort into the overall design and solving the requirements of the business. It was an abstraction that simplified the engineer’s problems.
Prototyping carried this further. With TELON a developer could design an application and test it without writing any code. The business users, either alone or sitting with a TELON programmer, could then test the overall flow and make changes in the painter, weeding out user specification ambiguities early on.

TELON applications could still be very complex but the complexity was a result of the underlying business, not the environment. TELON could automate the common functionality but “custom code” was required to execute specific logic. Still, TELON forced the programmers to fit their custom code into the overall structure which helped their productivity.
In the mid-80’s more CASE tools came out. Many of them, like KnowledgeWare’s Application Development Workbench (ADW), started earlier in the design process than TELON, helping the engineers create database schemas. Most of the tools ran on workstations, minicomputers, and later PCs but largely expected their solutions to be run on mainframe environments and/or databases. Like TELON, they moved development from an awkward mainframe to responsive environments. Some were more successful than others at actually making the design process easier.
CASE tools saw their peak influence in the early 1990’s. At this point the mainframe began its decline as the dominant production environment for business-critical applications. UNIX had been in use as a production server for years and Microsoft released Windows NT in 1993, the first server-capable OS on the WinTel platform. At the same time CASE tools saw a similar decline. There are three reasons for the link between the rapid slide of mainframes and CASE tools.
Up to the early 1990’s, CASE tools were successful in part because they moved some or all of the design process from cumbersome expensive mainframes to more responsive environments. When the target production environment moved to UNIX and Windows this no longer was an advantage. The tools that gave minimal help in designing applications, like ADW, saw a steep decline. Often they made the development cycle more cumbersome.
Secondly, CASE tools had a new competitor: the interactive IDEs. Turbo Pascal and its crude IDE was released in 1983 but by the early 90’s it became a powerful editing environment. Microsoft had its own IDE that made programmers very productive when writing code. Integrated help, code completion, and powerful symbolic debuggers added to the richness of tools available. Any CASE tool that expected to be successful had to keep up with Microsoft’s C/MFC/WAPI development environment. Even for those that could, the new IDEs closed some of the productivity gap between them and the CASE tools.

When discussing some of the resistance that TELON faced, TELON developer Chris McNeil mentioned that one of the biggest obstacles was the developers themselves. The programmers were more interested in coding for themselves than building applications for the business. With the advent of IDEs, developers could keep the programming in their domain while achieving a productivity that came close to matching the current CASE tools.
Lastly, the first applications to be moved to UNIX and Windows were simpler applications that needed less processing power than the mainframes. The simpler applications did not get as much benefit from the CASE tools as the more complex mainframe applications and so CASE tools took yet another hit.
Now that today’s web applications rival (and in many ways, surpass) the original mainframe systems, why haven’t CASE tools made a rebound? Some of this can be explained in McNeil’s observation that software engineers want to write code, not applications. The inertia created by thousands of developers with programming domain knowledge is difficult to overcome. Development is also fragmented; DB developers create and maintain the database, Java developers write the business logic, and HTML designers create the front-end. A successful CASE tool will need to appeal to all of these branches.
