Energy Efficiency in Cryptographic Algorithms

Eiman Zolfaghari

CSEP 590 – Winter 2006

Introduction

Mobile Devices have permeated our society and are now used by many for communication and transaction. Yet mobile devices have limiting factors and finite resources that require smart engineering when developing for them. Arguably the largest limiting factor of a mobile device is its battery life. Only given a small finite amount of energy to spend, mobile devices must be smart about how they disperse that energy. While power inefficiencies can occur in hardware, poorly written software also contributes to inefficient power usage. In fact, these days software is given a lot of power over hardware as to how much energy the hardware should use, so it is even more responsible. Software that involves high levels of calculations must be written in an optimized way in order to reduce its energy usage, yet energy usage is not something most developers think about when optimizing their code.

In this paper, we will focus on a fundamental requirement for having a useful mobile device: secure communications via cryptographic algorithms. If we want to enable scenarios like online shopping, secure e-mail, and corporation network access, we must require that mobile devices are capable of running the basic security protocols that normal PCs use today. Yet we have to take a new spin on it: focus on energy efficiency. Otherwise, by the time you’re done buying that book on Amazon.com, your battery will have run out! We will focus on the most optimal algorithms and then discuss how the SSL protocol, which makes use of these algorithms, gets affect by the combination of security algorithms we decide to use. Then we will conclude with security issues that can arise from solely focusing on energy efficiency.

Cryptographic algorithms consist on three basic classes: symmetric, asymmetric, and hash.

Symmetric algorithms include DES, 3DES, AES, RC2, RC4, BLOWFISH, and many more. We will mostly focus on the results of AES, which is currently a greatly accepted and trusted algorithm, and has shown itself to be energy efficient.

Energy Efficiency in AES

AES [4], or Advanced Encryption Standard, is a symmetric block cipher encryption algorithm that is in common use today. Like other block ciphers, AES encrypts data by putting it into a fixed series of operations, called rounds. These rounds consists of a series of mathematical operations on the input data so as to ‘confuse and diffuse’ the information. These operations can be optimized by using various techniques, two of which are creation of in-memory tables and loop unrolling. In-memory tables pre-calculate certain operation so that instead of going through multiple calculations that use up the CPU cycles, you can look up the answer directly by accessing memory. This requires more memory accesses. Loop unrolling is the concept of taking a loop inside a round and expanding so that it is more code, yet it still functions in the same way. This allows for optimized instruction scheduling to happen.
AES has four main operations: ByteSub, ShiftRows, MixColumns, and AddRoundKey. According to [1], ByteSub can be easily optimized to a table-lookup. Other functions can also be converted to table look-ups as well. Making all four operations table-lookups will lower the CPU usage per round. This may seem like a good thing, yet when you look from an energy efficiency perspective, in fact it is not. In the experiments done in [1] and [2], it is shown that the amount of energy that is used when accessing the memory in order to do table lookups far outweighs the little amount of energy used to do round calculations. This can perhaps be a function of the inefficiencies of memory access; perhaps caching would reduce the energy used to do table-lookups. [1] does not explore this possibility. But given the environment that this experiment was run under, it was shown that AES with one optimized, table-driver operation, ByteSub, and only partial loop unrolling enables the lowest energy usage.

Energy usage of Asymmetric Algorithms
Asymmetric Algorithms are typically used for authentication via a digital signature. The main mathematical operations used by asymmetric algorithms are point multiplication on elliptic curves (done by the Elliptic Curve Digital Signature Algorithm, or ECDSA), and modular exponentiation (done by RSA and Diffie-Hellman or DH). When attempting to compare the energy usages of these different algorithms, it is useful to keep in mind how secure each algorithm is relative to the other algorithms. For example, as is shown in [6], ECDSA using a 163-bit sized key has the same level of security as using a 1024-bit RSA algorithm. Thus the experiments in [1] compare the energy usage of RSA and ECDSA and DH while keeping their security relatively equal.

The conclusion of the experiments done with asymmetric algorithms have shown that elliptical curve algorithms end up using less energy when performing digital signatures. This is most likely due to the low energy needs of point multiplication as compared to the costly modular exponentiation calculations needed by RSA and DH.
Hash Algorithms: Integrity

Hash Algorithms such as SHA-1 and MD5 are used to verify integrity of a message. SHA and SHA-1 and its variants have more steps for calculation than MD4 and MD5, and SHA hashes are supposedly better at collision resistance. Experiments have shown that MD4 and MD5 consume less energy per byte that SHA and SHA1. [1]
SSL
SSL, or the Secure Socket Layer, is a protocol widely used on the Internet to establish secure communications between two entities. The SSL protocol gives the client a multitude of choices when it comes to how such a secure connection will take place. The client chooses the digital signature algorithm (symmetric), the data encryption algorithm (asymmetric), and the integrity check algorithm (hash) it wants to use. This flexibility is an advantage when considering the different usage scenarios and different devices this protocol can enable. For mobile devices with limited battery life and other limited resources, it important to choose a combination that is both secured and energy efficient. Research in [1] has found that certain combinations of algorithms are well suited for certain usage scenarios. For a scenario where there is a small amount of data, less than 7.9 KB, and thus a smaller security need for refreshing the keys, the combination ECC-AES-MD5 is recommended. For larger data, ECC-BLOWFISH-MD5 is recommended.
The Elliptical curve algorithm is proposed for the digital signature because of its low energy cost, which is around 227mJ for key generation, versus 270mJ for RSA key generation, given equivalent security. However, in the scenario where the mobile device does more verification of a digital signature than generating a digital signature, then RSA is more energy efficient.

For the Hash function, SHA’s energy cost is 0.75 microJ/Byte, compared to MD4, which was measured at 0.52 microJ/Byte. SHA has better collision resistance, yet MD4 is more energy efficient.
 For smaller data, AES was chosen because its initialization time is very small, measured at 7.87 microJ. The energy used for Encoding and Decoding is measured at 1.21 microJ/Byte. BLOWFISH, in contrast, has a very large initialization phase, 3166.3 microJ. Yet it has one of the lowest costs of encryption and decryption, measured at 0.81 microJ/Byte. Thus, for larger sized data, BLOWFISH is worth the extra initialization cost and in the end uses up less energy. RC5 is measured as a pretty low energy stream cipher, with 66.54 microJ initialization and 0.79 microJ/Byte encryption rate, yet the authors do not discuss this algorithm further.

SSL incurs other energy costs, outside of the cost of the security algorithms used. These costs include the network protocol stack, like TCP/IP, and memory management for packet buffering. These costs are only about half of the total cost, thus confirming hat the cryptographic protocols used have a great effect on SSL’s overall energy usage.

Problems

Picking the right set of cryptography algorithms can be an art. If one solely looks at it from a mathematical point of view, then measurements like energy efficiency, and performance would be used to make the decision. Yet, the concept of an algorithm being ‘secure’ can be subjective, since no security algorithm is 100% guaranteed to be secure. Moreover, mobile devices are limited to what cryptographic set its server can support. Also, some algorithms are perceived to be more secure since more eyes have looked at them and attempted to break them. AES is currently an accepted standard that everyone is trying to break. RSA has been used for a decade now with Internet transactions. Because of this acceptance, they are perceived to be more trustworthy. For larger data, AES may be slower than BLOWFISH, but since it is more widely accepted, one may choose that protocol anyway. Many choose RSA over ECC because it is better known, yet it is also known that ECC is more energy efficient. [7]

There is also a potential issue with security in mobile devices. As referred to in [3], some are attempting to hack AES by doing what is called ‘power analysis.’ Simple power analysis involves measuring the power current usage during different phases in AES, and from that potentially being able to guess the data being manipulated. If current crypto algorithms are tweaked so that they are more energy efficient, they must also make sure that they are not opening up a new space in which hackers can exploit.

Lastly, the research done in [1] was done with one hardware scenario: a Compaq iPAQ H3670, with 64MB of RAM and 16MB of FlashROM, using a Cisco Aironet 350 series WLAN card. To be more confident in this papers conclusion, it would be important to run the same set of tests, but on a different mobile device, such as a Smartphone, like the Audiovox 5600, which uses an ARM processor instead of Intel, and has less memory with difference access speeds. The paper also makes use of the OpenSSL package. It uses those implementations of the cryptographic algorithms and assumes that the level of software optimization done on each individual algorithm is equivalent, since they came from the same version of the library. Yet, it could be possible that OpenSSL has particular implementations of an algorithm that is not fully optimized, especially for the mobile device hardware it is being run under.
Conclusion

We have seen that AES and BLOWFISH are good symmetric encryption algorithms, that ECC and RSA a good selections for energy efficient asymmetric digital signature generation and verification, and that both SHA and MD4 are efficient in their hashing for integrity checks. We’ve seen that energy efficiency in SSL is affected by these algorithms significantly, and that the scenario one chooses determines which cyber-suite one needs to choose to have the most energy efficient experience.
Reference
[1] Potlapally et al., “A Study of the Energy Consumption Characteristics of Cryptographic Algorithms and Security Protocols,” IEEE Mobile Computing, pp 128-143, Feb 2006
[2] Hodjat, Alireza et al, “The Energy Costs of Secrets in Ah-hoc Networks,” http://www.ee.ucla.edu/~ahodjat/papers/hodjat_cas.pdf
[3] Lash, Tom, “Power Analysis and the Advanced Encryption Standard,” Feb 2002

http://ece.gmu.edu/reports/aes_power_analysis_slides.pdf
[4] The Advanced Encryption Standard – FIPS 197, Nov, 2001
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
[5] SSL 3.0 Specification, 1996
http://wp.netscape.com/eng/ssl3/
[6] V. Gupta, S. Gupta, S. Chang, and D. Stebila, ”Performance Analysis of Elliptic Curve Cryptography for SSL.” Proc. ACM Workshop Wireless Security, pages 87-94, September 2002.
[7] Ben Rothke, “RSA vs. ECC,” Information Security Magazine, 1998
http://infosecuritymag.techtarget.com/articles/1998/augcrypto.shtml
