Roger Wolfson
March 7, 2006

CSEP 590 TU

rwolfson@u.washington.edu

rwolfson@microsoft.com
Implementations of Challenge-Response Authentication
The term "challenge-response authentication protocol" refers to a broad class of mechanisms for a party to prove his identity to a remote party, generally over an untrusted link, and optionally obtaining a proof of the remote identity in the process. The details of the situation guide the choice of implementation, to answer questions including the following: 

· What constitutes an "identity" to be verified?

· What opportunities do the parties have of rooting their trust in a secure manner?
· Does the authentication need to be bidirectional?

· Against what capabilities of an attacker must the protocol be secure?

· To what extent do even the legitimate parties to this transaction trust each other?

This paper will discuss some commonly used protocols of this class, and examine published cryptanalyses of them.


One such family of protocols is CHAP, the Challenge-Handshake Authentication Protocol (with the term "handshake" substituted for "response", presumably for the sake of the acronym...) as defined in RFC 1994 [1]. CHAP was designed as an authenticator for a Point-to-Point Protocol (PPP), which refers to a scenario where each system is specifically aware beforehand of the remote system's existence and identity to be validated, such as a corporate user connecting to a remote-access server, or an ISP's user signing in to use that company's service. In these cases, the client has chosen a particular server to which they have a pre-established password, and the server can uniquely identify the user in an access list. This is in contrast to mechanisms like general web SSL/TLS session establishment, where the user may have had no prior knowledge of the server and vice versa; in the case of web commerce, even if the user has previously set up an account at the server, that has taken place inside the already-established channel and does not factor in to the authentication of the server to the client.

A specific variant of CHAP which was widely used by Windows systems is defined in RFC 2433 [2], Microsoft PPP CHAP Extensions. In this protocol, authentication is performed as follows:
1. Upon receiving a login request from a Client, the Server sends a Challenge packet consisting of an 8-byte random value.

2. The Client chooses one of two hash functions, computes a 24-byte hash of its password, splits this into three 8-byte DES keys, encrypts the random value it received against each key, and sends the three resulting encryptions as its response, along with a flag of which has algorithm it used. The algorithms defined are the LANManager (LM) hash, an older system with limitations on password complexity and known vulnerabilities [3], and the NTPasswordHash function (NTLM), which is only supported on Windows NT-based systems.
3. The Server computes the same values based on its knowledge of the user's password (or a stored hash thereof) and sends a Success or Failure response to complete the authentication.

Interestingly, while the RFC specifies that the Client "SHOULD" only use the NT Hash where supported, and set the LM field to zeros, version 1 of MS-CHAP sent both. Since the LM hash has significant vulnerabilities famously exploited in "L0phtcrack" and described in [3], this usage of the same password in both systems leaves it as vulnerable as if NTLM were not available at all. The basic vulnerability of the LM hash is that it limits passwords to 14 characters, which it hashes as if they were two separate 7-character passwords. This destroys the exponential difficulty increase of brute force attacks on increasing password lengths, bounded instead on a simple multiple (<=2) of the difficulty of breaking a 7-character password. In practice, where users commonly use the policy-based minimum of 8-character passwords, there is only one character of entropy in the second block, so that determining the password is essentially equivalent to breaking just the first seven (case-insensitive!) characters. On top of that, the way the LM hash is split up into the DES keys used to encrypt the challenge combines part of the more-secure first hash with the insecure second hash, allowing easy guessing of the end of the first hash. Since the password uniquely determines the LM hash which uniquely determines the DES keys for the entire lifetime of the password, recovery of any of these three stages is sufficient to impersonate the Client under this protocol; it is not necessary to determine the original password if that is not the easiest space to search based on the constraints.
In response to the security concerns of MS-CHAPv1, RFC 2759 was presented, MS-CHAPv2 [4]. The significant changes from v1 were: The elimination of the LM hash from the Client response; the addition of bi-directional authentication where the server, too, has to perform a challenge-response on the user's password, and the salting of the Response with a random client-generated value and its username. In a published analysis of these changes, Bruce Schneier states, 
"It is unclear to us why this protocol is so complicated. At first glance, it seems reasonable that the Client not use the challenge from the Server directly, since it is known to an eavesdropper. But instead of deriving a new challenge from some secret information-the password hash, for example-the Client uses a unique random number that is sent to the Server later in the protocol. There is no reason why the Client cannot use the Server's challenge directly and not use the Peer Authenticator Challenge at all." [5], § 3.1

I would argue that this step is indeed necessary -- if the server is free to choose the entire value to be hashed alongside the user's password, a server could maliciously send the same value every time to every client, and use a pre-computed dictionary of responses to gain the user's password; since one such dictionary would be applicable to the entire universe of NT systems for the lifetime of the algorithm (a decade or more) it would certainly be feasible to compute and store an enormous number of dictionary entries in a distributed system. By including the 128 bit random salt, the client renders the search space invulnerable to dictionary attack. The client therefore sends no confidential data to the server before the time of the server's authentication back to the client. (Interestingly, this exact type of dictionary attack is one of those included in L0phtcrack, the creator of which is a listed co-author of the Schneier paper cited and the other party of the "us" referred to in that sentence!) As a side note, their suggestion of using the password hash as such a salt would itself be the meaningless complexity they attribute to the real algorithm, since a dictionary creation algorithm based on the password could trivially use that same password one more time in computing the stored value, without increasing the number of dictionary entries.
Returning to the introductory bullet points of a CR protocol, this MS-CHAP-v2 protocol would answer the questions as follows:

· An "identity" is a user's NT account on the remote system

· The user has previously established a password on the server or domain, over a known secure link, where this trust is rooted at an administrator having created one or more accounts while physically present at the account server.

· The authentication is bi-directional to prove to the user that the server knows the password (hash) too and is therefore a legitimate member of the domain of trust.
· The system is resistant to an eavesdropper or malicious server trivially gaining the user's password; the difficulty of this is equivalent to the pre-image resistance of the cryptographic hash functions and the entropy of the user's password.
· Even if the server is malicious, it cannot force the user to do more than generate a known-plaintext/hash pair per iteration of the protocol. With strong hash functions, this does not measurably help the server gain access to the user's password.

I'll turn now to a very different type of challenge-response situation, and an implementation of a CR protocol to address it which has shipped with many commercial products, including from Microsoft, but which does not fare well under analysis. In many cases, a user wishes to communicate with one or more other users, each of whom is performing a series of computations that is more limited by agreed-upon rules than by the overall capabilities of the other users. In the concrete example to be discussed here, multiple peers participate in a real-time online game, and each wishes to be assured that the other players are playing "by the rules", where the rules are defined as the original unmodified computer program that they each agreed to run, receiving real-time input from Human Interface Devices (as opposed to a pre-recorded script) and sending its output unmodified to a display device. Before examining the theoretical limits of "fairness" in this situation, I will begin with a specific example.
The company Gamespy develops a library of multiplayer game networking code that is licensed to numerous companies. One of these is a challenge-response algorithm to verify that the entity attempting to establish a network connection is in fact another instance of the game, and not malicious code from a different source. An analysis of this approach has been published by Luigi Auriemma [6], where he points out that the shared secret is a text string hard-coded into the game executable and therefore identical across millions of clients. It thus only takes one user performing a one-time analysis of the code to extract the key and demonstrate its use in the protocol, to forever allow anyone to authenticate their own code as if it were the original application. Judging this against the bullet points from the beginning:
· The "identity" is supposed to be the original unmodified block of code, but instead becomes any code authored by any user who has seen one of the several million copies of the single "Secret"
· The parties obtain the shared secret by purchasing a copy of the program and obtaining the executable. However, due to the open nature of PCs, a malicious user can break the chain of trust between the time the software is authored and when it is run, replacing the original code being authenticated by this key to their own, in a way that is undetectable to the remote peer.
· The authentication uses the same key for all parties in all directions, so it can be applied with equal (dubious) effectiveness in both directions.

· The protocol is intended to be secure against the malicious intent of a user who is establishing a network connection. In reality, it adds no security at all in this manner.

· The parties to this protocol have no implicit trust in each other, in either direction. The intent of the protocol is to distinguish between the trusted software, and the untrusted user running it.
Clearly, this method does not provide the desired security, but to what extent can it be improved, using current PC hardware? In a simplification of the problem, the remote peer is listening for data and the local peer is authorized by the game specification to send packets containing the payload "1". The attacker wishes to send "0" instead. Regardless of how or when the network channel was negotiated and authenticated, at some point that step has completed, and the local computer is executing code to assemble the packet. Since the local user has complete control over the operating system including the kernel, the user could, for example, change the kernel to intercept the particular code page containing the packet creator and modify the value of a register containing the value to be sent; also intercepting and bypassing any subsequent checks on this data. In practice there are much simpler methods of modifying an executable, but the kernel example is always a fallback regardless of the countermeasures attempted in application code. It is therefore arguably impossible (on a current OS, with user access to the kernel at run-time) to prevent a modified packet from being sent along an established network channel. On the other hand, a closed platform such as the Xbox affords a higher level of security and trust; by only running code signed in a manner verifiable using the keys stored in the hardware, it can build a chain of trust from boot ROM up to user-visible game code. In a deeper sense, though, this is merely a form of obfuscation, since the user is in physical possession of the private keys and kernel code, but it is physically difficult to extract specific ROM state or voltage levels, or transistor patterns from a silicon die. It seems a worthwhile policy question to decide what level of trust to place in a security scheme whose trust is rooted not in a well-studied mathematical algorithm but a mere engineering difficulty; while suitable for games, it probably doesn't scale to the security needs of financial or governmental institutions.
Stepping back, what this particular authentication scheme requests -- namely, that any program which successfully completes a challenge-response handshake will always follow a proscribed state diagram's flow in the future -- clearly appears unenforceable when considered in the sense of a Turing Machine; the closed system encompassing the untrusted user and computer can represent its program, and the network application protocol might simply specify that the user authenticate and cease all further output. No amount of past experience can guarantee that this unseen Turing user will halt after a given step rather than continue to a variant of the program that sends additional output. Most importantly, this theoretical perspective does not involve the time complexity of any cryptographic algorithm used, merely the engineering difficulty of "virtualizing" an existing program to be run on a more general computer that allows modifications of the program. As in the example of the Xbox, this theoretical case will generally reduce to the difficulty of obtaining the full original program, including the data stored on hardware modules and code routines wired into the CPU, which is a matter of computer engineering rather than information theory. Specifically, while cryptographic algorithms generally benefit from an exponential increase in brute-forcing difficulty for a linear investment in encryption time, any advance in hardware "writing" would reasonably correspond linearly to an advance in hardware "reading", and CPU manufacturers' processor emulators keep pace with the corresponding new generations of hardware.
Challenge-response, then, is a widely and variously used (and, judging from one example discussed here, overused) category of cryptosystem. As a Point to Point authenticator, if implemented well, it can provide cryptographically secure mutual authentication. Specifically, it can prove that both parties know of a pre-shared secret, without exposing the secret to more than a single known-plaintext attack per iteration. As a multi-party anonymous protocol for verifying not just key knowledge but future intent, however, it fails, due to the difficulty of distributing a secret to millions of PCs without informing their users of the secret, the information-theoretic impossibility of proving the future behavior of an unknown program based on past output, and not least, the false illusion of security given to programmers and users alike.

References

[1] IETF RFC 1994; PPP Challenge Handshake Authentication Protocol (CHAP); http://www.apps.ietf.org/rfc/rfc1994.html

[2] IETF RFC 2433; Microsoft PPP CHAP Extensions; http://www.apps.ietf.org/rfc/rfc2433.html

[3] Mudge; A L0phtCrack Technical Rant; http://www.packetstormsecurity.org/Crackers/NT/l0phtcrack/l0phtcrack.rant.nt.passwd.txt

[4] IETF RFC 2759; Microsoft PPP CHAP Extensions, Version 2; http://www.apps.ietf.org/rfc/rfc2759.html

[5] Schneier, Bruce and Mudge; Cryptanalysis of Microsoft's PPTP Authentication Extensions (MS-CHAPv2); http://www.schneier.com/paper-pptpv2.html

[6] Auriemma, Luigi, GS SDK challenge-response algorithm; http://aluigi.altervista.org/papers/gssdkcr.h

1

