Smart Cards’ Onboard Cryptographic Functions

by

Lavina Thong

Smart cards, invented in the 1970s, have evolved from basic memory cards to powerful processing units used in a diverse range of applications.

The major use of smart cards began in the 1990s when they were widely used as SIM cards in GSM mobile phones. Today, they are commonly seen in fund storage cards, physical access control cards, cable box etc. Contact-less smart cards are also commonly used for payments of fare in public transit systems.

Another rapidly growing application is the digital identification cards. The smart cards are used in conjunction with a Public Key Infrastructure (PKI). The encrypted digital certificate issued by the PKI to the cardholder is stored on the cards along with other information.

Because sensitive data are stored on the cards and transactions are carried out using the cards, they need to be tamper-resistant and capable of providing security services.

Cryptographic Algorithms

The cryptography choices for smart cards include:

· Public key vs. symmetric key

· Algorithms

· Protocols

Scalability and speed are two main factors to be considered. Symmetric cryptography is hundreds of times faster but public key cryptography is much easier to manage.

The commonly used algorithms on smart cards are:

· symmetric key algorithms: DES, AES

· standard public key cryptography: RSA, DSS or Diffie-Hellman

· public key algorithms based on elliptic curves

· hash functions: mainly SHA-1/-2

· proprietary symmetric key algorithms by telecom operators

For low-end smart cards, at least symmetric key algorithms are offered. These algorithms only lead to data substitutions, permutations, Boolean to arithmetic conversions, compressions and table lookups, which are less processing intensive.

For high end products, the more powerful public key algorithms may be used. Usually in these cases, an arithmetic unit is required to compute modular multiplication and reduction on large numbers.

In either case, chips may have dedicated crypto-coprocessors to make processing more efficient, or they could have dedicated instructions for cryptography in the core processors.

The types of algorithms supported will also be determined by the protocols used. Examples are time-based vs. challenge-response user authentication and key transport vs. key agreement.

Algorithm Speedup

There are several reasons for the need to improve the processing speed in the software implementations of smart cards’ processor-intensive cryptographic algorithms. One of them is that it is not always possible to implement cryptographic algorithms in hardware. So, while the cryptographic algorithms are implemented in software, improvements need to be made to speed-up the processing. They need to be comparable to that of existing secret key algorithm or modular multiplication co-processors.

Generally, symmetric key algorithms and the hash functions have very good performances. Nevertheless, these implementations can be many times slower in software than with hardware co-processors. Therefore there is ongoing research to improve the software implementations. The different aspects that are of interest are: rotation instructions, bit permutations, expansions and substitutions instructions and fast memory access for S-Boxes randomization.

Public key algorithms on the other hand are facing the challenge of performance vs. security level. The growing key lengths brought about the requirements of modular multiplication of increasingly large integers which essentially is the basic primitive of the algorithms. Mathematically, the equation is:

(AB) mod N = (AB) – floor(AB/N)*N

where A, B and N are large integers. Restricted by the word size of the architecture, these integers may need to be decomposed while computations are done by emulation using the given size.

And since the RAM memory on smart cards is usually limited in term of size and access time, ways to minimize the usage of memory without slowing down the computations are needed. Computations by interleaving, at each step, the multiplication and the reduction phase can achieve this purpose. The Montgomery method for evaluating the intermediary quotients can also be applied for efficiency.

Attacks

Smart cards are subject to various kinds of attacks, many beyond the cryptography. A side-channel attack, unlike cryptanalysis, is any attack based on information gained from the physical implementation of a cryptosystem rather than theoretical weakness in the algorithms. Smart cards, like all electronic devices, consume power and emit radiation as they operate. They react to temperature changes and electromagnetic fields. Adversaries can monitor these physical interactions. A few widely used attacks are: Timing Analysis Attacks, Computational Fault Analysis Attacks, Power Analysis Attacks and Electromagnetic Analysis Attacks.

Timing Analysis Attacks – Kocher 1995

Input to cryptographic functions is one factor that determines the amount of time it takes to compute the output. As outlined by Kocher, timing characteristics of cryptosystems such as RSA, DSS and Diffie-Hellman can be correlated to the values of their secret keys.

Modular exponentiation is an operation fundamental to the RSA cryptosystem used to encrypt and decrypt as well as to sign message blocks. Repeated square-and-multiply was suggested as a way to implement this operation efficiently. While doing this, in the loop iteration, each input bit in the exponent affects whether a modular square is performed or both a modular square and multiply are performed. Hence, execution time to complete the iterations is influenced by the value of the exponent. If an attacker could observe and compare the execution time of several loop iterations, he/she may be able to deduce the value of the corresponding exponent bits.

Computational Fault Analysis Attacks – Boneh, DeMillo, Lipton 1997

Fault attacks make use of combination of environmental conditions that causes the smart card chips to produce a wrong computation that will leak secret information.

An example of this is with the Chinese Remainder Theorem used to speed up RSA signature generation. It makes use of the fact that doing two exponentiations with moduli half the size of N is quicker than doing one exponentiation modulo N. If one of the values of the intermediate results is computed incorrectly, then an adversary who has two signatures on the same message, one correct and the other faulty can factor N.

Such attacks can be carried out with weird values of power supply, clock frequency and duty cycle, working temperature, UV lights, microwaves, ion beam, etc.

Symmetric ciphers, such as DES, which use bit or byte operations are also vulnerable to this type of attacks. Combined with techniques from differential cryptanalysis, this type of attack on DES, done by exploiting permanent register faults is called differential fault analysis.

Power Analysis Attacks – Kocher, Jaffe 1998

In smart cards, a few operations are used repeatedly during a computation, causing a regular switching of transistors. This regularity in observable power traces can leak sensitive information.

Simple Power Analysis (SPA) is a technique whereby information about the operation is deduced directly from tracing the global power consumption power of the chip.

For example, in DES, key rotations, commonly implemented as shifting one bit off the end of the register and appending a zero on the other end, can reveal key information through detectable power trace.

In RSA, exponentiation can also be analyzed using SPA. The conditional branches of square-and-multiply algorithms can be identified from power traces if the square and multiply operations have different power characteristics.

In general, SPA is more easily carried out when details about the target implementation are known. The attacker can use that knowledge to focus on particular regions of a power trace to distinguish the characteristics of specific operations.

Differential Power Analysis (DPA) is more sophisticated than the SPA. It consists of performing a statistical analysis on power consumption curves of several executions of the same algorithm with different inputs to retrieve the information.

The idea is to average the power traces from several cryptographic operations that can be divided into two groups according to an intermediate value of some bit. That bit is manipulated during each operation and its value affects the observed power consumption. The average traces may then reduce noise and reveal the otherwise obscurely small biases.

Electromagnetic Analysis Attacks – Agrawal, Archambeault, Rao, Rohtagi 2002

Electromagnetic Analysis attacks superficially resembles the Power Analysis in the nature of information revealed. Only the measured physical quantities are different.

Simple Electromagnetic Analysis (SEMA) is similar to Simple Power Analysis where the conditional statements in the code could reveal sensitive information. SEMA could in effect leaks more information than its power counterpart. Therefore, where SPA attacks fail, SEMA may be successful. In some cases, the excessive leakage in EM signals can be so egregious that the counter-measures used for reducing the power characteristics in SPA and DPA can be rendered useless.

Differential Electromagnetic Analysis (DEMA) is similar to Differential Power Analysis where DEMA can be used to attack DES in a manner akin to DPA.

Counter-measures

Various counter-measures have been suggested and implemented for the above mentioned attacks.

Timing Analysis Counter-measures

One approach may be to ensure that all operations run in a constant amount of time. This is difficult to achieve and not practical. First, it’ll be platform dependent. Second, the time for each operation will have to take on the time of the slowest operation. Third, unconditionally performing the multiplication in the loop iteration regardless of the bit value does not make the execution time constant. Variability in the multiplication and squaring operations will still remain. Montgomery multiplication may be a solution since it runs in almost constant time. But there is still a small source of variability resulting from a conditional subtraction.

Another approach may be to add noise to the execution time. This will cause inefficiency in the system because the required number of timing measurements roughly increases linearly as a function of the variance of the random delay.

A reasonable approach then is to prevent an attacker from learning the inputs to a vulnerable operation. Without the inputs, the timing information will be of no use. To do this, the messages are blinded before they are signed. In practice, when the Chinese Remainder Theorem is used to calculate signatures, the inputs to the two component modular exponentiations by default have been effectively blinded.

Computational Fault Analysis Counter-measures

Fault attacks depend upon erroneous outputs. To resist this kind of attacks, it is sufficient to prevent providing this output. Results could be verified before being publicly exposed. The tradeoff is loss in efficiency. Randomization by padding messages can also be used to resist this kind of attacks.

Power Analysis Counter-measures

One way to eliminate the SPA weaknesses is to avoid the conditional branches. These statements may not be removed completely, but operations with large power characteristics can be moved outside of the conditional branches. It is also possible to split operands into shares and then have the processor compute by manipulating shares of sensitive data rather than the data itself. In order to deduce the sensitive data, a combination of multiple power consumption measurements from various locations within a power trace is necessary, thus increasing the amount of noise introduced to help in obscuring the value of the data. However, in practice, this decreases the performance. Random masking, done carefully, gives better performance.

A common defense against DPA is by interleaving random computations into the execution of cryptographic operations. This technique increases the amount of noise in the differential trace.

Hardware countermeasures can also be taken by adding components to smooth out power consumption characteristics or by decorrelating the flow of current on external power lines to internal ones.

Given enough traces though, most countermeasures could still be overcome. Therefore a leak-tolerant design methodology may be necessary. The rate at which information is leaked can be used as a guideline to refresh keys.

Electromagnetic Analysis Counter-measures

Signal strength reduction and signal information reduction are two ways of preventing against EM attacks. For signal strength reduction, circuits are redesigned to reduce egregious unintentional emanations. Physical shielding can also be used to reduce the strength of signals. For signal information reduction, the use of randomization and frequent key refreshing reduces the effectiveness of the available signals.

Conclusion

Smart cards cryptography has many choices. Constrained by the physical limitation of the microprocessor, consideration needs to be taken in terms of performance vs. security. Speeding up an implementation need to take into account of possible attacks. Counter-measures taken for attacks need to take into account the efficiency of the implementation in practice.

References

Present and Future Smart Cards, Jean-Francois Dhem and Nathalie Feyt

Techniques of Side Channel Cryptanalysis, James Alexander Muir 2001

The EM Side-Channel(s): Attacks and Assessment Methodologies, Sakshi Agrawal, Bruce Archambeault, Josyula R. Rao, Pankaj Rohatgi

