Overview of Web Services Trust Language
Chuck Reeves, creeves@microsoft.com
University of Washington

CSEP 590 Practical Aspects of Modern Cryptography Project

March 2006
Abstract
Our class curriculum this quarter has required the study of authentication protocols. This has included the study of Kerberos, a symmetric key protocol, as well as a public key protocol, PKIX. We have also been required to design a number of custom protocols for specific scenarios in our homework. As a member of the Microsoft Identity and Access team, I have written code that is indirectly involved in the exchange of tokens between users, applications and security token services. While these experiences have afforded me a high level exposure on how to use Web Services Trust Language (WS-Trust) in a few specific situations, I have been anxious to develop a more comprehensive understanding of the design of the protocol and it’s application. This paper will discuss the role of WS-Trust, it’s protocol components, a few scenarios and how it contrasts with public-key exchange (PKIX).
Overview
The WS-Trust protocol was designed to enable applications to exchange trusted messages over SOAP. The protocol proposes to do this through the exchange and brokering of security tokens. The security tokens are typically a set of assertions made about a client, service or resource by the issuer of the token. The tokens are presented to applications attached to SOAP (and perhaps other protocols) requests in order to gain access to it’s services.
The Direct Brokered Trust model in Figure 1 shows how clients can acquire security tokens from a security token service (STS) via SOAP in exchange for another security token or some other form of credentials. To acquire a token from an STS the client must generate a RequestSecurityToken (RST) message. This message, in association with the attached WS-Security header provides the details of the token the client is requesting the STS to produce.

[image: image1.emf]Client Security Token Service

1. RequestSecurityToken

2. RequestSecurityTokenResponse

Application

3. Use Authenticated Service

Figure 1. Direct Brokered Trust
If accepted the STS responds with a RequestSecurityTokenResponse message. This message contains tokens, keys and other information that will enable the client to present cryptographically supported assertions made by the STS (issuer) on his/her behalf to other applications and services.
Used in combination this model can enable organizations to federate efficiently across domains of trust.

[image: image2.emf]Client

Domain A STS

1. RST

2. RSTR (TokenA)

Service

5. Use Authenticated Service (TokenB)

*

*

Domain A Domain B

Domain B STS

3. RST(TokenA)

4. RSTR (TokenB)

Figure 2. Federation using Indirect Brokered Trust
Figure 2 shows an example of Indirect Brokered Trust. Here a security token from domain A can be used as credentials to an STS in domain B and exchanged for a security token to use authenticated services in domain B. This model enables both domains to function securely without requiring any expensive replication of account information.
Protocol Analysis
The WS-Trust protocol supports a number of request types or bindings. These include issuance, renewal, cancellation, validation as well a negotiation and challenge protocol. This document will focus on the issuance binding.
Requesting a Security Token
A RequestSecurityToken (RST) message is a standard SOAP message. The SOAP body contains the RST. It can reference encrypted data, tokens, signatures and keys in the WS-Security SOAP header (see Figure 4).
 <wst:RequestSecurityToken>

 <wst:TokenType>...</wst:TokenType>

 <wst:RequestType>...</wst:RequestType>

 ...

 <wsp:AppliesTo>...</wsp:AppliesTo>

 <wst:Claims Dialect="...">...</wst:Claims>

 <wst:Entropy>

 <wst:BinarySecret>...</wst:BinarySecret>

 </wst:Entropy>

 <wst:Lifetime>

 <wsu:Created>...</wsu:Created>

 <wsu:Expires>...</wsu:Expires>

 </wst:Lifetime>

 </wst:RequestSecurityToken>

Figure 3. Example RequestSecurityToken Message

The message example in Figure 3 shows a request to issue a token. The URI in the /wst:RequestSecurityToken/wst:TokenType element allows requestors some flexibility in the type of token requested. Alternatively, this information can be indirectly determined using the URI in the /wst:RequestSecurityToken/wsp:AppliesTo element. The /wst:RequestSecurityToken/wst:Claims element allows users to describe the list of assertions they wish the STS to include in the generated token. Requestors can also describe the desired lifetime of the token in the /wst:RequestSecurityToken/wst:Lifetime element. The algorithms used to sign and encrypt the token can optionally be specified by the requestor using /wst:RequestSecurityToken/wst:SignatureAlgorithm and /wst:RequestSecurityToken/wst:EncryptionAlgorithm elements respectively.
The requestor can provide information on the desired nature of the proof key returned in the RSTR using the /wst:RequestSecurityToken/wst:KeyType, and the /wst:RequestSecurityToken/wst:KeySize fields. Requestor entropy can be contributed to the proof key calculation using the /wst:RequestSecurityToken/wst:Entropy element or alternatively by specifying an existing key using the /wst:RequestSecurityToken/wst:UseKey element. The methods for generating the proof key is described further in the section on issuing tokens.
<S11:Envelope xmlns:S11="..." xmlns:wsu="..." xmlns:wsse="..."
 xmlns:xenc="..." xmlns:wst="...">

 <S11:Header>

 ...

 <wsse:Security>

 <xenc:ReferenceList>...</xenc:ReferenceList>

 <xenc:EncryptedData Id="encUsername">...</xenc:EncryptedData>

 <ds:Signature xmlns:ds="...">

 ...
 <ds:KeyInfo>
 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#myToken"/>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>
 </ds:Signature>

 </wsse:Security>
 ...

 </S11:Header>

Figure 4. Example WS-Security Header

As shown in Figure 4, the requestor provides proof of identity by attaching a WS-Security header to the SOAP header information. In this case, the username and password are encrypted using the recipient’s key and attached as an encrypted data block. This token can then be referenced using the URI in the KeyInfo block. This URI is consistent with the identifier of the token prior to encryption.
Issuing a Security Token

One of the first steps for the STS to perform in processing the RST is to validate the identity of the requestor. This would involve decrypting the attached security token in the WS-Security header and authenticating the contained credentials.

If the STS is domain limited it will need to evaluate the target or scope of the request. This information is specified as a URI in the /wst:RequestSecurityToken/wsp:AppliesTo element.

The claim information requested in the RST would typically be retrieved from a directory or other account store. This data, often called a claim set, is the primary component of the /wst:RequestSecurityTokenResponse/wst:RequestedSecurityToken element. It is typically signed by the issuer and encrypted to the key of the target (using either a shared secret or a public key) to constrain it’s scope of use based on analysis of the AppliesTo field. The RequestedSecurityToken element is considered opaque to the requestor.
 <wst:RequestSecurityTokenResponse>
 <wst:TokenType>...</wst:TokenType>

 <wst:RequestedSecurityToken>...</wst:RequestedSecurityToken>

 ...

 <wsp:AppliesTo>...</wsp:AppliesTo>

 <wst:RequestedProofToken>...</wst:RequestedProofToken>

 <wst:Entropy>

 <wst:BinarySecret>...</wst:BinarySecret>

 </wst:Entropy>

 <wst:Lifetime>...</wst:Lifetime>

 </wst:RequestSecurityTokenResponse>
Figure 5. Example RequestSecurityTokenResponse Message

Embedded within the security token returned by the STS will be a key. Proof of the knowledge of this key is used to allow consumers of the token to confirm that the client is the appropriate bearer of that token. Support for symmetric and asymmetric models are described in the specification.

The key(s) supporting proof-of-possesion can be generated in one of three ways. In the server specific case the STS returns the fully specified key to the requestor in the /wst:RequestedProofToken element. In the client specific case the key is specified in the RST by the requestor in the /wst:RequestSecurityToken/wst:UseKey element. The partial or composite case is the most interesting and perhaps most secure (when using a symmetric key) as the full key never exists as part of a single message. It is calculated from entropy contributed by both the requestor and the STS. From Figure 5 the server entropy is specified in the /wst:RequestSecurityTokenResponse/wst:Entropy element. Combined with the /wst:RequestSecurityToken/wst:Entropy element from Figure 4, the proof key can be calculated using the algorithm specified in the /wst:RequestedProofToken/wst:ComputedKey element. The specification cites one example algorithm:

	http://schemas.xmlsoap.org/ws/2005/02/trust/CK/PSHA1
	The key is computed using P_SHA1 from the TLS specification to generate a bit stream using entropy from both sides. The exact form is:
key = P_SHA1 (EntREQ, EntRES)

WS-Trust vs X.509/PKIX

At first glance it might appear as if a PKI infrastructure would have fewer moving parts and less dynamic messaging. However, the growing importance of revocation makes the CRL mechanism of PKI seem sluggish and unwieldy. While the OCSP model, provides a marked improvement in the timeliness of the validity of the certificates, it does not carry updated information about the subject (names or other claims) and still requires the operation of an online server.

By modeling the trust decision as a simple token exchange, WS-Trust abstracts the mapping between credentials and subject attributes away from the consumers of this data. This would seem to give implementers the flexibility to leverage more detailed decision making in their security token servers.
The WS-Trust protocol is flexible enough to support symmetric and public key algorithms which enables it to easily integrate with existing PKI and Kerberos infrastructures.
PKI is exclusively based on the ASN.1 syntax. WS-Trust is an XML based protocol and will clearly benefit from the investments made in it. This includes broader language support, better tools support and an improved ability to leverage new and emerging standards.
The federation model proposed by WS-Trust also contrasts well with PKI certificate chains and bridge certificate authorities. The chain of trust maintained through WS-Trust federation can support changes in authorization and organizational policy with less impact on the users of the infrastructure.

The one area where I think PKI has some advantages over WS-Trust is the area of discovery. PKI benefits from the simplicity of it’s interfaces. Little metadata is required to understand how to interact with an OCSP server or a certificate authority. WS-Trust on the other hand, requires more detailed guidance on the policies of each application and STS to determine required claims, encryption and signature requirements and proof semantics. While the protocols for obtaining this information do exist (e.g. WS-MetadataExchange, UDDI, or even WS-Trust) there are still some questions about their adoption.
References

[WS-Trust]
[WS-Security]
[Security in a Web Services World: A Proposed Architecture and Roadmap]

Page 6 of 6

_1203066987.vsd
Client

Security Token Service

1. RequestSecurityToken

2. RequestSecurityTokenResponse

Application

3. Use Authenticated Service

_1203221273.vsd
Client

Domain A STS

1. RST

2. RSTR (TokenA)

Service

5. Use Authenticated Service (TokenB)

*

*

Domain A

Domain B

Domain B STS

3. RST(TokenA)

4. RSTR (TokenB)

