"Code Obfuscation and its limits in today Software & Hardware”

by Shahid Razzaq

Abstract:

In today world of e-commerce and increased emphasis on intellectual property (IP), software integrity has a more important role than ever. Malicious users can gain vital information by analyzing the machine or intermediate code of a software and can use the information to alter program flow or circumvent security measures. Code obfuscation thus is more important that ever. This paper will cover this topic in detail.

Definition of ‘Obfuscation’:

The word ‘obfuscation' refers to the concept of concealing the meaning of communication by making it more confusing and harder to interpret. (wikipedia)
Code Obfuscation defined:

Code obfuscation is the generation or alteration of source code and/or object code in such a way that it is easy for the computer to comprehend but considerably difficult to reverse engineer.
Why is Code Obfuscation Needed:
Software is generally distributed in the executable format or in an intermediate format (e.g. as in the case of .NET). Intermediate code is more succeptable to reverse engineering but is no way a fault in the design; it is simply a reality of modern, intermediate-compiled languages. .NET for example uses expressive file syntax for delivery of executable code, or MSIL (Microsoft Intermediate Language). Being much higher-level than binary machine code, the intermediate files are laden with identifiers and algorithms that are immediately observable and ultimately understandable. Executable code on the other hand is less prone but still provides enough information in terms of exposed symbols, strings, and control flow that a normal disassembler can successfully reverse engineer it.

Suddenly, software licensing code, copy protection mechanisms, and proprietary business logic are much more available for all to see - whether it's legal or not. Anyone can peruse the details of software for whatever reason they like. They can search for security flaws to exploit, steal unique ideas, crack programs, etc.

The process of reverse engineering an executable program typically begins with disassembly, which translates machine code to assembly code. This is then followed by various decompilation steps that aim to recover higher-level abstractions from the assembly code. When it is properly applied, obfuscation can increase the protection against decompilation by many orders of magnitude, while leaving the application intact.

It can be stated that the “goal of code obfuscation is to make reverse engineering of programs ‘infeasable’, while maintaining the logic on the program with nominal effects on performance”.

(Obfuscation generally has the effect of decreasing the memory footprint of a program while increasing the time taken to execute tasks)
Alternatives:

Obfuscation is the technology of shrouding the facts. Although encryption can make your assembly completely unreadable, this methodology suffered from a classic encryption flaw, it needed to keep the decryption-key with the encrypted data. So, an automated utility could be created to decrypt the code and put it out to disk. Once that happens the fully unencrypted, unobfuscated code is in plain view. Hence encryption of code and data by itself cannot solve the problem of reverse engineering.
More definitions:
Obfuscator: These are tools perform code obfuscation, i.e they are used to convert a straight-forward program into one that works the same way but is much harder to understand and reverse engineer. They perform obfuscation on source code, object code, or both

De-obfuscator: As the name implies, these are tools that reverse engineer obfuscated code.
Indepth look at Code Obfuscation:

There are multiple ways in which code can be obfuscated, each hiding certain aspects of the program:

1. Code Structure Obfuscation:

This is preventing users from gaining knowledge about the structure of code in memory. By default, compiled byte-code contains a lot of debugging information: source file names, line numbers, field names, method names, argument names, variable names, etc. This information makes it straightforward to decompile the byte-code and reverse-engineer entire programs. The goal behind code obfuscation is to remove the debugging information and replace all names by meaningless character sequences, making it much harder to reverse-engineer the code. This further compacts the code, decreasing the final footprint. The program remains functionally equivalent, except for the class names, method names, and line numbers. Renaming to unprintable characters or confusing sequences is also used to foil decompiled output.
2. Data Obfuscation:

As the name implies, this includes hiding the data like strings or any data type. Strings are encrypted to hide their contents and pages containg the encrypted data is only decrypted upon usage of the strings. Crackers will frequently search for specific strings in an application to locate strategic logic. For example, someone looking to bypass a registration and verification process can search for the string displayed when the program asks the user for a serial number. When the attacker finds the string, he can look for instructions near it and alter the logic. String Encryption makes this much more difficult to do, because the attacker's search will come up empty.
3. Control Obfuscation:

Hides the flow of control in the execution of code to confuse the user but still maintains the overall logic of code. This process synthesizes branching, conditional, and iterative constructs that produce valid forward (executable) logic, but yield non-deterministic semantic results when decompilation is attempted. Control Flow obfuscation produces spaghetti logic that can be very difficult for a cracker to analyze. This is important as many smart disassemblers create control flow graphs to ease in reverse engineering. (Dotfuscator)
4. Preventive Obfuscation:

Done to prevent reverse engineering of code. Added bogus data prevents de-obfuscator from automatic analysis Reverse engineering is usually accomplished by smart programs like IDA Pro (http://www.datarescue.com/idabase/) which creates call graphs and tracks variables to help reverse engineer code. Preventive obfuscation is for hampering such techniques.
Debugging Obfuscated Code:

One major drawback of obfuscation is that the task of maintaining and troubleshooting an obfuscated application becomes more difficult. In a well obfuscated application, the names of all types, methods, and fields are changed from their carefully thought out, informative names into meaningless, semi-random names. This impacts the usefulness of bug reports sent in from the field in the form of stack traces. A stack trace is essentially a listing of where in the program a problem occurred. The list includes the names embedded in the program (e.g. method and type names). A stack trace from an obfuscated program will contain the obfuscated names, and will thus be very difficult to read by support personnel and developers. Some obfuscator remedy this by providing a way of automatically decodeing obfuscated stack traces using the renaming map file. Given an obfuscated stack trace, the tool replaces the obfuscated names with the original names and displays the results.
Renaming metadata to gibberish or less obvious identifiers is one of several defense mechanisms. It's obvious that a function definition called InsterestRatesCalcuator () will give any cracker a leading edge over various functions called x(). As you'll see in the example below and as they stated, "Typically, an overload-induced project will have up to 35 percent of the methods renamed to 'a'", it's an effective obfuscation strategy. Similarly, some of the obfuscation techniques include removing nonessential metadata, control flow obfuscation, string encryption, incremental obfuscation, and size reduction -- all different ways to make decompilation and disassembling produce incomprehensible output. Some generic techniques used by other obfuscation utilities include reordering the instantiation and methods, manipulating inheritance relationships, variable scope modification, mapping unboxed scalars (int, byte, etc) to corresponding object types, etc. However, its very important to keep into consideration that obfuscation shouldn't end up changing a program's logic or flow, as its purpose is to protect and not deform.

Why isn’t Obfuscation Prevalent:

There are reasons why Obfuscation isn’t as prevalent, despite the obvious benefits. Some of the most viable reasons are:

1. Cost of obfuscation
2. Execution time

3. High program complexity

4. Effort

5. Higher cost of development
6. Ignorance about Obfuscation
Popular Obfuscation Tools:

Most of the obfuscation tools in the market are directed towards obfuscating .NET and Jave applications. Amongst the more notable ones are:

· Microsofts .NET Obfuscator – Dotfuscator

· {smartassembly} 1.0

· Goliath.NET Obfuscato

· SecureLM - Code Protector

· Spices.Net

· Aspose.Obfuscator
Limits of Obfuscation:
Obfuscation tools mangle symbols and rearrange code blocks to foil decompiling. They also may encrypt strings containing sensitive data. It's important to understand that obfuscators (as they exist today) can't completely protect your intellectual property. Because the code is on the client machine, a really determined hacker with lots of time can study the code and data structures enough to understand what's going on. Obfuscators do provide value in raising the bar, however, defeating most decompiler tools and preventing the casual hacker from stealing your intellectual property. They can make your code as difficult to reverse engineer as optimize native code.

Without argument, obfuscation (or even encryption) is not 100 percent protection. Even compiled C++ is disassembleable. If a hacker is perseverant enough, they can find the meaning of your code. The goal of obfuscation is to make the reverse engineering process extremely time consuming and painful so that it not worth the effort. The goal is to stop all casual hackers and as many serious hackers as possible.

Use of Hardware:
Encryption of code is another possibility. However, unless the entire encryption/decryption process takes place in hardware, it is possible for the user to intercept and decrypt the code. Unfortunately, specialised hardware tends to limit the portability of programs.

Obfuscation in Code itself (i.e Pre-preprocessor, pre-compile time):

The following is a valid C code that spits out ’12 Days of Christmas’ lyrics when run. This is an example of how code is written in an obfuscated way. This is fortunately limited to the interest of hobbyinsts and has not found widespread usage in the Software industry.
(source code from wikipedia)

#include <stdio.h>

main(t,_,a)char *a;{return!0<t?t<3?main(-79,-13,a+main(-87,1-_,

main(-86,0,a+1)+a)):1,t<_?main(t+1,_,a):3,main(-94,-27+t,a)&&t==2?_<13?

main(2,_+1,"%s %d %d\n"):9:16:t<0?t<-72?main(_,t,

"@n'+,#'/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l,+,/n{n+,/+#n+,/#\

;#q#n+,/+k#;*+,/'r :'d*'3,}{w+K w'K:'+}e#';dq#'l \

q#'+d'K#!/+k#;q#'r}eKK#}w'r}eKK{nl]'/#;#q#n'){)#}w'){){nl]'/+#n';d}rw' i;# \

){nl]!/n{n#'; r{#w'r nc{nl]'/#{l,+'K {rw' iK{;[{nl]'/w#q#n'wk nw' \

iwk{KK{nl]!/w{%'l##w#' i; :{nl]'/*{q#'ld;r'}{nlwb!/*de}'c \

;;{nl'-{}rw]'/+,}##'*}#nc,',#nw]'/+kd'+e}+;#'rdq#w! nr'/ ') }+}{rl#'{n' ')# \

}'+}##(!!/")

:t<-50?_==*a?putchar(31[a]):main(-65,_,a+1):main((*a=='/')+t,_,a+1)

 :0<t?main(2,2,"%s"):*a=='/'||main(0,main(-61,*a,

"!ek;dc i@bK'(q)-[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry"),a+1);}

Conclusion:
Obfuscation has some very obivous benefits of protecting intellectual property and secrets and making reverse engineering of code difficult. It has found wide spread use in digital rights management technologies where usage rights and content decryption keys are protected.
References

