File System and Full Volume Encryption

Sachin Patel

CSE 590TU

3/7/2006

Introduction

The need to protect sensitive data on a storage device is becoming increasingly important, as security becomes a major focus in computing and the use of mobile devices becomes more prevalent. While the operating system can provide protection from unauthorized users accessing files through file permissions and access control lists, there is also the need to protect file data if the computer or storage device is physically stolen. The solution in this case is to encrypt the file data.

One of the big challenges with file system encryption is to use a system that is seamless to the user and doesn’t put a big burden on the administrator to deploy the system to an entire organization. If the encryption solution is too complex, then it will limit the number of users that decide to encrypt their data. At the same time, it must not be vulnerable to attacks. There are multiple approaches to encrypting data, which can be done at different layers of abstraction in the file system stack. Three common layers to provide encryption are at the application layer, the file system layer, and the block driver layer.
Application Level Encryption

At the highest layer, the encryption can be provided by the individual application that is reading and writing sensitive data. The application could encrypt the data before writing it out and decrypt the data when reading it in. The application would be responsible for managing the keys. This may be desirable if the application needs to have complete control over the encryption and the application operates in an isolated environment. However, there are several issues with this approach. It requires each application to implement the encryption, which may not provide a consistent experience for the user and may involve a duplication of work by developers. The greater flexibility for the application may lead to mistakes, such as forgetting to clear plaintext or leaving the plaintext in paged memory, which could get swapped out to a paging file on disk, therefore potentially persisting the unencrypted data on disk.
Encrypting File System
In general, it is desirable to have the encryption at a lower level, such as at the file system level. This allows for a general implementation that all applications can use. One implementation that is used on Windows 2000 and later is the Encrypting File System (EFS). EFS is an encryption driver that is used by the NTFS file system. EFS allows encryption either on an individual file granularity or on an entire folder, where any files created within the folder will automatically be encrypted. The user can enable or disable encryption on a file or folder through the Windows file properties user interface. EFS uses the cryptographic support that is built into the operating system to perform the encryption.

When the file data is encrypted, a symmetric key called the file encryption key (FEK) is randomly generated to encrypt the file’s contents. Windows 2000 supports DESX, but Windows XP and later support 3DES and AES as well. A symmetric key encryption algorithm is used to encrypt the data because public key encryption would be too slow to encrypt large amounts of data. EFS uses the cipher block chaining mode of encryption, where the plaintext of a block is XORed with the ciphertext of the previous block before being encrypted with the FEK. This prevents anyone from determining the structure of the file data, since two blocks of data with the same format will have different cipertext blocks.
The FEK is stored inside of a key entry, which is part of the EFS metadata header for the file. The FEK is encrypted with the user’s public key using the RSA public key encryption. EFS allows multiple users to access an encrypted file, by storing multiple key entries in the Data Decryption Field within the EFS metadata, shown in Figure 1. One key entry exists for each user, with each FEK within the key entry encrypted with that user’s public key. Along with the encrypted FEK, each key entry, shown in Figure 2, contains information to uniquely describe the user’s public key, include the user’s security ID (SID), the cryptographic provider name, the container name where the key is stored, and the hash of the certificate which is issued with the private/public key pair.
	Header

Version

Checksum

Data Decryption Field

DDF Key Entry 1

…

DDF Key Entry n

Data Recovery Field

DRF Key Entry 1

…

DRF Key Entry n

Figure 1. EFS metadata information

	User SID

Container Name

Provider Name

EFS Certificate Hash

Encrypted FEK

Figure 2. Key Entry

The RSA public/private key pair is generated for EFS on the first time the user encrypts a file. EFS uses a CryptoAPI from the operating system to create the key pair, which can be generated either by the domain controller if the system is part of a domain, or locally if the system is not part of a domain. EFS doesn’t handle the private key directly, but uses a hash of the signed certificate to uniquely identify the public/private key pair. The certificate is stored in the system certificate storage area, which EFS can later query to locate the certificate in the future. Because a user may have multiple EFS public/private key pairs, the certificate hash is necessary to identify the correct pair to use.

In order to decrypt a file, EFS uses the certificate hash to locate the certificate in the certificate store. If it is found, then the information in the certificate can be used to establish a session with the cryptographic provider. EFS can get a handle to the private key and pass that to the provider in order to decrypt the FEK. Therefore, EFS never deals with the private key directly, but relies on the cryptographic services of the operating system to protect the private key and decrypt data with the private key. Once EFS has the decrypted FEK, it can use that to decrypt any part of the file data.
In addition to allowing for multiple users to access the encrypted file contents, EFS provides a mechanism for the encrypted data to be recovered in the case that the private key is lost. One or more accounts can be designated as a recovery agent. A key entry for each recover agent is automatically created when the file is encrypted and is stored in the Data Recover Field shown in Figure 1. The key entry format for the recover agent is identical to that of a normal user, where the FEK is encrypted with the recovery agent’s public key. The recovery agent can either be a domain administrator if the computer is part of a domain, or a local administrator if the computer is not part of a domain.
EFS Security Issues
There are a few security issues or caveats that need to be taken into account when using EFS, which may allow an attacker to gain information about the encrypted file system. One issue deals with the recovery agent. By default, if a system is standalone and not connected to the domain, the local administrator is automatically designated as a recovery agent. This means that if an attacker is able to gain administrator access by cracking the password or resetting the password some how, they would have access to all of the encrypted files, assuming the recovery certificate exists on the system. Therefore, it is recommended that the recovery certificate and associated private key is exported to an external storage device and then the recovery certificate and private key can be removed from the system hard disk.
While it is possible to export the recovery key, it is currently not possible to export and remove the user’s private key from the system drive. If a computer is a standalone system, then all of the keys needed to decrypt the private key may be located on the system, depending on the configuration. The key storage for EFS consists of several layers. The user’s EFS private key is stored in a container for the user’s profile and is encrypted with a master key for the user. The master key is then encrypted with a symmetric password encryption key, which is derived from the credentials of the user. There can optionally be a startup key, called a syskey, which can essentially serve as the root of all the keys and can be used to protect all of the master keys on the system. However, by default on a standalone system, the syskey is stored on the system hard disk though obfuscation, where the bits of the key are randomly scattered across the registry. Since this is not secure, it is recommended to move the syskey off of the hard disk, either by putting it on a floppy or by using a password. In this case, either the floppy or the password needs to be provided in order for the system to boot. Currently, there is no support for using a smartcard to store the EFS private key, although based on information that is currently publicly available, there are plans to include this support for Windows Vista.

The issues of protecting the user’s private key and the recovery agent’s private key are mitigated when a system is part of a domain. In this case, the user’s private key is protected by the password encryption key, which is derived from the user’s credentials stored outside the local hard disk. Similarly, the default recovery agent in this system would be the domain Administrator, whose keys would also be stored outside the local hard disk. Therefore, it is often recommended to only use EFS when the system is part of a domain.

Some other issues in EFS regard cases where plaintext can accidentally be left on the hard disk. For example, if an existing file is encrypted individually, a temporary backup of the non-encrypted version of the file is made for recovery purposes if the encryption fails. However, when the temporary file is deleted, it is not physically guaranteed to be wiped from the disk. Therefore, it is recommended to only mark folders as encrypted and create new files directly in the folder, so that no backup is required.

EFS also has the limitation that it cannot encrypt system files, the registry, the file names, or the paging file. Unencrypted system files are a concern because this allows an attacker to begin booting the operating system, which give the attacker a starting point for attacking the system. Not encrypting the file names may not be desirable because it may give the attacker some information regarding which files exist and the overall directory structure. Finally, an unencrypted paging file may allow a case where sensitive data can unintentionally be physically written to disk if it appears in pageable memory, and that memory is paged to disk.
Volume Based Encryption

In order to address some of the issues with EFS, another approach is to provide encryption at the volume level, which is underneath the file system. One approach, which is common among third-parties, is to allocate an encrypted volume as a file that sits on top of the file system. For example, there could be four levels in the storage stack:

· At the top is the file system used for the encrypted volume.

· Next, is a virtual file block driver, which is where the encryption occurs. The block driver is backed by a file that sits on the file system in the next layer below it. This driver presents a standard block driver interface so that a file system can be used above it.

· Next, is the actual file system where the encrypted volume lives.

· Finally, the actual block driver for the storage media, such as hard drive.

The encrypted volume appears as a virtual drive and is assigned a mount point, such as a drive letter. Applications can interface with the encrypted volume in the same way as normal file I/O is done. The driver that manages the encrypted volume is decoupled from the file system, so it can typically work on top of any file system, such as FAT or NTFS. The volume can also be easily copied to a portable storage device, such as a USB disk-on-key or a storage card.

It also has the benefit of encrypting the entire volume, so in addition to encrypting the file data, the file names and directory structure are also encrypted. Also, the private key used to encrypt the symmetric key are protected independently of the user logon password. This has the advantage of protecting the encrypted contents in the case that the user logon password is compromised. However, it is done at the expense of having separate key management outside of the operating system. Also, these solutions often have the limitation of having to hard-code a fixed size for the volume up front, not providing the seamless integration that a solution such as EFS offers, and not allowing a full encryption of the entire system volume.
Full Volume Encryption in Windows Vista

In order to solve the problems mentioned before related to EFS and some third-party solutions, Microsoft is providing full volume encryption support for Windows Vista. While the specifications haven’t been finalized, there is enough information publicly available to understand how this new feature works conceptually and the benefits that it provides.

The Full Volume Encryption takes advantage of a Trusted Platform Module (TPM), which is a microcontroller typically on the motherboard which stores keys and other information used to protect the system. This allows the top level root key to be stored off of the hard drive in the TPM. This root key is used to encrypt the disk encryption key, and the disk encryption key is used to encrypt the entire volume. The encryption is done at the block driver level underneath the file system, and therefore everything in the file system is encrypted, including the system files, registry, page file, and the syskey. The encryption is based on block encryption, where a block corresponds to a sector. Full Volume Encryption provides a comprehensive solution that is both transparent to the user, as well as doesn’t have the caveats or issues associated with EFS.

The Full Volume Encryption is tied with the Secure Startup feature, which ensures the boot integrity of the Windows volume. Secure Startup ensures that none of the boot code or critical system files have been tampered with offline since the last successful boot. Therefore, the encrypted volume is bound to a specific copy of the Windows operating system. Alternate copies of Windows or other operating systems cannot access the encrypted volume.

The verification of the boot process is done to ensure that Windows will be booting to a secure system before the TPM allows access to the protected keys. This is done by taking measurements of critical information at each step of the boot process. This information essentially provides a unique snapshot of the boot process and includes information such as the boot code, the boot data, the master boot record (MBR), and the partition table.
The TPM contains the necessary engines for managing this process, such as an engine for SHA-1 hashing, a key generation engine, and a RSA engine. The hashes of these measurements are taken using SHA-1 and stored in registers in the TPM. Before executing any boot code, the code measurements are hashed and checked against the hash of the measurements for a previous secure boot, which is stored in a secure storage area. If the hashes don’t match, then the system fails to boot. Each step of the boot process is validated and all of the main Windows components are validated before transferring control to the operating system. Once the boot integrity has been validated, the TPM unseals access to the root key, which can be used to decrypt the disk encryption key. From there, the disk encryption key can decrypt any sector on the volume.
The Full Volume Encryption also provides a recovery mechanism, in the case that a hardware failure prevents the system from booting or there is a hard disk corruption of critical code that prevents the integrity check from succeeding. This can also be useful if the hardware changes such that the measurements are different. The recovery data can be stored on a removable storage media or can be released through the use of a password controlled by the administrator. The Full Volume Encryption also has the benefit of providing an easy way to securely destroy all of the contents on a hard drive. Instead of having to perform multiple write passes or physically destroying the hard drive, the TPM key can simply be deleted. Once the TPM key and any recovery data are gone, the contents on the hard drive are unreadable.

Summary
All of the various disk encryption solutions have their tradeoffs. EFS provides a granular control to encrypt individual files and provides the ability to allow or disallow access to encrypted files among multiple users. The Full Volume Encryption requires hardware support, but provides comprehensive encryption on the entire Windows volume and ensures that the system hasn’t been tampered with offline. Third-party solutions allow the ability to target certain scenarios not featured in the built-in solutions. In addition, all of the disk encryption techniques are not mutually exclusive. For example, Full Volume Encryption could be used to protect the system partition with all of the critical keys, while EFS could be used on another partition to allow multiple user access and encryption on only a select set of files. Overall, deploying data encryption requires careful evaluation to determine what information needs to be protected and how the keys are securely stored.
References

Inside Encrypting File System, Part 1

Mark Russinovich http://www.windowsitpro.com/Articles/Index.cfm?ArticleID=5387&Key=Internals
Inside Encrypting File System, Part 2

Mark Russinovich
http://www.windowsitpro.com/Articles/Index.cfm?ArticleID=5592&Key=Internals
How Encrypting File System Works

http://technet2.microsoft.com/WindowsServer/en/Library/997fdd99-73ec-4041-9cf4-1370739a59201033.mspx
The Encrypting File System – How Secure is It?

Howard Wright
http://www.sans.org/rr/whitepapers/win2k/211.php
Wikipedia - Disk encryption

http://en.wikipedia.org/wiki/Disk_encryption
Wikipedia - Disk encryption software

http://en.wikipedia.org/wiki/Disk_encryption_software
Secure Startup - Full Volume Encryption: Technical Overview

http://www.microsoft.com/whdc/system/platform/pcdesign/secure-start_tech.mspx
