Attacks on the RSA Cryptosystem
Scott Nelson

CSEP 590 06wi

Final Project

1 Introduction

There has been much research and many publications on attacks on the RSA Cryptosystem. I will present a summary of known attacks.

It has not been shown that a devastating attack can be conducted in a reasonable amount of time on a correctly implemented RSA. However, there are many attacks on poor or naïve implementations. Boneh [1] writes a great survey of these attacks, and this paper merely summarizes them. No new research findings are presented.
First, let’s briefly refresh Rivest, Shamir, and Adleman’s RSA function [2] and define the notations used in the rest of this paper. Each new term is bolded on its first occurrence. RSA involves a large integer N which is a product of two similar sized primes p, q. There are two more integers e, d that satisfy ed = 1 mod φ(N) where φ(N) = (p-1)(q-1). The public key is pair <e,N>, and the private key is pair <d,N>. To encrypt a plaintext message M into ciphertext C, C = M^e mod N. To decrypt, M = C^d mod N. In role play, Alice may wish to send Bob encrypted information that malicious attacker Marvin will try to attack.
RSA also supports signatures [2]. The decryption key can sign an M that only the encryption key can verify. Digital signatures are a way for an entity to bind its identity to a piece of information [3].
Knowing <e,N>, if Marvin can factor N then d can be computed in a reasonable amount of time. Likewise, knowing <e,d,N>, then Marvin can factor N. These two known properties will be used to show some unsafe RSA implementations.
2 Attacks

The RSA function is an example of a one-way trapdoor function (definition here [3]). It is not known to be easily invertible without the trapdoor, d. General attacks on RSA involve trying to compute d, or some other way to get to M. We will even discuss a way to forge a signature if Alice is not careful. Marvin may know only <C, e, N>, or <C,M,e,N> (known plaintext/ciphertext). RSA will be shown to hold up to all known attacks.
2.1 Brute Force, Factoring N, computing eth root modulo N
Given <C, e, N>, Marvin can do a brute force search to find M. But factoring N involves a much smaller search space and thus, more efficient to do. Factoring is a well researched problem. Pomerance [4] has an interesting introduction into what clever methods can be done. For example, how to factor 8051? Naïve approach is trying all primes up to square root of 8051, or almost 90. Clever trick is to find a square of primes that subtract to the number, example 90^2 – 7^2 = 8051. Thus (90 – 7) * (90 + 7) = 8051; 83 & 97 are the factors. However, this trick is only easy if factors are close to square root of the number. There are only a very small set of numbers where this is true. But much more sophisticated methods are known. Currently the general number field sieve is the best known running time with, reported by Boneh [1], a time on n-bit integers of Exp((c + o(1))n^1/3 log^2/3 n) for some c < 2.
To be complete, Peter Shor [5] has shown a quantum computer has a polynomial time algorithm for factoring integers. But engineering a quantum computer still has a way to go, so RSA is safe for now.
RSA security depends on the computation to be unreasonable for 1) the factoring of N, and 2) computing the eth roots modulo N. The first is fairly well researched and complexity is understood. However, the second is an open question. It has not yet been proven that taking the eth roots modulo N is at least as hard as factoring N. This means RSA security has not been proven to be at least as hard as factoring. But it has withstood time and a large amount of research, which is encouraging that it will stay secure well into the future.
2.2 Elementary misuse of RSA

Fixing N. One blatant misuse of RSA would be using the same modulus N for all users. So instead, have a central authority issue out unique e,d pairs to each user. This sort of works, in the fact that C1 = M^e1 mod N can only be decrypted with corresponding pair d1. So a different user with e2,d2 doesn’t appear able to decrypt. But from the property that knowing <e,d,N> you can factor N, then the game is over. Any user can use their ei,di pair to factor N. Then, given any other user’s ej and the factors of N, dj can be computed. RSA key pairs should never use the same N twice.
Signature forgery can be done with a technique called blinding. If Alice ever “blindly” signs M, then Marvin might be able to forge Alice’s signature. If Marvin sends evil plaintext M for Alice to sign, it’s easy to assume Alice would reject and not sign it. But what if Marvin sends a random, harmless looking M? Depending on the implementation, Alice might be fooled and sign it. Marvin then can take advantageous of this is by generating M’ = r^e M mod N, for some random r. If Alice provides a signature, S’ on M’, then Marvin can compute Alice’s signature S for M by S = S’/ r mod N. Proof:
S = S’ / r mod N

 = M’^d / r mod N

 = (M r^e)^d / r mod N

 = M^d r^ed / r mod N

 = M^d r/r mod N

 = M^d mod N

Alice should never freely sign a random M.
2.3 Low private exponent

Having a low private exponent d will reduce decryption and signature computing costs. However, too low of a d is insecure. Boneh [1] describes approximations using fractions can allow Marvin to solve for a small d that is d < 1/3 N^1/4. If N is 1024 bits, then d should be at least 256 bits long.
2.4 Low public exponent
Having a low public exponent will reduce encryption and signature validation computing costs. However, too low of an e is also insecure. Today’s standard e is set at 2^16 + 1. This is a large enough value to avoid attacks and needs only 17 mod multiplications for M^e mod N using repeated squares.
But if a very small e is used instead, it can be subject to attacks such as Hastad’s Broadcast Attack. If the same M is encrypted with many users <e,N> keys and broadcasted out, Marvin can collect each and compute M. If all users have the same e, then Marvin needs to collect at least e messages. Restating Boneh [1], take example if e=3:
C1 = M^3 mod N1, C2 = M^3 mod N2, C3 = M^3 mod N3

M < {N1, N2, N3} thus M^3 < N1N2N3

Using CRT C1C2C3 = M^3 mod N1N2N3, thus taking cube root of C1C2C3 gives M.
Stronger attacks are also known on a small e. If you pad M in the above scenario to make it unique for each message, then the broadcast attack fails. But Hastad shows if the padding scheme is a public, fixed polynomial function it doesn’t defend from the attack. Franklin-Reiter found an attack on two related messages encrypted with same modulus in time quadratic to e. And Coppersmith took it farther to show an attack on same messages that used a short, random pad (1/9th the size of M). So using a small e is not wise.
To defend against all above low public exponent attacks, large e such as the standard 2^16 + 1 should be used. A good randomized pad also helps make random M’s to remove relationship amongst messages.
2.5 Implementation

Timing attacks and power cryptanalysis have been shown to analyze the computation of RSA decryption to derive the private key d, one bit at a time. For example the “repeated squaring algorithm” does a round of computation for each bit of d. If the bit is 1, then an additional multiplication mod N is performed. Thus, analyzing the timing/power to determine the operations can give away d. To prevent, fix the algorithm to provide the same timing and power for each bit of d regardless of 0 or 1.
If using the Chinese Remainder Theorem (CRT) to speed up computation, a random fault could expose secrete key d on a signature. With CRT to compute M^d mod N, you instead work with M^d mod q and M^d mod p to reduce the computation time by working with smaller modulus. However, if a random fault happens in only one of the equations, then Marvin can figure out one of the factors of N. If a fault happened in M^d mod q, then for the final produced C, Marvin would observe C^e does not equal M mod N. Now C^e = M mod q is also not true, but C^e = M mod p is. Thus gcd(N, C^e – M) exposes a factor of N… To prevent, use random padding so Marvin doesn’t know M. Or, double check the signature to observe faults before releasing.
3 Conclusion

RSA has withstood the test of time and much research as being secure. Its security depends on factoring large integer N and taking the eth root modulo N as not being computable in any reasonable amount of time. So far, this has been a safe and secure bet.
On the other hand, poor or naïve implementations of RSA have been shown to be insecure. Engineers that implement RSA must understand this knowledge to avoid making these mistakes. RSA implemented correctly has been a very successful cryptosystem.
References
[1] D. Boneh. Twenty Years of Attacks on the RSA. Notices of the American Mathematical Society, vol 46(2):203–213, 1999.
[2] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public key cryptosystems. Commun. of the ACM, 21:120-126, 1978.

[3] Alfred J. Menezes, Paul van Oorschot, and Scott Vanstone. Handbook of Applied Cryptography. CRC Press, 1997
[4] C. Pomerance. A tale of two sieves. Notices Amer. Math. Soc., 43:1473-1485, 1996.
[5] P. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SICOMP, Volume 26 Issue 5

pages 1484–1509, 1997.
PAGE
6

