
The Role of Cryptography in
Combating Software Piracy

Jeff Bilger

ABSTRACT

Anti-software piracy techniques such as copy protection reached it’s height in
the late eighties and has been considered a failure by many. An entire cottage
industry arose just to crack and release software as fast as possible, mostly for
prestige. In this paper, I’ll cover why cryptography is well suited1 for use in
anti-software piracy techniques as well as what can cause cryptographic
techniques to fail. I will then briefly cover cryptographic techniques employed
in both early and modern anti-piracy schemes and explain why some failed
while others have significantly deterred piracy.

Introduction
The rationale for deterring software piracy is based on economics. If a company wishes
to maximize their profits they may employ techniques such as copy protection or license
keys in order to delay the time it takes for a cracked copy to become widely available.
Most early attempts at copy protection were based on obfuscation and proprietary disk
formatting techniques. These techniques were easily breakable and provided little in the
way of deterrence, yet they increased the cost of the software. In some cases, software
publishers attempted to use various cryptographic techniques in order to improve their
copy protection, obfuscation, or license key schemes, yet implementation bugs or poor
key management rendered those attempts trivially breakable as well. Even if
cryptographically secure primitives and techniques are used, cost and engineering
tradeoffs can result in unintended consequences such that the cryptographic-based anti-
piracy scheme becomes vulnerable to attack. Despite these challenges, cryptography – if
implemented correctly – is will suited to the task of deterring software piracy as well as
delaying the time it takes for cracked copies to appear.

Why cryptography?
In order to deter software piracy and delay the time it takes for cracked copies of the
software to appear, the cost to defeat the anti-piracy measures must exceed the value of
cracking the software. Obfuscation and proprietary disk formatting techniques alone are
not sufficient deterrents since pirate groups can easily crack software employing these

1 Note: No anti-piracy technique is unbreakable. In the worst case, companies want to increase the time it
takes to crack the software. In the best case, they want the cost of cracking the software to exceed any
benefit.

Jeff Bilger 1

techniques. Additionally, a common complaint users have against copy protection is that
it prevents them from making legitimate backups of their software.

Therefore, techniques that are prohibitive to crack and allow users to copy the software
freely yet only allow authorized users to run the software are desirable. Cryptography is
well suited for this task due to the following cryptographic primitives:

o Digital Signatures
o Encryption
o Hashes
o Key Exchange

Digital Signatures
Digital signatures can be leveraged for multiple purposes. For example, to ensure that the
code being run came from the software publisher, it can be digitally signed by the
publisher. Techniques could then be employed to ensure only the code signed by the
publisher would run on the user’s computer. If pirates cracked the software and by
definition modified some of the code, they could never digitally sign that code since they
do not have the software publisher’s public key. This technique is especially well suited
for game consoles where the manufacturer has a high degree of confidence that software
based debuggers and monitors could not be used.

Encryption
Encrypting the software using public or symmetric key cryptography and a strong key
will provide a means of ensuring confidentiality and increasing obfuscation. However, if
the code will be run on an insecure system such as a PC, techniques such as thwarting
debuggers and monitors must be utilized since the encrypted code must be decrypted in
unprotected memory in order to be executed by the CPU.

Hashes
Hashes can be used to ensure integrity of the code since if the hash of the code was
different from the expected value, this would imply that the code had been modified.
Hashes can also be used to uniquely identify a user’s computer based on the unique
signature of their hardware. This in turn could be used by the software publisher at
activation in order to generate a license key as well as track license key usage. This hash
has the added benefit that the original information used to compute the hash can not be
recovered by the software publisher, thus alleviating privacy concerns.

Key Exchange
In distributed environments (i.e. anything outside a cryptographically secure system)
cryptography can be used to exchange public keys in order to negotiate a symmetric
session key. Once this session key has been agreed on, sensitive copy
protection/verification code can be efficiently transmitted between the user and the game
server over insecure communication links.

Jeff Bilger 2

Any combination of the four cryptographic primitives can be utilized for anti-piracy
purposes instead of relying on copy protection mechanisms. However, their efficacy is a
function of the type of system the software being protected will be run on. In an insecure
environment (such as a typical PC) an adversary will normally be able to access the RAM
where the code is executing. As a result, they could use real time debuggers or monitors
to reverse engineer and bypass the anti-piracy measures. In contrast, proprietary devices
such as game consoles can have cryptographically secure areas (such as RAM) where the
code executes. In such an environment, real-time debuggers or monitors would be of little
use.

If implemented correctly, cryptographic techniques can make bypassing anti-piracy
mechanisms prohibitive yet still allow legitimate users to backup their software.
However, care should be taken since vulnerabilities can easily be introduced due to
engineering tradeoffs and poor key management practices.

What can cause cryptographic techniques to fail?
Although the individual primitives of a cryptographic-based anti-piracy scheme may be
secure, the protocol that employs these components can be is exploited. Additionally,
engineering trade-offs and bugs in the cryptographic routines will have a significant
impact on the efficacy of any anti-piracy solution.

Brute force attacks and cryptanalysis techniques are infeasible unless poor choices have
been made regarding the size of the key, the key value, or the cipher algorithm used. As a
result, an adversary will usually focus their attention on exploiting the cryptographic
protocols or looking for weaknesses due to engineering trade offs.

Engineering Trade offs
Cost is the major factor in causing poor engineering trade off decisions. However, the
capabilities of the target system which will run the software can also force engineers to
make concessions regarding implementation decisions. For example, if the CPU is too
slow or concurrent capacity is an issue, it may force the engineers to reduce the size of
the key so that encryption/decryption operations take less time. If the size of RAM or
ROM is not sufficient to store code, data, and required cryptographic routines,
compromises must be made. Additionally, power consumption issues may force
engineers to decide to not encrypt data over high speed busses.

Bugs and poor implementation
Introducing bugs when developing cryptographic-based algorithms and protocols is likely
because of all the nuances of implementing cryptography correctly. Poor implementation
decisions such as choosing algorithms that have previously been broken (SHA-1) or
using cryptographically insecure ciphers such as substitution ciphers can be easily
detected and exploited by an adversary. Moreover, choosing a poor pseudo-random
function can result in reducing the strength of the chosen key since an adversary could
detect that not all bits are equally likely to change.

Jeff Bilger 3

Poor key management
The most cryptographically secure systems are only as secure as the private keys.
Compared to designing and implementing secure, bug free cryptographic algorithms and
protocols, key management is considered more difficult. The following key management
issues can considerably reduce and, in some cases, nullify the benefit of utilizing
cryptography:

 Poor key generation (can reduce the strength of the key)
 Poor key choice (exploitable by dictionary attack)
 Bribery (why perform cryptanalysis when you can pay for the key?)
 Storing the keys in an insecure manner (keys can be easily compromised)
 Transferring keys in an insecure manner (keys can be easily compromised)

Examples of cryptography in anti-piracy schemes
Since the early 1980’s software publishers attempted to incorporate cryptographic
techniques in the hope that it would reduce piracy. Despite their efforts, most attempts
failed due to poor implementations or engineering trade offs.

Alternate Reality (1985)
This game was one of the first that used cryptographic techniques in order to make it
more difficult to crack. This is significant since the computer it was designed to run on
only had a 1.8MHz CPU and 48K bytes of RAM. It implemented a simple Block Chained
multi-encryption cipher based on Leventhall/Seville cryptography (designed by Dr. Carl
Meyer of Lucifer and DES fame). Unfortunately, the pre-generated keys were stored in
minimally secured memory and disk. Additionally, the seeds used by the encryption
routine suffered from a flaw such that if both seeds were zero, the plaintext code would
not be encrypted in memory.

Despite these flaws, it was one of the most difficult software titles to crack of its time.

Windows Product Activation for XP RC1 (2001)
Activation was partly based on the hash of a set of 10 predefined hardware components.
If more than 3 hardware components changed after activation, the user was forced to
reactivate the product. Tests showed that you could easily modify the identifying traits
for 6 of the 10 predefined hardware components. As a result, if the new computer you
installed a pirated copy of Windows XP on had the same amount of RAM as the original
then you could effectively defeat WPA.

Xbox (2001)
The cracking of the Xbox is the conical case of exploiting engineering tradeoffs in order
to break a seemingly cryptographically secure system2. Microsoft knew they would lose
money on the Xbox hardware itself so their business model was based on selling games.
As a result, their design was centered around reducing the manufacturing cost of the

2 The boot code used on the Xbox was encrypted with RC-4 and a 128 bit key so a brute force attack was
not feasible.

Jeff Bilger 4

Xbox hardware while providing a cryptographically secure system in which only
authorized software3 could be executed on the hardware. Due to economic pressures, the
following engineering tradeoffs ultimately resulted in the Xbox being compromised:

 All Xbox’s used the same secret key.
 The secret boot code and secret key were stored in ROM on an existing custom

chip instead of on the CPU itself, thus requiring these two chips to communicate
sensitive information via a high performance bus.

 The high performance bus, which was used by the cryptographically secure
components to communicate, was not encrypted.

 The custom chip used to store the secret boot code and secret key only had 512
bytes of ROM available. This was insufficient to contain all the necessary
cryptographic logic, resulting in the designers incorrectly relying on RC44 as a
hash as well as using a constant checksum value to ensure validity of the boot
code.

Despite the perceived security of the system, a hacker was able to capture the trace
activity on the bus between two of the cryptographically secure custom chips. Since this
bus was not encrypted, the hacker was able to reverse engineer the secret boot code as
well as recover the secret RC4 key. Since the secret boot code was not hashed, it was
possible for hackers to patch the boot code to suit their needs. This allowed hackers to
run any software (authorized or not) on the Xbox.

As a response, Microsoft fixed some bugs and changed the RC4 secret key. Even though
they replaced the use of a constant checksum with a hash in the secret boot code ROM,
they made a poor choice in algorithms and used the Tiny Encryption Algorithm (TEA) to
compute the hash. This was a poor choice because as early as 1997, it was known that
TEA was insecure if used to compute hashes.

Other vulnerabilities existed that allowed the anti-piracy measures to be bypassed such as
the MIST attack and Visor backdoor5.

Valve Corporation’s Steam platform
The Steam platform leverages both cryptographic techniques as well as required online
registration in order to authorize and activate the software that Valve distributes.
Although some cracks have appeared, the platform has allowed Valve to quickly detect
and address the specific threats as they appeared.

During activation (which requires a Steam account), the user must authenticate their copy
of the software by providing the license/CD key. Once authenticated, the RSA-encrypted

3 In order to maximize software sales, Microsoft wanted to prevent users from running other OS’s (Linux)
on the subsidized Xbox hardware, prevent users from running PC software titles, as well as prevent the
running of unauthorized or copied versions of Xbox games.
4 Unfortunately, RC4 can not be used to calculate hashes, although RC5 can.
5 For more information, see http://tinyurl.com/ff9r6

Jeff Bilger 5

http://tinyurl.com/ff9r6

game code is downloaded from Value’s servers, installed, and decrypted on the client’s
machine at runtime in RAM.

Conclusions
Software piracy is difficult to stop, especially on open systems where adversaries can
utilize debuggers and monitors in order to bypass anti-piracy mechanisms. However by
employing cryptographic techniques, software publishers can delay the time it takes for a
cracked copy to become widely available, thus maximizing profits. Additionally,
cryptographically secure server-based activation and authorization techniques can allow
software publishers to detect and respond to unauthorized software use. Care should be
taken because if cryptographic techniques are not implemented correctly, or if poor
engineering tradeoffs are made, the cryptographic system or protocols can be vulnerable
to attack.

Jeff Bilger 6

References
Schneier, Bruce. Applied Cryptography. John Wiley & Sons, 1996.

Hartman, Mike. “Windows Product Activation compromised.”
http://www.tecchannel.de/client/windows/401701/index.html, 2001.

Steil, Michael. “Mistakes Microsoft Made in the Xbox Security System.”
http://tinyurl.com/ff9r6, 2005.

BBC News. “Ban Hits Half-Life 2 pirates hard.”
http://news.bbc.co.uk/2/hi/technology/4041289.stm, 2004.

Jeff Bilger 7

http://www.tecchannel.de/client/windows/401701/index.html
http://tinyurl.com/ff9r6
http://news.bbc.co.uk/2/hi/technology/4041289.stm

