
Attestation and Trusted Computing

Abstract
A look at the cryptographic techniques and protocols used in trusted computing with particular 
attention to remote attestation.

CSEP 590: Practical Aspects of Modern Cryptography
March 2006
J. Christopher Bare



Introduction
Trusted computing, in some form, is almost certain to become part of the computing 
landscape over the next few years. This is because email viruses, trojans, spyware, 
phishing scams, key-stroke loggers, and security exploits are so much a part of the 
landscape already.

The current computing infrastructure was built with a premium on openness and 
interoperability which has paid huge dividends in terms of creativity and innovation. But, 
the same openness is somewhat problematic for security. Experience has shown that the 
access control model of present operating systems is inadequate against many types of 
attacks particularly in the hands of inexpert users.

Previous attempts to roll out cryptographic infrastructure to a mass-market have met with 
limited success.[10] The various competing visions of trusted computing seek to strike a 
workable balance between enhanced security and openness and backward-compatibility.

One component of trusted computing that has attracted particular attention is remote 
attestation. Attestation allows a program to authenticate itself and remote attestation is a 
means for one system to make reliable statements about the software it is running to 
another system. The remote party can then make authorization decisions based on that 
information.

This paper will look at the cryptographic techniques and protocols used in trusted 
computing with particular attention to remote attestation.

Trusted Computing
The term trusted computing applies to a number of distinct proposals and initiatives with 
the general goal of engineering more security into commodity computing systems. The 
Trusted Computing Group (TCG)[1] is an industry coalition with the goal of creating 
standards and specifications. Microsoft is a member of the TCG and has its own 
initiative, Next Generation Secure Computing Base (NGSCB), formerly called 
Palladium.[2,3]

Some generally agreed upon features of trusted computing are:
● secure boot allows the system to boot into a defined and trusted configuration.
● curtained memory will provide strong memory isolation; memory that cannot be 

read by other processes including operating systems and debuggers.
● sealed storage allows software to keep cryptographically secure secrets.
● secure I/O thwarts attacks like key-stroke loggers and screen scrapers.
● integrity measurement is the ability to compute hashes of executable code, 

configuration data, and other system state information.
● remote attestation allows a trusted device to present reliable evidence to remote 

parties about the software it is running.

1



We will look most closely at integrity measurement and attestation, as well as the 
security coprocessor that serves as a local root of trust for these operations. The security 
coprocessor, or Trusted Platform Module (TPM), is a tamper resistant piece of 
cryptographic hardware built onto the system board that implements primitive 
cryptographic functions on which more complex features can be built.

The TPM has the following capabilities:
● performing public key cryptographic operations
● computing hash functions
● key management and generation
● secure storage of keys and other secret data
● random number generation
● integrity measurement
● attestation

The TPM is manufactured with a public/private key pair built into the hardware, called 
the endorsement key (EK). The EK is unique to a particular TPM and is signed by a 
trusted Certification Authority (CA).

Integrity Measurement
Measurement is the process by which information about the software, hardware, and 
configuration of a system is collected and digested. At load-time, the TPM uses a hash 
function to fingerprint an executable, an executable plus its input data, or a sequence of 
such files. These hash values are used in attestation to reliably establish code identity to 
remote or local verifiers.

The hash values can also be used in conjunction with the sealed storage feature. A secret 
can be sealed along with a list of hash values of programs that are allowed to unseal the 
secret. This allows the creation of data files that can only be opened by specific 
applications.

2

Trusted Platform Module Architecture [1]



Attestation
Attestation is a mechanism for software to prove its identity. The goal of attestation is to 
prove to a remote party that your operating system and application software are intact and 
trustworthy. The verifier trusts that attestation data is accurate because it is signed by a 
TPM whose key is certified by the CA.

A basic remote attestation protocol looks something like this[4]:

1. The application “A” generates a public/private key pair PKA & SKA and 
asks the TPM to certify it.

2. The TPM computes a hash value #A of the executable code of program 
“A”.

3. The TPM creates a certification including PKA and #A and signs it with 
the attestation identity key SKAIK.

4. When application “A” wishes to authenticate itself to a remote party, it 
sends the cert. of its public key and hash value #A along with a cert. 
issued to the TPM by a trusted certification authority (CA).

5. The remote party to verifies the cert. chain.
6. The remote party looks #A up in a database which maps hash values to 

trust levels.
7. If application “A” is deemed trustworthy, we continue the communication, 

probably by using PKA to establish a session key.

3

Platform

TPM

Verifier
Application A
generates PK

A
 & SK

A

2) computes hash #A

3) Cert{PK
A
, #A}SKAIK

4) CertAIK{PK
A
, #A}, CertCA{PK

AIK
}

6) looks up #A in DB

5) verifies the signatures

7) ...

PK
TPM

 & SK
TPM

 
(Endorsement key)

1) PK
A

DB

#A “ok”

PKAIK & SKAIK

(Attestation Identity Key) 



The attestation protocol can be run bidirectionally to allow mutual authentication. For 
example, a bank wishes to ensure the integrity of the client and the client would like to be 
sure that they are not connecting to a phishing site.

A more complex protocol might provide the verifier with evidence of the whole software 
stack including the firmware, OS, and applications. An example of an integrity 
measurement from a Linux based implementation of trusted computing is shown[7].

Remote Policy Enforcement
The decision of which applications and platforms to trust is a security policy decision. 
Attestation gives computing entities the ability to accept connections only from those that 
agree to enforce their policies. A corporate VPN, which is concerned about attacks from 
compromised clients, may wish to accept connections only from clients running a 
verified OS at a specified patch level and running a firewall program with a sufficiently 
strict set of configuration rules. Attestation provides the means to enforce these kinds of 
policies.

The policies enforced through attestation are entirely arbitrary. They are limited only by 
the ability to express them either in code or configuration files. We could even imagine 
policy being expressed in a domain specific language and an automated negotiation 
process taking place between two communicating entities. The negotiation could 
establish whether their respective policies are compatible and on what terms and with 
what restrictions they can interoperate. One example of work is being done in this area is 
the Web Services Policy Language specification.

Privacy Concerns
The above protocol raises privacy concerns. The fear is that the attestation key and its 
certificate can be used to track activity and compromise privacy. Originally, a trusted 
third party was proposed that would provide anonymized identity services to users. The 
trusted third party would issue certified attestation keys that were not directly traceable to 
the device and could issue multiple attestation keys to a device in order to prevent 
correlation. Due to problems with this proposal, another protocol was developed that 
provides a anonymity without the need for a trusted third party[11].

4

#000: BC...AB (bios and grub stages aggregate)
#001: A8...5B grub.conf (boot configuration)
#002: 1238A...A22D1 vmlinuz-2.6.5-bk2-lsmtcg
#003: 84ABD...BDA4F init (first process)
#004: 9ECF0...1BE3D ld-2.3.2.so (dynamic linker)
...
#439: 2300D...47882 persfw user (client policy agent)
#440: BB18C...BDD12 libpdauthzn.so (policy client libraries)
#441: D12D9...829EE libpdcore.so
...
#453: DF541A...BE160 local.conf (policy agent)
#454: 6AC585...DC781 authzn persfw.db (policy db)
...



Direct Anonymous Attestation
The direct anonymous attestation (DAA) scheme[6] requires an initial interaction with a 
DAA issuer to obtain a certificate for a DAA key. Unlike the trusted third party scheme, 
this need be performed only once.

Both the DAA key and the DAA issuer’s signature have a special form. The TPM retains 
a secret unknown to the DAA issuer and must prove to the issuer that DAA was properly 
constructed (ZPK1). This prevents the DAA issuer from correlating the attestation keys 
AIKi with the DAA key. The DAA issuer also proves that his part of the computation was 
executed properly (ZKP2). Thus the DAA issuer need not be trusted.

The DAA key is used to sign attestation keys AIKi generated by the TPM which can then 
be used for attestation. Attestation proceeds normally, with the attestation data signed 
with AIKi.

5

Platform

TPM
DAA Issuer

2) DAA, PKTPM, ZKP1

3) SigIssuer(DAA), ZKP2
PK

TPM
 & SK

TPM
 

(Endorsement key)

1) generates DAA

Platform

TPM

PK
TPM

 & SK
TPM

 
(Endorsement key)

DAA
Verifier

3) AIKi, SigAIKi{#A}

Application A

PKAIKi & SKAIKi

(Attestation Identity Keys) 

1) TPM computes #A

2) TPM computes SigDAA{AIKi, verifier, time}

4) TPM performs a ZKP that establishes
that the TPM posesses:
SigIssuer(DAA) and
SigDAA{AIKi, verifier, time}



The final trick is to prove to the verifier the AIKi is valid. The verifier needs to be sure 
that the TPM does, in fact, possess a DAA key certified by the DAA issuer and the 
signature of AIKi, the verifier’s name, and a timestamp with the same DAA key. The 
DAA key is not revealed to the verifier in this process.

The construction of the DAA key uses a technique related to a group signature key and 
the zero knowledge proofs are based on the exponentiation in a finite field as are Diffie-
Hellman and RSA. The Fiat-Shamir heuristic is used to merge the steps of the zero 
knowledge proofs. 

Limitations of Attestation
In either form, the process of attestation has a few limitations[5]. Attestation can reliably 
tell a verifier what applications are running on a client machine, but the verifier must still 
make the judgment about whether each given piece of software is trustworthy.

The decision to trust a given piece of software will likely be based on a white list – a list 
of software known to be trustworthy. A blacklist would be easily subverted by 
periodically changing a few bytes in a malicious program and might become 
unmanageably large. Auditing software for security and maintaining a database of trusted 
applications is a nontrivial task. Any imaginable vetting process is sure to be expensive, 
cumbersome, and potentially fraught with liability.

Attestation happens at the time executable code is loaded and is therefore unable to 
provide a view into program behavior at run-time. A program may become compromised 
during execution, for example, by a buffer overflow exploit. This will not be visible 
through the attestation mechanism. This risk is partially mitigated by the ability to detect 
and refuse to communicate with a program with known vulnerabilities.

Frequent release of patches or upgrades poses a problem because new approved hash 
values must be propagated to verifiers. If the possible configurations can be restricted to 
monotonically increasing patch level, the problem remains manageable. But, if patches 
may be applied arbitrarily, the number of possible binaries grows exponentially in the 
number of patches.

If TPM keys are compromised, then revocation becomes an issue. In the case of direct 
anonymous attestation, complete anonymity and the ability to detect rogue TPMs seem to 
be opposing goals. Some compromise of anonymity must be made to allow fraudulent 
TPM keys to be detected by verifiers.

Controversy
Trusted computing and attestation are the subject of a raging controversy. Some of the 
arguments are outlined here.

Enabling trusted computing on a device will result in a certain loss of control. An owner 
may even be viewed as an adversary on her own machine. This aspect of trusted 
computing makes some uncomfortable. To address these concerns an “owner-override” 

6



mode has been proposed that would give the owner of the hardware the ability to cause 
the TPM to give false attestation[9].

An adversarial view of the user is, at times, necessary. Trusted computing seeks to defend 
against malicious code running with the permissions of the user. In the utility computing 
use case, a service provider leases computing capacity on a shared data center to outside 
clients. For this type of business to be viable, customers must be assured that their data is 
safe from the owners and administrators of the hardware. The owner specifically wants to 
limit his own privileges. Digital rights management (DRM), controversial in its own 
right, requires this functionality as well.

Attestation is designed to allow remote policy enforcement. These policies may be 
benign or draconian and users will need to assess them carefully. There’s little doubt that 
some will try to abuse them.

For example, an unscrupulous businesses may enact policies that result in vendor lock-in 
[8]. Products from one vendor may refuse to interoperate with those of a competitor. Data 
files can be cryptographically bound to an application and software vendors will have 
little incentive to make it easy to migrate to another brand of software. Reverse 
engineering for compatibility can be rendered impossible.

Competition may be curbed from another angle. In order to establish trust, the software 
on either side of a transaction must be approved by both parties. Given the expense and 
risk of assessing the security of even a moderately complex piece of software, this could 
have the effect of locking out smaller players. For a small but honest software company, 
or open source project, getting a product on the “trusted” list might prove to be an 
insurmountable barrier, thus reducing competition, choice in the software market, and 
garage innovation.

Conclusion
Trusted computing and attestation provides the means for remote policy enforcement. 
Where the user’s and verifier’s interests align this is a good thing. It is clearly in 
everyone’s interest to curtail malicious software. But in situations of opposing interests, 
caution is warranted.

Perhaps what’s needed is a way of allowing the user to specify his own policy and an 
automated way of flagging or rejecting conflicting policy from outsiders. This might be a 
more sensible form of “owner override” than the proposed ability to attest falsely.

Accountability vs. Enforcement
In the trusted computing literature, there are distinct emphases on enforcement 
mechanism and on privacy. It is possible that online rights activists may have over 
emphasized privacy at the expense of other freedoms. Certainly, privacy or anonymity is 
vital in some situations, like voting. But in others, it is not very beneficial. Anonymity 
prevents accountability, and accountability is effective at preventing all sorts of bad 
behavior.

7



For example, if all code had to have a certified signature, we could verify the signature 
when the loading the code. The signer could be held responsible for any back doors or 
malicious behavior of the code. And if the code was modified for nefarious purposes, the 
modification would cause the signature verification to fail. The system could refuse to 
run any programs whose signature did not validate.

In this signed-code scenario, there would be no need for maintaining white lists of hash 
values, at least for ordinary security situations. Obtaining a certified signing key presents 
a much smaller barrier to the small players than an infrastructure that requires explicit 
approval. By default, we trust the program to behave honestly. Yet, we have the means to 
redress any crimes that do occur. 

Where there is accountability, people obey the rules because there are consequences of 
not doing so. The key benefit of accountability is that things don’t have to be locked 
down as tightly. More openness can be preserved.

Acceptance of Trusted Computing
Many, possibly most, users will gladly accept some loss of control in exchange for a 
more secure computing environment. Where the mechanisms of trusted computing are 
abused, users will seek legal remedies or the market remedy of taking their business 
elsewhere. Eventually, consensus or legislation will define accepted standards. 
Cryptography is a powerful tool. The question that remains is how wisely it will be used.

Computer users are conditioned by decades of experience to expect the computer to do as 
it is told. It remains to be seen how people will react the first time their computer says, 
“I’m sorry, Dave, but I’m afraid I can’t do that.”

8



References
[1] Trusted Computing Group, https://www.trustedcomputinggroup.org/.

[2] P. England, B. Lampson, J. Manferdelli, M. Peinado, and B. 
Willman, “A Trusted Open Platform”, IEEE Computer, vol. 36, no. 
7, pp. 55-62, 2003.

[3] M. Peinado, Y. Chen, P. England, and J. Manferdelli, “NGSCB: A 
trusted open system.”, Proceedings of the 9th Australasian 
Conference on Information Security and Privacy (ACISP 2004), 
2004.

[4] T. Garfinkel, M. Rosenblum, and D. Boneh, “Flexible OS Support 
and Applications for Trusted Computing”, Proceedings of the 9th 
Workshop on Hot Topics in Operating Systems, May 2003.

[5] V. Haldar, D. Chandra, and M. Franz. “Semantic Remote Attestation 
– A Virtual Machine directed approach to Trusted Computing”. 
USENIX Virtual Machine Research and Technology Symposium, 
May 2004.

[6] E. Brickell, J. Camenisch, and L. Chen. “Direct anonymous 
attestation”, ACM Conference on Computer and Communications 
Security, pp. 132-145, 2004.

[7] Reiner Sailer, Trent Jaeger, Xiaolan Zhang, Leendert van Doorn, 
“Attestation-based policy enforcement for remote access”, 
Proceedings of the 11th ACM conference on Computer and 
communications security, October 2004.

[8] Ross Anderson, “Cryptography and Competition Policy - Issues with 
Trusted Computing”, 2nd Annual Workshop on Economics and 
Information Security, May 2003.

[9] Seth Schoen, “Trusted Computing: Promise and Risk”, Electronic 
Frontier Foundation, 2003.

[10] P. Gutmann. “PKI: It’s not dead, just resting”, IEEE Computer, 
35(8):41-49, 2002.

[11] E. Brickell, “Direct Anonymous Attestation: Achieving Privacy in 
Remote Authentication”, ZISC Information Security Colloquium, 
June, 2004

9


	Attestation and Trusted Computing
	Abstract
	Introduction
	Trusted Computing
	Integrity Measurement
	Attestation
	Remote Policy Enforcement
	Privacy Concerns
	Direct Anonymous Attestation

	Limitations of Attestation
	Controversy
	Conclusion
	Accountability vs. Enforcement
	Acceptance of Trusted Computing

	References


