Design and Analysis of Cryptographic Protocols

CSE P 590TU: Practical Aspects of Modern Cryptography
Winter 2006

Final Paper

by Alexander Balikov

1. Introduction
Cryptographic protocols are used to provide security guarantees for the exchanged data when multiple parties are communicating in an insecure environment. The need for such security guarantees arises because there are malicious parties who have interest in obtaining or tampering with the exchanged information. Flaws in the security protocols can have disastrous consequences, especially if the protocol is widely used, or the communicating parties are hard to change to use a new protocol. Therefore it is essential to be able to design such protocols in a sound manner and also to be able to prove that they are not susceptible to various kinds of attacks.

There is wealth of information on the internet on the subject of designing and analyzing security protocols. There are whole university courses on this subject. In this work I present a summary of 3 papers on this subject. One is concerned with the taxonomy of the possible protocol flaws. Another one is the seminal work of Burrows, Abadi and Needham – the BAN logic for formally analyzing security protocol. The third paper analyzes some problems with the BAN logic and proposes a new logic which is supposed to solve these problems.

2. Taxonomy of protocol flaws

In order to be able to reason about the soundness of a cryptographic protocols, one needs a systematic approach towards analyzing them. A way to devise such systematic approach is to classify all existing experience – discovered flaws in existing protocols and attacks exploiting such flows. Such classification then can provide guidelines for generalization as well as ideas for designing new attacks and inventing new possible security flaws. Having all this information, one then can analyze a new security protocol by reasoning about the possibility of each known flaw and also by describing how the protocol defends against the possible security attacks.

In [1] the authors present the following taxonomy of protocol flaws:

2.1 Elementary protocol flaws

As the name suggests these seem to be the simplest of the flaws, still they appear in protocols designed by experts in the field. An example of such flaw is in CCITT X.509 authentication protocol where the transmitted message contains data encrypted by the recipient’s public key and then signed by the sender’s private key. In this situation the message does not guarantee that the sender was aware of the transmitted data before signing it. A correct form would be for the data first to be signed and then encrypted.

2.2 Password/key guessing flaws

These flaws stem from not enforcing strong password or using a source with insufficient entropy as a random number generator for symmetric keys. These flaws are not so much protocol flaws, as they are implementation flaws. Still they are useful in noting, especially when the taxonomy is used to analyze a whole distributed system, where the cryptographic protocol is only one part of the means for ensuring security.

2.3 Stale message flaws

These flaws are exploited through replay attacks. The authors of the paper suggest detailed taxonomy of these flaws based on the source of the replayed messages – previous protocol run, parallel protocol run or the same protocol run.

2.4 Parallel session flaws

This is a class of flaws where the exploiting attack requires the adversary to open a parallel protocol session. The authors propose classification based on the number of roles the adversary plays in the message exchange.

2.5 Internal protocol flaws
In the authors own words: “Internal protocol flaws occur when at least one of the protocol participants fails to complete all requisite actions. “. I am not sure how these flaws are different from the elementary flaws.

2.6 Cryptosystem flaws
These flaws result from poor implementation of the underlying cryptographic algorithms.

Next the authors of the paper classify methods for analyzing security protocols. The authors discuss 2 categories – attack construction tools and inference based methods. I will discuss one such inference method in the next section.

3. BAN logic for analysis of security protocols
In [2] M. Burrows, M. Abadi and R. Needham propose formal inference based method for analyzing security protocols. This method, called BAN logic from the names of its authors, has been successfully used to analyze and detect flaws in security protocols. The BAN logic has also become the foundation for other similar logics which attempt to fix some of the problems discovered in it.

The authors use the proposed logic to analyze authentication protocols, though the method is generic enough to be applied to other security protocols too. They claim that it can answer the following questions about a security protocol:

· Does this protocol work? Can it be made to work?

· Exactly what does this protocol achieve?

· Does this protocol need more assumptions than another protocol?

· Does this protocol do anything unnecessary?

Below I provide short summary of the BAN logic.

3.1 The BAN logic formalism

The BAN logic is essentially a propositional logic. The objects are principals, keys and formulas. The BAN logic does not distinguish between messages and formulas. The logic has the following constructs:

P believes X, or P would be entitled to believe X. In particular, the principal P may act as though X is true. This construct is central to the BAN logic.

P sees X. Someone has sent a message containing X to P, who can read and repeat X (possibly after doing some decryption).

P once said X. The principal P at some time sent a message including the statement X. It is not known whether the message was sent long ago or during the current run of the protocol, but it is known that P believed X when he sent the message.

P has jurisdiction over X. The principal P is an authority on X and should be trusted on this matter. This construct is used when a principal has delegated authority over some statement. For example, encryption keys need to be generated with some care, and in some protocols certain servers are trusted to do this properly. This may be expressed by the assumption that the principals believe that the server has jurisdiction over statements about the quality of keys.

The formula X is fresh, that is, X has not been sent in a message at any time before the current run of the protocol. This is usually true for nonces, that is, expressions generated for the purpose of being fresh. Nonces commonly include a timestamp or a number that is used only once, such as a sequence

number.

P and Q may use the shared key K to communicate. The key K is good, in that it will never be discovered by any principal except P or Q, or a principal trusted by either P or Q.

P has K as a public key. The matching secret key (the inverse of K, denoted K-1) will never be discovered by any principal except P, or a principal trusted by P.

The formula X is a secret known only to P and Q, and possibly to principals trusted by them. Only P and Q may use X to prove their identities to one another. Often, X is fresh as well as secret. An example of a shared secret is a password.

Formula X encrypted under the key K.

X combined with the formula Y ; it is intended that Y be a secret, and that its presence prove the identity of whoever utters <X,Y>. In implementations, X is simply concatenated with the password Y ; our notation highlights that Y plays a special role, as proof of origin for X. The notation is intentionally reminiscent of that for encryption, which also guarantees the identity of the source of a message through knowledge of a certain kind of secret.

The BAN logic also introduces some inference rules:

Message-meaning rules:

P believes (K is a shared key for P, Q) and P sees (X encrypted by K) => P believes Q said X

P believes (K is Q’s public key) and P sees (X encrypted by Q’s private key) => P believes Q said X

P believes (K is shared secret between P and Q) and P sees (K combined with Y) => P believes Q said X

Nonce verification rule:

P believes (X is recent) and P believes (Q said X) => P believes Q believes X.

Jurisdiction rule:

P believes (Q has jurisdiction over X) and P believes Q said X => P believes X

 Belief in sets of statements vs. belief in a single statement:

P believes X and P believes Y => P believes (X and Y)

P believes (X and Y) => P believes X

P believes (Q believes (X and Y)) => P believes (Q believes X)

P believes (Q said (X and Y)) => P believes Q said X

Rules defining that if a principal sees a formula, then it also sees its components provided it knows the appropriate keys:

P sees (X and Y) => P sees X

P sees (X combined with secret Y) => P sees X

P believes (K is a shared key for P,Q) and P sees (X encrypted by K) => P sees X

P believes (K is Q’s public key) and P sees (X encrypted by K) => P sees X

P believes (K is Q’s public key) and P sees (X encrypted by K-1) => P sees X

3.2 Protocol idealization in the BAN logic

In order to analyze a specific protocol using BAN logic, one first needs to transform the protocol description in “idealized form” – write down the protocol in the language of BAN logic. Only the encrypted messages are written down – the clear text data exchanges are omitted, since the authors claim that they do not contribute anything to the beliefs of the participating parties.

Also, the assumptions about the initial state of the protocol are described as statements in the BAN logic. These typically include statements of the the type “the centralized ticket server S has jurisdiction over the keys it generates”, etc.

3.3 Protocol analysis using BAN logic

Once the protocol and the initial assumptions are expressed as formulas in the BAN logic, the inference rules can be applied to construct new formulas. The inference is a mechanical process and could be performed by computer – similar to Prolog program execution. The protocol is proven to be correct if certain target formulas are deduced. For authentication protocols, the authors suggest:

A believes (K is a shared key between A and B)

B believes (K is a shared key between A and B)

Or a stronger statement:

A believes B believes (K is a shared key between A and B)

B believes A believes (K is a shared key between A and B)

The paper demonstrates analysis of the Otway-Rees and Needham-Schroeder authentication protocols.

4. A critique of the BAN logic
In [3] the authors analyze the deficiencies of the BAN logic. They propose a new logic which is supposed to address some of the concerns.

The major problems with BAN logic are:

4.1 Problems with protocol idealization

The BAN logic requires the protocol description to be rewritten in the language of the logic. The problem is that there are no formal rules how to achieve this. In the process of translation from one expression language into another, the semantics of the protocol could be slightly changed, but still enough to hide flaws of the protocol. Indeed the translation errors can be very subtle – the authors of the BAN logic in [2] present analysis of the Otway-Rees protocol and prove its correctness, but in [3] is shown that the protocol is flawed.

4.2 Problems with the belief constructs of the BAN logic

In [3] the authors point out that the BAN logic does not distinguish between messages and formulas. They show that this can lead to dangerous deductions. The authors propose a change to the logic – introducing stronger types, in order to fix this problem.

4.3 Problems with protocol assumptions

The authors of the critique point out that in order for the BAN logic to perform the deductions, one has to write down all protocol assumptions. Similarly to the problem with the idealization of the protocol, writing down the assumptions is not formalized and can lead to incorrectness of the proofs.

4.4. Problems with confidentiality

The authors note that the BAN logic reasons about what the parties can believe, but does not provide ways to reason about the confidentiality of the protocol – the fact that the session keys are distributed only to those parties which ae supposed to get them. Even though this seems like a trivial problem, the concern is that the logic may fail to notice similar flaws in more complex protocols.

In the paper the authors note that BAN logic is very useful for finding flaws in security protocols – when it finds a flaw, typically it is a real issue and everyone believes it. The flaw can be easily modeled and verified. When the logic does not find a flaw and thus essentially proves a protocol, this result should not be fully trusted.

5. Conclusion
In this work I presented an overview of 3 papers which I find over the internet on the subject of design and analysis of security protocols. The subject is big and there is wealth of information on it.

These papers answered a question I knew nothing about before – how to formally analyze a security protocol.

After reading these papers leave with the understanding that there exist formal ways to analyze complex security protocols and that they work at least in finding convoluted security flaws. Still, I think these methods are not 100% fail proof. If they fail to find a flaw, this does not necessarily mean that there isn’t one. Also, I think they reason about the class of attacks we currently know. Tomorrow a new type of attack may be invented which will not be covered by these methods.

Another point is that the protocols are part of complex distributed systems. Even if the protocol is successfully analyzed, complex systems have many other dimensions which need to be covered by formal analysis. To analyze a complex distributed system, one has to apply a whole arsenal of different methods.

6. References

1. Stefanos Gritzalis and Diomidis Spinellis. Cryptographic protocols over open distributed systems: A taxonomy of flaws and related protocol analysis tools. In Peter Daniel, editor, 16th International Conference on Computer Safety, Reliability and Security: SAFECOMP '97, pages 123–137, Berlin, September 1997. European Workshop on Industrial Computer Systems: TC-7, Springer Verlag
2. Michael Burrows, Martín Abadi, Roger M. Needham: A Logic of Authentication. ACM Trans. Comput. Syst. 8(1): 18-36 (1990)
3. Mao W., Boyd C., Towards formal analysis of security protocols, Proceedings of the 1993 IEEE Computer Security Foundations Workshop VI, (1993) 147-158, IEEE Computer Society Press.

4. Martin Abadi and Roger Needham. Prudent engineering practice for cryptographic protocols. IEEE Transactions on Software Engineering, January 1996.

