Scott Anson

CSEP590 Final Project
March 2006

Threshold RSA Cryptography
The RSA algorithm is the predominant mode used today for public-key cryptography, and RSA threshold cryptography systems have been devised by various authors. This paper explores several threshold RSA systems, which can be used for signing documents and decryption among other purposes. For simplicity this paper focuses on signature schemes. Threshold RSA cryptosystems are in use today, for example, the root CA key for MasterCard/VISA's Secure Electronic Transaction system is protected via a threshold RSA scheme [FY98].
The basic goal of public-key threshold RSA cryptography is to efficiently apply RSA on behalf of a group in a way that ensures integrity, availability, and the security of the private key and the modulus factors. Consider a company that needs to use RSA to apply a digital signature with its private key to a document that will be sent outside the company. As noted by Shamir [Des97], an easy way to allow various executives to apply the signature is for each executive to have a copy of the private key, meeting the requirements of efficiency and availability, yet this system is not safe and is corrupted by compromise of a single executive's machine. The opposing approach of requiring the cooperation of all executives in order to sign a check is secure, but is inefficient and lacks availability. Threshold RSA systems propose a middle ground, denoted in this paper as TRSA(k,N), which will allow a threshold of any k out of N participants to perform a private key RSA modular exponentiation , while k-1 parties cannot perform it and in fact are unable to gain information about the private key. An important aspect of the proposed schemes is that the resulting group-generated signature is indistinguishable to a verifier from the RSA signature of a single signer.
TRSA systems come in numerous variants in terms of efficiency, security, and robustness. The basic necessities are the same as other public-key threshold systems and generally consist of the general phases of key and public parameter distribution, partial signature computation by each participant, and then verification and combination of the shares. Some schemes require a pre-computation phase that is a part of the signature phase, based on what subset of the group is participating. The verification and combination phase vary widely among proposed schemes.
RSA's multiplicative homomorphic property lends itself to secret-sharing schemes, but the need to protect the factorization of the modulus N and other complications adds difficulty to threshold RSA as compared to threshold public-key schemes based on the discrete log such as ElGamal. In this paper we first explore the design of threshold RSA schemes due to Frankel & Desmedt [FD92], and then look at a simpler and more robust scheme due to Rabin et.al [GJKR96, Rab98], and lastly a more secure scheme due to Boneh et.al [BF97, MWB99].
1. Preliminaries and Notation for TRSA(k,N)
Let n = pq be the RSA modulus.
A prime p is a safe prime iff p = 2p' + 1 for some prime p'. (Safe primes p and q are often used for group number theory reasons around the difficulty in working with the RSA message space of Z*pq and key space of Z*φ(n)+, namely, groups of unknown order and neither pq nor φ(n) is prime. Safe primes can ease the usage of Shamir's secret sharing technique via polynomial interpolation for RSA)
Let φ refer to Euler's totient function where φ(x) = the number of positive integers less than x that are coprime to x. Note for a prime p, φ(p) = p-1, and that φ(n) = (p-1)(q-1).

Let d be the RSA private key (exponent), such that GCD(d, φ(n)) = 1
Let e be the RSA public key (exponent), such that ed = 1 (mod n)

Let di (or, in places, d_i, to avoid equation editor) be the share of the private key that is given to the ith participant.
Let λ be the Carmichael function, where λ(n) is the smallest integer t such that for all integers x which are relatively prime to n, it holds that xt = 1 (mod n), e.g. the exponent of the multiplicative group of residues modulo n. Note that for all integers x,
xaxb ≡ x(a + b) mod λ(n) (mod n) and (xa)b ≡ x ab mod λ(n) (mod n). When n is the product of two safe primes p and q, then λ(n) = lcm((p-1),(q-1)) = 2p'q' [FD92]. Carmichael numbers satisfy the Fermat prime test but can be discovered by more sophisticated tests like Miller-Rabin. Also note that RSA can be defined using λ(n) rather than φ(n) which is the preference of some authors in order to reduce key share sizes.
2. "k=N" TRSA with a trusted dealer and combiner
While a k=N scenario can appear to be an invalid edge case, and certainly doesn't work well for the executive check-signing scenario, this approach can work well for securing a sensitive CA private RSA key, where perhaps each server has backup server(s) that holds the same share to provide fault-tolerance, and some server maintains the state of which servers represent each share at a given time. In this scheme, assume a trusted dealer that publishes (e,n), and needs to distribute shares of the decryption key d among the k (=N) participants. The dealer can distribute random di's such that d equals the sum of the di's modulo φ(n) [BF97]. Others prefer a method that allows a smaller share to be distributed (for efficiency reasons) by using modulo λ(n) instead of φ(n) [FD92], either is equivalent functionally. To sign a message m, each party computes si = md_i mod n and submits these results to a combiner, who multiplies the si's together to get
s ≡ (md_1 + d_2 + … + d_k) ≡ md (mod n). The secret key is never re-constructed in a single location. [BF97]
3. TRSA with a trusted dealer and combiner, multiple iterations based on work of Frankel & Desmedt [FD92].
3.1 Problem with a straightforward approach
Assume a trusted dealer who generates a modulus n using safe primes p and q, and public and private keys e and d respectively. If the dealer distributes key shares di, λ(n), n, and information of which members are participating in the signing of the message to each member, then a simple scheme can be developed where for each valid subset B of signers, they compute a "modified share" which is a function of di and B, denoted a(i,B) such that Σ for all i in B a(i,B) = d-1 (mod λ(n)). Each participant then uses their modified share as an exponent to encrypt the message modulo n, and gives the result s(i,B) to a combiner who computes

S(m) ≡ m ∙ (Π i in B s(i,B)) ≡ m∙ md-1 ≡ md (mod n). There are several problems with this scheme, the main one being that the modified shares are computed mod λ(n), and giving λ(n) to each participant allows them to determine p' and q' and thus factor n.
3.2 Difficulties in straightforward usage of Shamir's secret sharing

The problem in 3.1 is that λ(n) must be given to each participant to compose the modified share. Suppose that instead the modified shares for each message are distributed to each participant using Shamir's secret sharing. The problem with that approach is that Shamir's technique derives the secret (using Lagrange interpolation) using a formula over the group Z*λ(n): f(0) ≡ d-1 ≡ Σ i in B di (Π j in B, j ≠ i (-xj)/(xi - xj)) mod λ(n)

implying that the generation of shares would require computing modular inverses of λ(n) for each (xi - xj) combination, and for N >= 3, it is impossible to choose all such xi and thus a suitable polynomial cannot be constructed [FD92]. This exemplifies the difficulty in working with RSA in comparison to ElGamal for threshold schemes.
3.3 TRSA using Shamir's secret sharing for key shares via a special polynomial
A more complicated scheme is devised that uses different key shares and a new technique to calculate the modified shares, which basically consists of a more complicated key to get around the inverse modulo λ(n) issue. A special polynomial is constructed such that f(0) = d-1, f(xi) is even for each i, each xi = 2i, and the coefficients are randomly chosen from 0 to λ(n)-1. The key for a given participant at index i is f(xi) times the inverse modulo p'q' of the product of (xi - xj) values for all other members j, taken modulo p'q'. These inverses do exist, and the xi values of the other members are easily calculated given the knowledge of the subset B that is signing from the group. Since the key shares do not depend on who is signing a particular message, they can be distributed once.
The pre-computation stage has each member of B generate a modified share that is used as the exponent for the partial signature. This is done by taking their private key share multiplied by a function of the various xj values based on the membership of B for a given message, and does not require determining modular inverses. The end result is that the multiplication modulo n of the message with the product of the partial results from the k participants gives the correct RSA signature.
Unfortunately, this scheme is not quire as secure as single-party RSA because k-1 shares can give some information to the size of λ(n) (I presume because each key share is of maximum size p'q'-1). [FD92] proposes another enhancement to the scheme by imposing a double-layering of Shamir's method where now the coefficients of the polynomial are themselves polynomials, and the combination of the shares gives the same result as the unmasked coefficients. This version is more secure but less efficient and quite cumbersome in terms of the key generation and precomputation stages.

3.4 Summary of Desmedt and Frankel's schemes

The pre-computation stage based on the key share and the members of B has the flaw that each participant needs to know who else is signing the message. The key share itself could be used as the exponent, eliminating this requirement for each participant by postponing the pre-computation work to the combiner. Then the combiner would apply the logic of the pre-computation as an additional modular exponentiation when multiplying the partial results and this may be an improvement for some scenarios; however it is a less distributed approach and is of the same complexity [FD92]. Further, the mathematical structures to protect the structure of the RSA key and modulus are more cumbersome than the k=N scheme that used additive shares.
Another drawback is the amount of pre-computation needed whenever the group that is signing the particular message changes. The necessity of a trusted dealer also weakens the security of these schemes. And no provision is made for robustness for the case where a participant is corrupted and does not cooperate with the protocol correctly (perhaps submitting an invalid partial signature). The next variant of TRSA that we review includes provisions for robustness.

4. Robust TRSA Schemes due to Rabin et.al. [GJKR96, Rab98]
Recall from section 3 that the combiner completely trusted the partial signatures of each participant. The robustness property for a TRSA scheme consists of a verification of the correctness of each partial signature. This can easily be incorporated if for every key share if a corresponding key share of the public key was known, simply by applying RSA decryption to the partial result. But knowledge of both the private and public key shares would also allow factoring of n and is not acceptable. So the challenge is in determining the correctness of a partial result without a public verification exponent for that piece. Rabin defines k-1 robustness as the ability for the system to function among k-1 corrupted participants (assuming k-1 is less than N/2), and defines a system as k-1 proactive if it is k-1 robust over its lifetime despite changes in which participants are corrupted. A k-1 robust system can be made k-1 proactive by splitting its lifetime into discrete time periods and redistributing key shares with each period, provided that a history of shares does not reveal any information about the secret key. Note that for a k-1 robust system to still work, it is necessary that N ≥ 2k -1, so that there are still k valid participants when k-1 are corrupted.
4.1 Proactive scheme with additive key shares and trusted dealer

Rabin's scheme uses additive key shares similar to the k=N example of section 1, and achieves robustness via share back-up, where the key generation stage backs up each additive share using robust threshold verifiable secret sharing techniques (VSS). Robustness is also achieved via "witness" values of each of the key shares that aid in partial signature verification and key share restoration from backups. A limitation in this scheme is that the key share distribution phase, including the backups, is redone whenever the size of k changes.
Assume a trusted dealer who publishes (e,n) where n is the product of safe primes p and q. The dealer also chooses a random g' from Zn, computes g' to the N! power, and takes that value mod n. Call this value g, and let it be broadcast to all N members. The private exponent d is divided into N+1 shares such that d ≡ dpublic + Σ i =1 to N di. Each di is randomly chosen from the range [-Nn2…Nn2], and the key d is assumed to be roughly twice the size of the modulus n. dpublic is computed as the difference between d and the sum of the di's and is kept by the dealer. The dealer then uses a VSS system to back up each di, similar to what has been discussed in lecture (and is shown in Figure 3 of Rabin's paper), using input of di, g, n, and the threshold parameters of k-1 and N. The dealer constructs a secret-sharing polynomial f(x) of degree k-1 (so that k participants can later recover it) where the secret is di ∙ N!. Further, the dealer calculates verifiers for each coefficient ai of f(x) in the form ga_i mod n for
0 ≤ i ≤ k-1, (denote the verifiers as b0…k-1). The dealer then gives each participant their corresponding f(i) value and broadcasts the b0…k-1 from each share to all participants.

Each participant is able to verify that their f(i) value is correct by checking the equation
gf(i) = Π j=0 to k-1 bji^j for their (fixed) i. If the equation does not hold, then the participant requests the dealer make public their f(i) value, and the protocol is abandoned if the dealer does not cooperate or the participant is unable to validate any of the f(j) shares that are made public. A mechanism to deal with cheating participants is provided. In this manner, the honest participant is able to verify their key share is correct.
Once the necessary information has been given to all shareholders, the signing of a message is the same as the k=N scheme, with the extra exponentiation of dpublic:

md ≡ m^(dpublic + Σi=1 to Ndi) ≡ md_public Πi=1to N md_i (mod n). So for all the N-k participants who do not participate in the signing, their shares are computed from the (VSS) backup by the k participants by interpolation of the shared polynomial coefficients.

4.2 Verification of the partial signatures in the robust scheme
Once the signature is constructed, the dealer or combiner can then verify that it is correct by applying the public key and comparing to the original message, and proceed if this succeeds. Otherwise, Rabin's scheme requires each partial signer to verify their partial key. To facilitate this, as part of the initial distribution phase, the dealer computes
gd_i mod n as the witness of di and this value is broadcast to all participants. Each participant is asked to show that their partial signature is valid by showing that the discrete log of his signature is equivalent to the discrete log of the witness as described in [GJKR96]. If the participant cannot prove their signature is valid, then his signature is regenerated by k parties using the back-up VSS of its key share.
Lastly, Rabin extends the k-1 robustness properties of his TRSA scheme to make it k-1 proactive by giving a mechanism for the regeneration of the key shares and the backup VSS for each share. The high-level view is that each member M of A breaks their key di into N+1 subshares (the +1 being for the dpublic), and then distributes those to each other member and the dealer. Then M takes the subshares it has received and adds them to form a new key di_new , and also backs up di_new using the VSS scheme as before. In short, each player acts as a dealer, including generating witnesses for each subshare to make sure the player does not cheat in either its choice of subshares (they must sum to its old key share value) or in adding up the subshares that it receives.
Clearly, under honest use, Rabin's scheme is more efficient than the scheme of section 3 [FD92] that uses a double-layering of Secret sharing and complicated precomputation. Rabin's scheme also provides mechanisms to force the dealer to be honest with respect to key distribution. However, it is unclear what mechanism is used when the dealer is corrupted in applying its key share kpublic in the combination of the final signature. A larger drawback of Rabin's scheme is that the dealer is still very much trusted to compute the modulus correctly, and to also delete the secret information such as p, q, and the decryption exponent after the initial key distribution. If the dealer does not follow these instructions and any of p, q, or d is leaked, then the system is no longer secure, leaving the dealer as a single point of attack. The next scheme we examine offers methods to compute the modulus n=pq and the decryption key shares in a manner that is more secure and eliminates the trusted dealer.

5. TRSA schemes without trusted dealer, Boneh et.al. [BF97, MWB99]
We examine the "honest-but-curious" model where the participants are curious to learn the factorization of N or the private key d, and must be prevented from doing so, but otherwise follow the protocol. This protocol also assumes that inter-group communication is tamperproof. Further work has been done both by Boneh et.al. showing how to make generation of the modulus n robust for small N (for large N, it is too inefficient since it repeats executions of the protocol to detect a malicious participant). Additionally, work by Frankel, MacKenzie, & Yung, adds additional enhancements for robustness despite the presence of floor((N-1)/2) malicious parties.[MWB99]
5.1 Determining candidate modulus N without revealing p or q
All parties participate in an algorithm to pick candidates, and the algorithm is repeated until suitable candidates are found. First, each party i picks a candidate pi and qi, both of which are random integers of some predetermined (large) number of bits, and keeps them secret. Then, using a enhanced version of Shamir's secret sharing technique due to BenOr, Goldwasser, and Wigderson (BGW), the parties share their p and q values without actually revealing them. It is assumed that the parties know and have agreed on some large prime P that is bigger than the size of the modulus to be computed, and conduct the secret sharing modulo P.

The algorithm is as follows:

1. Let L = floor(N-1/2). Each party i picks two random degree L polynomials fi, gi, with coefficients in ZP such that fi(0) = pi and gi(0) = qi. Also, each party picks a random degree 2L polynomial hi also with coefficients in ZP such that hi (0) = 0.
2. for each party i in 1..N:

compute for all j in 1..N:

p i, j = f i (j), q i, j = g i (j), h i, j = h i (j)

Party i sends the tuple (p i, j , g i, j , h i, j) to party j

[note that p, g are standard L out of N Shamir secret sharings of pi and qi respectively]
3. Now each party i has all of (p j,i , g j,i , h j,i) from party j from 1..N. Party i computes
ni ≡ Σj (p j,i * g j,i) + Σj h j,i (mod P), and broadcasts this value to every party.

4. Each party i now has nj for all j in 1..N, and further, each nj is the value of a polynomial of degree 2L, and there are N>= 2L + 1 values of this polynomial held, where the value of the polynomial (mod P) at i=0 is the now-generated modulus n mod P, and since n < P, the precise value of n is known.[BF97]
Note that due to the secret-sharing method used to encapsulate the respective pi and qi values, no information has been leaked as to the resulting p or q values. The authors also show that the above computations can also be done for a non-prime value M that is of the same size as P, provided that M is chosen carefully [BF97].

5.2 Testing that n is a valid modulus.
Recall that n = Σpi * Σqi , and that the respective pi,qi were picked at random. So n may not happen to be the product of two primes, in fact, using the prime number theorem, the probability that they are both prime is n-2. The single-party cost to find primes p and q is 2n (searching n integers to find each prime). Since n is large (e.g. 512 or more bits), this is a huge degradation. An optimization can be done to examine each of p and q separately in a distributed computation that does not reveal their values using BGW technique under trial division by primes up to some bound B. This gives us more confidence that p and q are primes, but there are some limitations to this approach (sections 5 & 7 of BF97). Nonetheless, it can greatly improve the O(n2)search that would otherwise be needed.
After p and q are secretly verified as valid candidates, we still have to verify n as the product of two primes. This is done via a distributed primality test that essentially applies the Fermat prime test in a distributed manner. The members choose and agree on a random g, and member 1 computes v1 = g n - p_1 - q_1 + 1 mod n while for all other members i (2 <= i <= N) compute vi = g p_i + q_i mod n. The servers exchange these vi values and verify that v1 ≡ Π i=2 to N vi (mod n), essentially testing that gn - p - q + 1≡ 1 (mod n) [MWB99]. If n fails the Fermat test, then the algorithm is restarted and the respective shares of p and q are regenerated. If N is indeed the product of two primes, then no information is leaked about its factors p and q.
Since there are rare non-primes (Carmichael numbers) that pass the Fermat test, a more thorough check on n that pass the Fermat test can be computed that relies on p and q being Blum integers (a method is given to ensure this), computes the Jacobi symbol of a random g over n and rejects n for which it is not one, and then applies a Fermat test over a "twisted group", as detailed in section 3 of [BF97].

5.3 Determination of the private key shares

There are two approaches given: the first when the public exponent is small, e.g. e < 220, which is more efficient, and the second for an arbitrarily sized public exponent. Signature generation typically uses a small public exponent (e.g. 65537) so that signature verification is fast, and that algorithm is described here. This method leaks φ(n) mod e, but since e is much smaller than φ(n), this does not weaken the security of the TRSA scheme. The public exponent e is assumed to be predetermined or somehow agreed upon by all the participants. The challenge is to compute shares of d without a trusted dealer.
1. Participant 1 locally computes φ1 = n - p1 - q1 +1. All others compute φi = -pi - qi. Note that Σ φi = n - p - q + 1 = pq - p - q + 1 = (p-1)(q-1) = φ(n).

2. The participants want to compute ℓ = φ(n) mod e. They can do this without revealing their private shares by making use of a protocol due to Benaloh [BF97]: each participant i creates a sharing of φi of random values f such that φi = Σ fi,j mod e, and sends φi,j to each server j. Each server j has a collection of φi,j values from all i, and computes the sum of these values mod e, call this sum aj, and again sends this value to all other servers. The other servers sum the aj's mod e, which gives ℓ mod e. Next, the inverse ℓ-1 mod e is calculated, call this ζ. Then, since d = (-ζ ∙ φ(n) + 1)/e, each ith party can compute a local share of the private key using the formula floor((-ζ ∙ φi)/e).

3. The use of the floor function in determining the shares makes it that the sum of the key shares differs from the true private exponent d by some remainder r where 0 ≤ r ≤N. A series of trial decryptions can be run where r is discovered by brute force (try all possible values), and then participant 1 can subtract r from its private key share.
5.4 Modification so additive key shares can be used for k<N signing.

Note that since d = Σdi, all N servers would need to participate in applying the key, or a secret-sharing backup such as Rabin's would need to be used to construct the missing N-k shares. In fact, Rabin's scheme is probably preferred for any N > 10. [MWB99] shows a method suitable for small N by having a server i take its private key share and split that further into shares, which are then shared with other servers in a manner that allows k out of N sharing. An example for k=2, N=3 would be that each server i splits their private share in two parts in two ways, so that di = di,1 + di,2 = di,3 + di,4, and then the shares are distributed so that one server has di,1 and di,3, another has di,2, and the third has di,1 and di,4. Unfortunately, this has to be done with every key share over all N servers, and for every k value that is used. The servers then add up the sub-key subshares to construct a new private share that allows t out of k sharing. Unfortunately, this results in an algorithm that has N!/(k!(N-k)!) combinations for each server, which increases exponentially as N increases. A trusted dealer could have originally shared the keys in this manner, eliminating the need for each server to split its generated share key, but that nullifies the point of the scheme.

5.5 Signing
Presuming the work in 5.4 has been done, the signature is simply the product of the k partial signatures modulo n, since the sum of the partial shares for the k participants = d.

6. Conclusion
There were many more papers in the field of threshold RSA schemes than I could cover and it was hard to choose which to focus on, surely some major work has been omitted. If there is not a book yet on threshold RSA by a prominent expert in the field, then there is a need for one, as there are so many papers that claim to make one enhancement or another and it is very difficult to discern if the claim is truly novel or even correct, especially without a background in group theory. It is my hope that the schemes that I did examine are among the known works in the field. Embarking on this project deepened my understanding of the many difficulties encountered in threshold RSA schemes, yet many complexities I left uncovered, such as analysis from an adversarial or computational complexity perspective.

It seems that a merged approach of the schemes of sections 4 and 5 cover almost all the main TRSA security issues: no trusted dealer, protection of the private key, k out of N sharing, and measures for robustness against malicious participants during the key and modulus generation and during the signature generation. However, I am not convinced that it does this in a manner that is efficient enough to be commonly used unless N is very small, especially not in a system where the number of participants needed to sign a message could change arbitrarily. I found Boneh's (et.al.) work some of the most interesting in part because they have a project at Stanford (ITTC) that attempts to implement a non-trusted dealer TRSA scheme. The fastest scenario is when all servers are honest and k=N, as could be expected. Using various optimizations such as distributed sieving, they are able to generate 1024 bit keys in under 91 seconds on a 10Mbps Ethernet, and in less than 6 minutes on a wide area network with cross-country communication [WMB99], which they consider acceptable, but will probably need enhancing before being adopted by the mainstream.
References

[FY98]

Yair Frankel and Moti Yung, "Risk management using threshold RSA cryptosystems", (Usenix), http://www.usenix.org/publications/login/1998-5/frankel.html, 1998.
[FD92]

Yair Frankel & Yvo G. Desmedt, "Parallel reliable threshold multisignature", Tech. Report TR-92-04-02, Dept. of EE & CS, Univ. of Wisconsin-Milwaukee, 1992.*

[Des97]
Yvo Desmedt, "Some Recent Research Aspects of Threshold Cryptography", Information Security, Proceedings (Lecture Notes in Computer Science 1396), pp.158-173. Springer-Verlag, 1997.*
[GJKR96]
Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, Tal Rabin,"Robust and Efficient Sharing of RSA Functions", Crypto '96, pages 157-172, Springer-Verlag. LCNS No.1109, 1996.
[Rab98]
Tal Rabin, "A Simplified Approach to Threshold and Proactive RSA", Crypto'98, Lecture Notes in Computer Science No. 1462, pp 89-104, 1998.
[BF97]

D. Boneh, and M. Franklin, "Efficient generation of shared RSA keys", Journal of the ACM (JACM), Vol. 48, Issue 4, pp. 702--722, July 2001. Extended abstract in Proceedings Crypto' 97, Lecture Notes in Computer Science, Vol. 1233, Springer-Verlag, pp. 425--439, 1997.**
[MWB99]
M. Malkin, T. Wu, and D. Boneh, "Experimenting with Shared Generation of RSA keys". In proceedings of the Internet Society's 1999 Symposium on Network and Distributed System Security (NDSS), pp. 43--56, 1999.**

[WMB99]
T. Wu, M. Malkin, and D. Boneh, "Building intrusion tolerant applications" In proceedings of the 8th USENIX Security Symposium, pp. 79--91, 1999.**

* also available from http://www.cs.fsu.edu/~desmedt/topics-threshold.html
** also available from http://crypto.stanford.edu/~dabo/pubs.html
PAGE
10

