
Introduction to Braid Group Cryptography

Parvez Anandam

March 7, 2006

1 Introduction

Public key cryptosystems rely on certain problems for which no fast algorithms are known.
For instance, in Diffie-Hellman, it is the discrete logarithm problem, and in RSA, it is the
factoring problem. Most successful public key cryptosystems are based on arithmetic over
finite fields (a survey of public key cryptosystems is given by Koblitz and Menezes [1]).

Cryptosystems in current use have a drawback: they succumb easily to quantum com-
puters. Whether or not quantum computing becomes a reality soon does not diminish the
imperative of finding other hard problems, to increase the “genetic diversity” of public key
cryptography.

The past seven years have seen the rise and wane in popularity of cryptosystems based
on the braid groups. As we will see, braid groups have certain properties that make them
easily amenable to digital computation. The initial excitement was based on the hardness
of the conjugacy search problem (which we describe below) in braid groups. This problem
was later shown to be more tractable than originally thought. It is still possible that braid
group cryptography is secure for certain choices of parameters, but such parameters have
not yet been found.

Nevertheless, the experience gained from studying the use of braid groups in cryptogra-
phy is valuable. It is conceivable that some nonabelian group will someday play a role in
public key cryptography.

2 Braid Groups

The braid group Bn is an infinite, nonabelian group of n braids. A member of the braid
group Bn has a simple geometric interpretation. Visualize n strings joining n points at the
top to n points at the bottom, not necessarily vertically. Keeping the ends of the strings
fixed, imagine crossing these strings zero or more times. An example is shown in Figure 1.
Braids can be described using the generators σi (Figure 2) of the group Bn.

The braid group Bn is given by the (Artin) presentation

Bn =

〈

σ1, . . . , σn−1

∣

∣

∣

∣

σiσj = σjσi for |i − j| ≥ 2
σiσjσi = σjσiσj for |i − j| = 1

〉

(1)

A property of braid group elements that makes them easy to digitize is that they can be
uniquely represented in a convenient form. We will need to define a few notions to describe
this unique representation.

Consider the monoid B+
n (a monoid satisfies all the requirements of a group except the

existence of inverses). Elements of B+
n can be written as words in only the σ+1

i (not the

1

1 2 3

Figure 1: The 3-braid σ−1

1 σ2σ1σ2 = σ2σ1

1 i i + 1 n

• • • • • •

Figure 2: The generator σi

σ−1

i) under the same relations as the group Bn shown in Eq. (1). These elements are called
positive braids and are used to define an order relation between braids:

x ≤ y if y = axb, with x, y ∈ Bn and a, b ∈ B+
n (2)

We next define the fundamental braid ∆ of Bn:

∆ = (σ1 · · ·σn−1)(σ1 · · ·σn−2) · · ·σ1 (3)

A positive braid A satisfying A ≤ ∆ is called a canonical factor. To each canonical factor
A we can associate a permutation π: the upper point i of the braid is connected to the lower
point π(i), with every crossing being positive. A canonical factor is sometimes also called a
permutation braid.

A decomposition P = A0P0 of a positive braid P into a canonical factor A0 and a
positive braid P0 is left-weighted if A0 has the maximal length (maximal in “≤”) among all
such decompositions.

Any braid b ∈ Bn can be uniquely decomposed into

b = ∆uA1A2 . . . Al (4)

with AiAi+1 left-weighted for each i in 1 ≤ i ≤ l − 1. This unique representation is called
the left-canonical form [4] or greedy normal form [5] of the braid b. The number of canonical
factors l is called the canonical length of the braid b. The braid index n and the canonical
length l are the main security parameters of a braid group cryptosystem.

Finally, we define two commuting subgroups of Bn that will be used in the protocols.
Let LBn be the subgroup of Bn generated by σ1, . . . , σbn/2c−1. Let UBn be the subgroup
of Bn generated by σbn/2c+1, . . . , σn−1. Any element a ∈ LBn commutes with any element
b ∈ UBn: ab = ba.

We now have the algebraic arsenal necessary to construct braid group cryptosystems.

2

3 Conjugacy search problems

A hard problem is the underpinning of any public key cryptosystem. There are several
(apparently) hard problems in braid groups. We will focus on variants of the conjugacy
search problem, around which all the braid group cryptosystems proposed to date are built.

3.1 Conjugacy Search Problem

Given x, y ∈ Bn such that y = a−1xa for some a ∈ Bn.
Find b ∈ Bn such that y = b−1xb.

3.2 Generalized Conjugacy Search Problem

Given x, y ∈ Bn such that y = a−1xa for some a ∈ LBn.
Find b ∈ LBn such that y = b−1xb.
(This problem can also be stated with a, b ∈ UBn)

3.3 Diffie-Hellman type Generalized Conjugacy Search Problem

Given x, yA, yB ∈ Bn such that yA = a−1xa and yB = b−1xb for some a ∈ LBn and
b ∈ UBn.

Find b−1yAb(= a−1yBa = a−1b−1xab).

3.4 Multiple Simultaneous Conjugacy Search Problem

Given xi, yi ∈ Bn, 1 ≤ i ≤ t such that yi = a−1xia for some a ∈ Bn.
Find b ∈ Bn such that yi = b−1xib for all i.

4 Commutator based key agreement

In 1999, Anshel, Anshel and Goldfeld proposed [2] a key agreement protocol that is based on
the multiple simultaneous conjugacy search problem. This protocol is called the Arithmetica
key exchange and is patented [3].

1. Public information

(a) The braid index n is published.

(b) A(lice) publishes the subgroup GA = 〈x1, . . . , xs〉 ⊆ Bn by specifying the gener-
ators x1, . . . , xs.

(c) B(ob) publishes the subgroup GB = 〈y1, . . . , yt〉 ⊆ Bn by specifying the genera-
tors y1, . . . , yt.

2. Key agreement

(a) A selects a secret word a = W (x1, . . . , xs) ∈ GA and sends a−1y1a, . . . , a−1yta

to B.

(b) B selects a secret word b = V (y1, . . . , yt) ∈ GB and sends b−1x1b, . . . , b
−1xsb to

A.

(c) A computes the shared key K = a−1(b−1ab) = a−1W (b−1x1b, . . . , b
−1xsb), which

is the commutator of a and b, [a, b].

3

(d) B computes the shared key K = (a−1b−1a)b = V −1(a−1y1a, . . . , a−1yta)b, which
is the commutator of a and b, [a, b].

This protocol works because the product of conjugates is the conjugation (by the same
element) of products: (a−1xa)(a−1ya) = a−1xya.

Anshel et al suggested using n = 80 and s = t = 20 generators for each subgroup. Each
of these generators are comprised of an average of five Artin generators. The secret words
a and b have a length of 128 in the public generators. This choice of parameters was later
found to not be secure [10].

5 Diffie-Hellman type key agreement

In 2000, Ko et al proposed [4] a key agreement protocol based on the Diffie-Hellman type
Generalized Conjugacy Search Problem.

1. Public information

(a) A sufficiently complicated braid x ∈ Bn is published, along with the braid index
n.

2. Key agreement

(a) A(lice) selects a ∈ LBn (A’s private key) and sends yA = a−1xa (A’s public key)
to B.

(b) B(ob) selects b ∈ UBn (B’s private key) and sends yB = b−1xb (B’s public key)
to A.

(c) A receives yB and computes the shared key K = a−1yBa = a−1b−1xab.

(d) B receives yA and computes the shared key K = b−1yAb = a−1b−1xab.

There are strong parallels between this key agreement and the Diffie-Hellman key agree-
ment. The braid x is analogous to the integer g and conjugation a−1xa replaces exponenti-
ation ga.

Ko et al suggested a few instances of the security parameters, e.g. (n = 50, l = 5), (n =
70, l = 7), (n = 90, l = 12), where n is the braid index and l the canonical length of x, a and
b . These have unfortunately not stood up to attacks [9, 10].

6 ElGamal type encryption

Let H : Bn → {0, 1}k be an ideal hash function from the braid group Bn to the message
space {0, 1}k.

1. Public information

(a) A sufficiently complicated braid x ∈ Bn is published, along with the braid index
n.

2. Public key

(a) A(lice) selects a ∈ LBn (A’s private key) and publishes y = a−1xa (A’s public
key).

3. Encryption: B(ob) wishes to encrypt a message m ∈ {0, 1}k to send to A.

4

(a) B selects b ∈ UBn and sends (c, d) to A, where c = b−1xb and d = H(b−1yb)⊕m.

4. Decryption: A wishes to decrypt the ciphertext (c, d).

(a) A computes m = H(a−1ca) ⊕ d.

Again, there are obvious parallels between this encryption and the ElGamal encryption
over finite fields.

7 Toy example of the Diffie-Hellman type key agree-

ment

It is instructive to examine a toy example of the Diffie-Hellman type key agreement to get
a feel for the implementation on a digital computer. We use the C++ CBraid library [6] of
Cha et al [7] to perform the braid group operations.

All braids in this example are in left-canonical form (c.f. Eq. (4)). Each braid is denoted
by u followed by the permutations representing the canonical factors Ai.

The security parameters of the key agreement are the braid index n and the canonical
length l of x, a and b. For this toy example, we choose n = 8 and l = 4, i.e. we choose
braids x, a and b at random, each with 4 canonical factors expressed as permutations of 8
elements.

The algorithms implemented in CBraid have the following complexities:

• Product of two braids: O(ln).

• Inverse of a braid: O(ln).

• Rewriting a braid in left-canonical form: O(l2n log n).

• Comparison of two braids: O(l2n log n).

• Generating a random braid: O(ln)

Below is the output of our toy program.

Braid Index: n = 8

Canonical Length of x, a, b: l = 4

Public x:

(u = 2|4 3 8 2 6 7 1 5|4 2 7 1 3 5 6 8|3 2 5 4 6 8 1 7|1 2 3 5 4 6 7 8|)

A’s private key a:

(u = 0|4 1 3 2 5 6 7 8|3 4 2 1 5 6 7 8|2 1 3 4 5 6 7 8|4 1 2 3 5 6 7 8|)

B’s private key b:

(u = 0|1 2 3 4 8 7 6 5|1 2 3 4 5 7 8 6|1 2 3 4 5 7 6 8|1 2 3 4 6 7 5 8|)

A’s public key y_A = a^-1 * x * a:

(u = -2|7 6 5 8 4 3 2 1|8 7 6 5 4 3 1 2|7 8 6 5 4 3 2 1|8 7 6 5 3 2 1 4|

3 7 2 8 5 6 1 4|5 2 3 4 6 8 1 7|3 1 2 5 4 6 7 8|1 4 3 5 2 6 7 8|

3 4 2 1 5 6 7 8|4 1 2 3 5 6 7 8|)

B’s public key y_B = b^-1 * x * b:

5

(u = -1|8 6 5 7 4 3 2 1|8 7 6 5 4 2 3 1|7 5 8 6 4 3 2 1|4 3 8 2 1 5 6 7|

4 2 7 1 3 5 6 8|3 2 5 4 7 8 1 6|1 2 3 8 4 6 5 7|1 2 3 4 5 7 8 6|

1 2 3 4 5 7 6 8|1 2 3 4 6 7 5 8|)

A computes the shared key K = a^-1 * y_B * a:

(u = -2|7 6 5 8 4 3 2 1|8 6 5 7 4 3 1 2|7 8 6 5 4 2 3 1|7 5 8 6 3 2 1 4|

3 7 2 8 1 4 5 6|5 2 3 4 7 8 1 6|3 1 2 5 4 7 6 8|1 4 3 8 2 5 6 7|

3 4 2 1 5 7 8 6|4 1 2 3 5 7 6 8|1 2 3 4 6 7 5 8|)

B computes the shared key K = b^-1 * y_A * b:

(u = -2|7 6 5 8 4 3 2 1|8 6 5 7 4 3 1 2|7 8 6 5 4 2 3 1|7 5 8 6 3 2 1 4|

3 7 2 8 1 4 5 6|5 2 3 4 7 8 1 6|3 1 2 5 4 7 6 8|1 4 3 8 2 5 6 7|

3 4 2 1 5 7 8 6|4 1 2 3 5 7 6 8|1 2 3 4 6 7 5 8|)

We see that both A and B compute the same key K, as expected.
The way a is chosen is to construct a braid with random factors, each of which is a

permutation of the lower four elements only (therefore, the upper four elements are always
5 6 7 8). The braid b is constructed in a similar manner, using permutations of only the
upper four elements of the canonical factors (so that the lower four are always 1 2 3 4).
This construction ensures that a ∈ LBn and b ∈ UBn.

8 Attacks

We will not describe in any detail the attacks found against braid group cryptosystems but
will merely mention them.

The commutator based key agreement is vulnerable to length-based attacks [8]. The
Conjugacy Search Problem is not vulnerable to those attacks.

The Diffie-Hellman type key agreement is vulnerable to a polynomial-time attack that
uses the Lawrence-Krammer representation of Bn [9]. The Conjugacy Problem is not vul-
nerable to those attacks.

There are also heuristic algorithms [10] that attack those two key agreement protocols.
The Conjugacy Search Problem itself is weakened by refinements [11] to the summit set

(a finite set of conjugates for every braid) that yield fast probabilistic algorithms for solving
the Conjugacy Search Problem.

9 Conclusion

Braid groups provide an elegant framework for designing new public key cryptosystems
that can be efficiently implemented on a digital computer. These cryptosystems suffer but
a minor drawback: they are not secure!

Even within the confines of braid groups, it may still be possible to construct a secure
cryptosystem by an appropriate choice of the security parameters; further investigation is
needed. In addition, there are problems besides the conjugacy search problems that could
be used to design a secure cryptosystem. The p-th root problem or the Markov problem are
candidates.

One may also look for other nonabelian groups where the conjugacy search problem is
hard. The word problem (determining whether two elements of the group, expressed as
words, are the same element) in such a group has to be easily solvable. Even further, being
able to quickly express any word in a canonical form would be greatly desirable. Also,
one should be able to describe a group element as a compact string of bits, that a digital

6

computer can handle. Finally, there should be efficient algorithms to perform the group
operations.

One may even go so far as consider using continuous groups for constructing public key
cryptosystems [12].

Groups have been extensively studied and it is natural to try to use them. It is abun-
dantly clear, however, that a successful group-based cryptosystem must survive years of
intense cryptanalytic effort before it is broadly deployed.

References

[1] Neal Koblitz and Alfred J. Menezes, A survey of public-key cryptosystems, SIAM Re-
view 46 (2004) 599-634.

[2] Iris Anshel, Michael Anshel, and Dorian Goldfeld, An algebraic method for public-key

cryptography, Mathematical Research Letters (6) (1999) 287-291.

[3] Iris Anshel, Michael Anshel, and Dorian Goldfeld, Method and apparatus for crypto-

graphically secure algebraic key establishment protocols based on monoids, United States
Patent 6,493,449 (2002).

[4] Ki Hyoung Ko, Sang Jin Lee, Jung Hee Cheon, Jae Woo Han, Ju-sung Kang, and
Choonsik Park, New Public-Key Cryptosystem Using Braid Groups, CRYPTO 2000,
166-184, Springer Lecture Notes in Computer Science 1880 (2000).

[5] Patrick Dehornoy, Braid-based cryptography, Contemporary Mathematics 360 (2004)
5-33.

[6] Jae Choon Cha, CBraid: a C++ library for computations in braid groups, available at
http://knot.kaist.ac.kr/~jccha/cbraid/ (2001).

[7] Jae Choon Cha, Ki Hyoung Ko, Sang Jin Lee, Jae Woo Han, and Jung Hee Cheon, An

efficient implementation of braid groups, AsiaCrypt 2001, 144-156, Springer Lecture
Notes in Computer Science 2048 (2001).

[8] James Hughes and Allen Tannenbaum, Length-Based Attacks for certain group based

encryption rewriting systems, Workshop SECI02 SEcurité de la Communication sur
Internet (2002).

[9] Jung Hee Cheon and Byungheup Jun, A polynomial time algorithm for the braid Diffie-

Hellman conjugacy problem, CRYPTO 2003, 212-225, Springer Lecture Notes in Com-
puter Science 2729 (2003).

[10] Dennis Hofheinz and Rainer Steinwandt, A practical attack on some braid group based

cryptographic primitives, PKC 2003, Springer Lecture Notes in Computer Science 2567
(2003).

[11] Volker Gebhardt, A new approach to the conjugacy problem in Garside groups, preprint,
http://arxiv.org/abs/math.GT/0306199 (2003).

[12] Arkady Berenstein and Leon Chernyak, Geometric Key Establishment, preprint,
http://eprint.iacr.org/2004/239 (2004).

7

