Software Watermarking
Imran Ali

CSEP 590TU

1 Introduction
This paper will discuss various techniques on how to embed watermarks in source code. Watermarking source code is a relatively new field and there has not been extensive research done on this subject. This paper will discuss some common source code watermarking techniques and give a brief overview of the current watermarking solutions available in the market. Also discussed will be some possible attacks against watermarking techniques. These attacks are usually made by adversaries who would like to distort the watermark so that once the binary is stolen, there is no question of ownership of this intellectual property.
2 Definition
Watermarking source code can be used to determine ownership of code and help prevent tampering of source code. The process of watermarking involves embedding secret messages into a cover message. In this case, embedding structures or data into an executable. The actual contents of a watermark differ, but are usually some identifier or copyright information. Examples could be a vendor ID number, company or author name, an number that is a product of primes.
The Software Watermarking problem can be described as follows: Embed a structure W into a program P such that: W can be reliably located and extracted from P even after P has been subjected to code transformations such as translation, optimization and obfuscation; W is stealthy, i.e. hard to tamper with. W also has a high data rate and embedding W into P does not adversely affect the performance of P. W has a mathematical property that allows us to argue that its presence in P is the result of deliberate actions.

A more formal definition for watermarking can be defined as follows:

Let W be a set of mathematical structures, and p a predicate such that for all w belonging to W : p(w). We choose p and W such that the probability of p(x) for a random x belongs to W is small.

3 Watermarking techniques
3.1 Static software watermarking

Static software watermarks are stored in the application executable itself. For example this could be stored in the initialized data portion of the executable or in the string resources. There are two types of static watermarks, data and code.
3.1.1 Data Watermarks
These static watermarks are stored in the exe, but in headers, string resources or debug symbols, such as .pdbs for example. For example a copyright notice can be extracted from binaries by declaring it as a const string and having it returned when a certain functional call is made.
3.1.2 Code Watermarks
These static watermarks are stored in the actual instruction set, i.e. the code itself. For example we could embed the watermark in the basic block structure of the program itself.
3.1.3 Possible Attacks
One drawback from these techniques is that the watermarks can easily be distorted by code obfuscators which may break up all the strings and scatter them around the program. Using a static code analyzer, we can also analyze the structure and information contained in the program. Other attacks such as code motion and loop transformations can be used to distort the watermarks. However, given the simplistic nature of static watermarks, these are relatively easy to distort and break.
3.2 Dynamic software watermarking

These watermarks are stored in a programs execution state as opposed to the data watermarks rely on static semantics. When an application runs a predetermined input sequence, it enters a state which represents the watermark. There are three types of dynamic watermarks, Easter Egg, Data Structure and Execution Trace Watermarks.

3.2.1 Easter Egg Watermarks
These are the most common and popular type of dynamic watermark and represents a piece of code that is activated after a user runs through a highly unusual input to an application. It can be argued that these are really considered watermarks as it is not always the intention of the author to do this and also the effects are sometime so subtle that it could be considered a programming bug.
3.2.2 Attacks
Once the inputs is determined, a debugger could be used to trace the location of the watermark and potentially disable or remove the watermark completely.

3.2.3 Data Structure Watermarks
These type of watermarks are embedded within the data structures in the program. Since no output is created (as in Easter Eggs), an adversary would find it difficult to find the state where the watermark exists in. An example of a data structure watermark could be an if statement that states if it reaches a certain
n state, then initialize a particular data structure with the contents or identifiers of the watermark.
3.2.4 Attacks
There are code obfuscation transforms that could be used to alter the dynamic state to distort the watermarks. For example variables can be split into several other variables by providing functions that can convert between the original and the split data representations. In a similar manner, several variables can also be merged into one.
3.2.5 Execution Trace Watermarks

The watermark is embedding within the trace of the executing program when run with a certain sequence of inputs. The watermark is extracted by monitoring a property of the address trace or some sequence of operators executed. For example, in assembly code a certain number or type of values could be pushed on to the stack or some values or distribution of values could be pushed and popped out of some registers.
3.2.6 Attacks

The transforms presented before could also obfuscate the execution trace watermarks. It is also possible for optimizing transforms (such as an optimizing compiler) to alter or distort this watermark. For example, code blocks could be reduced into a set of assembly operations that were not expected by the author of the watermark, thus invalidating the watermark.
3.2.7 Dynamic Graph Watermarking

This type of watermark is one of the newer techniques for embedding watermarks and is also considered one of the most tamper-proof. This technique involves embedding a watermark in the topology of a dynamically built graph structure. The steps are illustrated (as follows:
1. Alice selects n, the product of two large primes P and Q. n is embedded in the topology of a graph G.

2. A program which builds G is constructed in code, for example create new nodes and create an edge to join them.
3. The watermark (i.e. n) is embedded into the original program O, such that when O is run with I as input, G is built. Also, a recognizer R which can identify G on the heap, is constructed.
4. Tamperproofing is added, to prevent attacks. So if any tamperproofing is recognized, the program could end execution prematurely.

5. The application (including the watermark, tamperproofing code, and recognizer) is obfuscated to prevent attacks by pattern-matching.

6. The recognizer is removed from the application to make a version of O that Alice sells.
7. Charles links in R with the selling version. When the program is run with I as input, the recognizer R produces n. Charles proves ownership of O (the selling version) by factoring n.
The recognizer will analyze the object heap as the program being run with the watermark input sequence. When the end of the sequence is reached, we know that one of the object structures on the heap is the graph which contains the watermark.
3.2.8 Attacks
Obfuscating transforms are not very effective against this technique as it depends on heap-allocated structures. However an attacker could add extra pointers to the nodes of linked structures. This would make it hard for the recognizer to identify the real graph edges within a lot of extra bogus pointer fields. The attacker could rename and reorder the fields in the node, again making it hard to recognize the real watermark. Extra levels of indirection could also be added, for example by splitting nodes into several linked parts. An attacker could also add extra bogus nodes pointing into our graph, preventing us from finding the root.

4 Watermarking solutions available in the market
There is currently not many commercial software watermarking products available in the market. Most of the current watermarking software products are related to creating watermarks for media files and not source code itself.

4.1 Java Watermarking

Java programs distributed on the Internet are having serious problems with copyright infringement. Java decompilers such as Mocha can be used to decompile class files into source code files. Sun itself does not have libraries available to help watermark source code. Many of the solutions available are either commercial or research-oriented such as SandMark. An example of a commercial application is DashO created by PreEmptive solutions which inserts watermarks into source code.
4.2 Watermarking for .NET assemblies
PreEmptive solutions also have a product for watermarking .NET solutions, Dotfuscator. A freeware copyright information tool that inserts copyright information is called ThatsMyCode. This tool simply uses a static watermarking technique to inject watermarks into source code.

Many of the products above did not have information readily available that disclosed the watermarking techniques that were used. However, the more commercial and expensive products such as PreEmptive solutions products’ probably use dynamic graph watermarks as this is one of the more sophisticated watermark algorithms.
5 Conclusions
The primary aim of watermarking is to protect intellectual property. The Internet is a medium where applications are freely distributed and sometimes this can be abused. Using obfuscation and inserting watermarks, vendors can help ensure that copies of their products have not been tampered with and customers can verify that their products are authentic. The market for watermarking software is currently focused on watermarks for digital media for which there is high demand. However, research for source code watermarking has advanced since the late 1990’s and the algorithms have become more sophisticated. Note that source code watermarks have essentially existed for many years through the use of Easter eggs and static data watermarks that store copyright information in static information. However, these methods are relatively easy to tamper with, and with the advent of graph based watermarking and other techniques, the future of software watermarking is good.
6 References
1. Nagra, J., Thomborson, C., Collberg, C. A Functional Taxonomy for Software Watermarking
2. Collberg, C., Thomborson, C. Software Watermarking: Models and Dynamic Embeddings
3. Arboit, G. A Method for Watermarking Java Programs via Opaque Predicates
4. Stern, J.P., Hachez G, et al. Robust Object Watermarking: Application to
Code
