Vidya Iyer

SID: 0537337

CSEP 590

March 7, 2006

WS SecureConversation – Let’s Talk In Private
In the past decade, Web services have become a prominent internet technology. This relatively new technology achieved quick growth because of the inherent flexibility it provides. Web services expose a set of functionality that can be accessed programmatically from a standard internet URI. Applications integrate business logic from various web services, and provide an integrated service for the end user. The XML interface enables software applications to break free from previous limitations such as accessing applications written in different languages, or built on different platforms. Web services also extend beyond HTTP, and work with other protocols such as SMTP, FTP and newer transport protocols. Many major companies such as Amazon, Google, and Yahoo have adopted the use of web services to expose their internal services to external developers.
As use of this technology originally grew, the need for secure transfer of data through web services became a high priority. Data transfer through web services is subject to the same requirements as data transfer through regular client/server applications. The protocol has to ensure authentication of users, as well as confidentiality and integrity of data. Until these security requirements were dealt with, web services would not realize its growth potential. Microsoft and IBM collaborated to fill this need by creating the SecureConversation specification, which describes how web services can enter a secure context and exchanges messages freely, without requiring authentication for each message. This paper describes the functionality SecureConversation offers, and compares it to similar security protocols. The principles of SecureConversation are discussed conceptually, with less focus on the actual syntax.
The basic principle behind SecureConversation is that hosts spend an initial overhead creating a secure context, and benefit with simplified communication for the remainder of their session. This is most advantageous when hosts are sending multiple messages to each other. SecureConversation is one in a set of specifications about web services security, called WS-Security. The goal of these papers is not to re-invent existing security systems, but rather to leverage previously developed systems and create a framework that will support all of them through the same protocol. The resulting framework provides a versatile security context while remaining agnostic of the actual protocols used. Before one can begin to understand SecureConversation, some basic terms must be defined. A security context is a conceptual representation of an established authentication state and negotiated keys that have additional security related properties. A security context token is a wire representation of security context concept, represented by a URI known to the hosts participating in the SecureConversation.
The SecureConversation specification describes how security contexts can be establish, how the contexts can be changed after they are established, and how the contexts can be used to derive new keys for communication. There are three ways to establish a security context and share the context among the relevant parties. The first mechanism dictates that a central security-context service creates the security context token. This system, much like Kerberos, has an initiating host in the group request a new security context token from a central, trusted server. The trusted service then creates the new token and distributes the token to the applicable parties. The other parties trust the token because they are receiving it from the central server. A host can also create a security context token itself and propagate the token to the applicable parties. This scenario requires that all the hosts trust the initiating host to create a new secret context token and since the members in the group are sharing a secret key, they must all trust each other. In the third method, hosts that want to communicate with each other work together to create a security context. This usually entails one host asking a challenge of the other host to confirm its identity. Once the security context token has been settled upon, the hosts can freely communicate without re-authenticating.
Security context tokens generally have a time period for which they are valid, but there are times when hosts want to edit, renew or revoke tokens before they expire. This is accomplished using specialized bindings defined in the WS-Trust specification. The action URIs used to achieve these tasks are Amend, Renew, and Cancel. Any action URI that modifies a security context requires authentication of the host sending the request. With the Amend action, a host can augment a security context, but cannot change existing key semantics. The Cancel action essentially nullifies the security context token, so it can no longer be authenticated or renewed.
After security context tokens are established, hosts typically derive new keys for future use. The SecureConversation protocol defines an interface for hosts engaged in a conversation to agree on the parameters for a key generation function. For example, hosts can use the DerivedKeyToken element to decide to create keys using the P_SHA-1 function with their existing shared key as the seed. At this point, the hosts can generate the same values and will not have to send key material to each other. While the DerivedKeyToken is essential to this communication, it is oblivious to the specific key generation function selected by the hosts. This exemplifies the flexibility inherent in SecureConversation.
When WS-security was originally developed, there were existing protocols to deal with standard security concerns: Secure Socket Layer (SSL) and Kerberos. In SSL, authentication is handled through issuing digital certificates that vouch for the user’s identity. Data confidentiality is achieved by asymmetric key encryption. The Kerberos protocol has a trusted third-party service for authentication, and uses symmetric key encryption for data validation. Given these well established methods for providing security, the question arises, why complicate the security space by creating a new standard? Unfortunately, while the existing mechanisms provide partial functionality, they are several critical reasons why they alone do not suffice for web services security.

One main issue with the previous systems is that they are intended for HTTP transport. Some web service applications use a Representational State Transfer (REST) interface to access web services solely over HTTP. However, other applications use Simple Object Access Protocol (SOAP) messaging and are free to use other protocols. With SOAP applications, messages travel from the sending endpoint, through intermediaries to the final destination endpoint. HTTP security mechanisms only offer point-to-point security, which only ensures that data integrity and confidentiality are upheld in between intermediate points. Intermediaries, however, can themselves encrypt, decrypt, and modify parts of the message. Thus, the end recipient cannot accurately validate the original message with the SSL protocol. Web services require an end-to-end security solution, where the recipient can perform data integrity checks on original message. With security context tokens known only to the sender and recipient, SecureConversation creates end-to-end security by ensuring that only these hosts can interpret the message.

Another benefit of SecureConversation has over SSL is that SecureConversation has been optimized for transporting XML. SSL has no knowledge of its data and simply encrypts all data sent, including attachments. This can be resource intensive, and is often overkill given the nature of the data. By contrast, SecureConversation permits selective encryption, which results in performance gains. SecureConversation also uses the canonicalized methods to encrypt and sign XML defined by XMLENC and XMLDSIG. Thus it is not prone to having two XML-equivalent strings result in different encrypted values.

The mechanism to amend and cancel security context tokens in SecureConversation is far simpler than the analogous protocol required to revoke certificates in SSL. In SSL, certificate revocation is achieved either by sending large certification revocation lists (CRL) to clients or by validating certificates at the time of use with an Online Certificate Status Protocol (OCSP). The first method requires managing long lists that must be updated regularly. The second method requires a revocation server to be highly available which defeats the original benefit of using certificates. With SecureConversation, security context token modification is achieved by proving the sender’s authentication and using predefined action URIs to cancel existing contexts.

SecureConversation has clear advantages over SSL for web services security, which justify its place in the security realm. Since its initial release, it has seen widespread adoption ranging from handheld web service application development to grid computing research. Empowered with this flexible security framework, web service technology will continue to grow and contribute to the evolution of the internet.
References
Anderson, Steve, Bohren, Jeff, Boubez, Toufic, Chaniliau, Marc, Della-Libera, Giovanni, Dixon, Brendan, Garg, Praerit, Gudgin, Martin, Hada, Satoshi, Hallam-Baker, Phillip, Hondo, Maryann, Kaler, Chris, Lockhart, Hal, Martherus, Robin, Maruyama, Hiroshi, Nadalin, Anthony, Nagaratnam, Nataraj, Nash, Andrew, Philpott, Rob, Platt, Darren, Prafullchandra, Hemma, Sahu, Maneesh, Shewchuk, John, Simon, Dan, Savanum, Srinivas, Waingold, Elliot, Waite, David, Walter, Doug, and Zolfonoon, Riaz, Web Service SecureConversation Language (WS-SecureConversation), February 2005
Anderson, Steve, Bohren, Jeff, Boubez, Toufic, Chaniliau, Marc, Della-Libera, Giovanni, Dixon, Brendan, Garg, Praerit, Gudgin, Martin, Hallam-Baker, Phillip, Hondo, Maryann, Kaler, Chris, Lockhart, Hal, Martherus, Robin, Maruyama, Hiroshi, Nadalin, Anthony, Nagaratnam, Nataraj, Nash, Andrew, Philpott, Rob, Platt, Darren, Prafullchandra, Hemma, Sahu, Maneesh, Shewchuk, John, Simon, Dan, Savanum, Srinivas, Waingold, Elliot, Waite, David, Walter, Doug, and Zolfonoon, Riaz, Web Service Trust Language (WS-Trust), February 2005
Atkinson, Bob, Della-Libera, Giovanni, Hada, Satoshi, Hallam-Baker, Phillip, Hondo, Maryann, Klein, Johaness, LaMacchia, Brian, Leach, Paul, Manferdelli, John, Maruyama, Hiroshi, Nadalin, Anthony, Nagaratnam, Nataraj, Prafullchandra, Hemma, Shewchuk, John, Simon, Dan, Web Service Security (WS-Security), April 2002
Claessens, Joris, “Web Services Security”, European Microsoft Innovation Center,

Fox, Geoffrey, Liu, Hongbin, Pallickara, Shrideep, and Pierce, Marlon, “A Multi-party Implementation of WS-SecureConversation”, Community Grids Lab, Indiana University

“Kerberos: The Network Authentication Protocol”, http://web.mit.edu/kerberos/www/

“Kerberos FAQ”, http://www.faqs.org/faqs/kerberos-faq/

Kohl, J. and Neuman, C., “The Kerberos Network Authentication Service (V5)”, RFC 1510, September 1993

Lerman, Julie, “Web Services Security for Humans”, The Data Farm, October 2005

“Security in a Web Services World: A proposed Architecture and Roadmap”, Copyright 2001-2002, International Business Machines Corporation, Microsoft Corporation, April 7, 2002
