CSE 590TU Assignment #5 — Protocols 1l (revised)
Due at the beginning of class on February 7, 2006

1. Fun with Timestamping

Imagine that you’'ve been asked to digitally sigitoaument and you want to retain proof
both that you signed the document as well as wioernsigned it. You could simply
include a piece of metadata indicating the signimg (“I signed this document Tuesday,
1/31/06, at 5pm.”) within the data covered by ysignature, but since you could have
lied about the signing time such statements deally carry any weight. What you

really want is a widely-trusted third party to vbuor you — to say that it saw your
signature at some time T. tAnestamping service provides such services; for a fee, the
timestamp service allows clients to send the seriash values, and the timestamping
service will sign those hash values together withdurrent time, producing a
timestamping receipt for the client’s hash value. The timestampingeigtcis then sent
back to the client, who can do whatever he wantis iv{typically, archive it and/or send
it along with the signature).

Question 1(a): Assume that you're designing the format of theestamping receipt —
what information would you include in the receiphy are you including it and what'’s
the minimum size in bytes of the information yowé&#o include? You can assume that
hash values sent to you by clients are all SHA2{2&€hes and are thus 32 bytes in size.
You can also assume you only need accuracy togaeest second and that time values
are represented as follows:

GeneralizedTime format: YYYYMMDDhhmmssZ
Example: “20060131171329Z" is January 31, 2006 36tA9s Zulu (GMT)

For any other values you want to include, you magkereasonable assumptions about
the sizes of those values so long as you stateagsumptions clearly.

After your timestamping service has been up andingnfor a while, your auditors point
out the following concern: if someone malicious gah control of the timestamping
server, even if only for a little while, they caffieetively create “backdated” timestamps
by modifying the machine’s notion of time. (Thata malicious party could cause a
timestamp to be issued on February 15 that sayastissued on January 31.) Since each
timestamp is independently generatixbre would be no way to tell a fraudulently
produced “backdated” timestamp and a “genuine” sita@p apart.

Question 1(b) Describe how you could modify the operation ofiytimestamping
service to defend against fraudulent insertionméstamps “after the fact”. What
additional information do you have to add to timeegstamping receipt to effect this
change?

! For example, if you were using S/MIME to sign adment you could include your statement of the
signing time within the Authenticated Attributesten of the PKCS#7/CMS data structure.



2. Encrypted e-mail and mailing lists

In this problem we’re going to explore some of pinactical difficulties that mailing lists
(and mailing list servers) introduce into the S/MEMNcrypted e-mail world. In order to
do that I first need to give you some backgroundhaw S/MIME supports sending
encrypted messages to multiple recipients, thérmatdittle bit about mailing list servers,
then we can look at how the two interact.

2.1. Encrypting SIMIME e-mail for multiple recipients

In class we discussed how multiple digital signesuzan be attached to a single S/IMIME
message through the addition of parallel Signegnboit we didn’t talk about encrypting

a message for multiple recipients. For encryptadent, there is a per-recipient structure
called Recipientinfo that is used to hold per-remipkey information. Normally it is

used as follows: the content is encrypted withraloan symmetric key K, and then K is
public-key encrypted to each recipient (using tleatpient’s public key). So, if there are
n recipients with public keys RKPK;, ..., PK,, then the message will have n
RecipientInfos where th& iRecipientinfo contains {K}PK as shown in Figure 1:

Encrypted Content
(Encrypted with
symmetric key K)

Recipientinfo 1

Content key K encrypted to
Recipient 2's public key
{KIPK;

Recipientinfo 2

Recipientinfo n

Figure 1: SIMIME Encrypted Content

While we normally use Recipientinfo to store symiagteys encrypted to recipient
public keys, the S/IMIME does not require that tee-qecipient “wrapping” key be an
asymmetric public key. The standard also allowiusse a per-recipient symmetric key
to encrypt the content encryption key, which isfulsié the sender and recipient have
already performed a key exchange. For examplesidena scenario when the sender
and recipient know they’re going to exchange oMIBIE encrypted e-mail message per
minute during a typical day. Instead of performihg cost of a public-key encryption
per message, the sender and recipient could peddiffie-Hellman key exchange once
at the beginning of the day to establish a shayetreetric key K,y and then use that
Kpay to wrap the per-message symmetric key, as shoWigire 2:



Encrypted Content
(Encrypted with
symmetric key K)

Recipientinfo 1
Content key K encrypted with
shared symmetric key Kpay

{K}KDay

Figure 2: SIMIME encrypted content using a sharedwnmetric key

2.2. Mailing list servers

You are probably all too familiar with mailing liserver like the one that runs the class
mailing list. We don’t need to get into all the details of hmailing list servers work
for the purposes of this problem set, but heresange key points to keep in mind:

1.
2.

3.

Mailing list servers may host many mailing lists.

The membership of a mailing list may be public, Wnoonly to list members, or
known only to the mailing list administrator (argktserver).

The mailing list server controls all additions taladeletions from the mailing list
through a single interface. At any point in tirhe server knows exactly who's
supposed to be a member of the list and be abkrctve content.

When someone wants to send a message to the niatinye sender sends the
message to an address on the mailing list servenhdo list. Upon receipt, the
mailing list server queues the message for proogsdviessages are processed in
the order they are received. Due to Internet cotivigy delays, mailing list
participants may not receive messages in the exdet in which they were sent
to the server.

Assume that for anti-spam reasons (a) only mallsigubscribers can send mail
to the mailing list, and (b) the sender of a messaij receive of copy of his sent
message back from the server as part of his mdishgubscription.

That's basically all there is to a mailing listwerin a nutshell — for the problems that
follow if you feel you need more information abdl¢ internal operation of a list
server send e-mail (preferably to the class list\&ryone can see the conversation).

2.3. Adding message encryption to a mailing list

The ultimate goal in this problem is for you to ciése how you could add message
encryption as a feature to a mailing list. We'dllwthrough the problem in steps,
looking at requirements for senders, recipientsthactentral mailing list server. Your
focus should be on the cryptographic aspects optblelem, particularly the mechanism
of message encryption and key distribution. Yoousth not get hung up on operational

2 The class mailing list server is using an opera®mailing list package called Mailman, which ity
popular at the moment.



issues like, “What happens if the server runs éspace mid-encryption?” or “What's
the maximum number of users and lists that theséister can handle?”

Let’s start by looking at the message flow:

Recipient 1
Recipient 2

T Recipient 3
Server
Recipient n-1

All of the network links in our scenario are ungited (no IPSEC or SSL tunnels exist).
The typical scenario begins with the sender conmgpaimessage and sending it to the
server. The server then re-sends the messageotatlad recipients. All message
encryption must be done using S/IMIME (compliancthwtandards is a must). Assume
that all symmetric encryption is done using the A&k cipher and all public-key
encryption is done using RSA.

Mailing List

Operational Questions

Question 2(a) What information does the sender have to knowtbach mailing list
recipient if it wants to be able to send them eptag messages? What information does
each recipient have to know about the mailingdeswver? If there are M members of the
mailing list, how many public keys does each memmaged to know and how many keys
does the server need to know?

Question 2(b):When the sender encrypts a message that he wasgad to the mailing
list, how many Recipientinfos will his SIMIME meggahave? Does it make a
difference if the sender wants to archive a copljisencrypted message in his “Sent
Items” folder in case he wants to look at it later?

Question 2(c):When the server receives an inbound message fonafiang list, it first

has to verify that the message came from a sulesdolthe mailing. This is normally
done just by inspecting the From: line of the mgsesaut that's not secure. Describe one
way that the server could verify that the messageecfrom a mailing list subscriber.
Does the server need to know any additional infolonaabout the sender beyond what
you already indicated in you answer to Question?22(a



After receiving a message and verifying that it ednom a mailing list subscriber, the
server now needs to send it to all of the recigi@mt the mailing list (including the
original sender). Assume for the remainder of pgablem that the server knows and
trusts a public encryption key for each mailing treember:

Question 2(d):If the mailing list has M members, how many pulkly encryptions
does the server have to perform to prepare theagedsr sending? Does it make a
difference if the server prepares one messagematiy Recipientinfos vs. a separate
message for every recipient?

Question 2(e):How much_symmetric kegtecryption and encryption does the server need
to do in order to properly relay the message? westhat the server doesn’t keep copies
of any messages itself (no mailing list archiveés,)e Justify your answer.

Key Management Questions

Now we’re going to look at the key management aspeaitimplementing the solution
you've just sketched. Assume that the mailingdestver supports the following
operations related to mailing list membership:

1. Subscribe: This operation is called whenever a mssy wants to join the mailing
list. The user has to provide an e-mail addressrevhe receives mail as part of
the subscription process.

2. Unsubscribe: This operation is called whenever mmbe of the mailing list
decides to leave the list.

Additionally, the server has a public encryptioly kethat well-know and published, so
anyone can send an encrypted message to the server.

For the following question, we're going to assuimat the mailing list has relatively few
subscribers and that not that many messages artodée list on a daily basis, so the
server can afford to perform a public key encrypier mailing list member for each
message sent to the list.

Question 3:During a Subscribe operation, what information dibesserver need to
collect from the new user before added them tarthiding list? Describe a protocol
that the new subscribing user and the server camousend this information to the server
and authenticate that it came from the entity theeives e-mail at the subscribing
address. [That is, the server needs to know tieesuibscriber isn’t maliciously signing
someone else up to the mailing list.]

Now assume that our mailing list in Question 3 ¢nasvn very popular, and that it is no
longer computationally feasible for the server ¢éofprm a public-key encryption per
mailing list member for each message sent to #te Tihe server can only afford to do
one public key decryption per message (decryptiegribound message from the



sender). For encryption, the server will choosgraup symmetric key” that it will use
to symmetrically encrypt the content encryption.k&ach encrypted message sent by
the server will thus now have just one Recipiemt/cbntaining the content key K
encrypted with the current “group symmetric keyrhe server generates “group
symmetric keys” and is responsible for distributihgse keys to recipients.

Question 4:Design the “group symmetric key” system. In paitiae, describe how the
server can ensure that new subscribers get thentigroup symmetric key, how the
group symmetric key is used to encrypt a particolassage, and what happens to the
current group symmetric key when a member unsuteseifrom the mailing list. You
may assume that the server is capable of perfornpmgplic key operation per recipient
whenever a new member subscribes to or unsubsdrdyaghe list. (Additionally, if

you need to you may make whatever additional resserengineering assumptions you
wish about the environment so long as you canfyutem.)



