
Personal Distributed Computing:
The Alto and Ethernet Hardware

Charles P. Thacker
Systems Research Center
Digital Equipment Corp.

130 Lytton Avenue
Palo Alto, CA 94301

A b s t r a c t

Between 1972 and 1980, the first distributed personal
computing system was built at the Xerox Palo Alto
Research Center. The system was composed of a
number of Alto workstations connected by an Ether-
net local network. It also included servers that pro-
vided centralized facilities. This paper describes the
development of the hardware that was the basis of
the system.

I n t r o d u c t i o n

In the last few years, a new type of computing en-
vironment has become available. These distributed
personal computing systems represent another step
in the process, started by timesharing, of bringing
computing power closer to the user. Although many
variations are possible, these systems share a number
of characteristics:

• They are based on workstations-----personal ma-
chines that are sufficiently powerful to satisfy es-
sentially all the computat ional needs of a single
user. The workstations include high resolution
displays, and provide a highly interactive user
interface.

* The workstations are interconnected by local net-
works that provide high bandwidth communica-
tion throughout a limited area, typically a single
building.

• In addition to the workstations, the network
contains serners---nodes tha t provide capabilities
that need to be shared, either for economic or
logical reasons.

Timesharing systems grew primarily from the vi-
sion of man-computer symbiosis presented by J.C.R.
Licklider in a landmark 1960 paper [29]. Efforts to
realize the possibilities presented in this paper occu-
pied the creative talents of many computer science re-
searchers through the sixties and beyond. Distributed
personal computing systems build on this view of the
way computers and people interact by providing a
level of responsiveness that t imesharing systems can-
not achieve.

The first distributed personal computing system
was built at the Xerox Palo Alto Research Center
over a period spanning 1972 to 1980. The workstation
used in this system was the Alto [36]; the network was
Ethernet. This paper describes the hardware that
was the foundation of this system. A companion pa-
per by Butler Lampson [24] describes the software
that was built on the hardware base described here.

This paper contains seven sections: Section 1 de-
scribes the environment in which the work was done.
Section 2 traces some of the underlying ideas. Section
3 describes the early implementation period, and sec-
tion 4 discusses the servers tha t provide printing and
file storage in the system. In section 5, the reengi-
neering effort that made the Alto into a successful
internal product is described. Section 6 briefly dis-
cusses some of the Alto's successors, and section 7
contains concluding remarks.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1986 A C M - 0 - 8 9 7 9 1 - 1 7 6 - 8 - 1 / 8 6 - 0 0 8 7 $00 . 75 8 7

1 T h e E n v i r o n m e n t

The Xerox Palo Alto Research Center (PARC) was
established in 1970, primarily through the efforts of
Jacob Goldman, director of corporate research. It
was composed of three laboratories: the Computer

Science Laboratory, the System Sciences Laboratory,
and the General Science Laboratory. To direct the
new center, Goldman recruited George Pake, a physi-
cist who was at that t ime provost of Washington Uni-
versity, St. Louis.

To establish the Computer Science Lab, Pake en-
gaged Robert Taylor, who had directed the Informa-
tion Processing Techniques Office of ARPA during
the late sixties. Taylor had worked with and funded
many of the leading computer science research groups
during this period. As a result, he was in a unique
position to at t ract a staff of the highest quality.

During the first year of CSL, Taylor built a group of
approximately fifteen researchers, drawn from IV[IT,
the University of Utah, and CMU. Several members
of CSL came from Berkeley Computer Corporation,
a s tart-up company composed primarily of individ-
uals from the University of California at Berkeley,
who had built one of the first timesharing systems
[25]. From Bolt, Beranek and Newman, Taylor later
brought Jerome Elkind, who was the manager of
CSL from 1971 until 1976. Also during this period,
Alan Kay, who was to provide much of the vision
on which the Alto was based, was recruited into the
Systems Sciences Laboratory by Taylor. Kay estab-
lished the Learning Research Group (LRG), and de.
fined its goal: To produce a programming system in
which 4. . . simple things would be simple, and com-
plex things would be possible [20]."

The research environment built by Taylor was one
of the main reasons for the success of CSL and its
projects over the next decade. Unlike other P A R e
laboratories, CSL was not organized into permanent
groups. Instead, researchers were encouraged to move
between projects as their talents and the needs of the
projects dictated. This flat structure and the m o b i l
ity it made possible encouraged members of the lab
to become familiar with all activities. Additionally, it
provided a continuous form of peer review. Projects
which were exciting and challenging obtained some-
thing much more important than financial or adminis-
trative support; they received help and participation
from other CSL researchers. As a result, quality work
flourished, less interesting work tended to wither.

During 1971 and early 1972, most of the effort in
CSL was spent in building a set of hardware and soft-
ware facilities to support the future work of the lab-
oratory. The IV[axc timesharing system [13] was built
and the Tenex [2] operating system was acquired and
modified for it. Projects in graphics, computer net-
working, and language design were started.

The main research theme of CSL--office informa-
tion systems--was also developed during this period.
Most of the research done in CSL and SSL during

88

the next five years was organized around this theme,
which reflected the desire of Xerox to expand its tra-
ditional copier business to include most of the func-
tions performed in offices. Eventually, this theme
was broadened to include what is now known as dis-
t r ibuted personal computing, but initially our ambi-
tions were lower.

A strategy for carrying out work in experimental
computer science was also adopted at this time. It
was based on the idea that demonstrat ions of ~toy"
systems are insufficient to determine the worth of a
system design. Instead, it is necessary to build real
systems, and to use them in daily work to assess the
validity of the underlying ideas, and to understand
the consequences of those ideas. When the designers
and implementors are themselves the users, as was
the case at PARe , and when the system is of gen-
eral utility, such as an electronic mail system or a
text editor, there is a powerful bootstrapping effect.
This view of systems research is quite different from
that found in most academic environments, since it
requires larger groups working over a longer period
than a university can usually support.

It was clear that the ability to provide systems with
high levels of functionality would be limited by soft-
ware considerations far more than by the capabilities
of the underlying hardware. While it would be neces-
sary for us to build hardware, since the needed capa-
bilities were not commercially available, the charac-
teristics of the devices would be determined primarily
by the needs of the software systems for which they
were intended. This view is commonplace today, as
hardware performance has increased and its cost has
declined, while the cost of delivering large, reliable
software systems has continued to increase. It was
much more radical in 1971.

Although hardware development was an integral
part of the work carried out in CSL, it represented a
small fraction of the overall activity of the laboratory.
At no time did the number of people engaged primar-
ily in hardware work exceed f ive--roughly ten percent
of the total professional staff. This core group was
very effectively augmented during large projects (e.g.,
the development of the Dorado [27] during 1977-80)
by laboratory members with computer science, rather
than electrical engineering backgrounds. However,
most things were done by a relatively small group.
For this reason, it was necessary to be selective in
our choice of projects. S impl ic i ty and utility were
the most important criteria. Highly complex designs
would have been beyond our capabilities, and the con-
struction of systems without a wide user community
would not have justified the expenditure of scarce de-
sign and implementation talent.

2 S o u r c e s o f I d e a s

By late 1972, most of the laboratory facilities were
in place in CSL, and the researchers who had pro-
duced them began planning longer-term projects. It
was at this t ime tha t the main ideas underlying the
Alto were discussed and refined into an actual design.
Although a number of people in CSL and SSL con-
tr ibuted to the specification of the new system, Butler
Lampson, Alan Kay, and Bob Taylor were the indi-
viduals who were primari ly responsible for shaping
the design. To the extent that CSL had project man-
agers, I filled that function. My task was to convert
the vision of Lampson, Kay, and Taylor into working
hardware.

Taylor had originally proposed that the pr imary
computing facility in CSL should be an intercon-
nected collection of small display-based machines,
ra ther than a central t imesharing system. He thought
that a sufficient amount had been learned about the
design of interactive systems, and that hardware costs
were low enough tha t it would be feasible to produce
such a system in modest quantities. In 1970, this idea
contained a number of technical difficulties. Lampson
and I argued that a stable set of computing facilities
as well as experience in producing hardware in the
new laboratory would be required before embarking
on such an ambit ious project. This conservative view
prevailed, but by 1972, sufficient progress had been
made in a number of areas, part icularly semiconduc-
tors, tha t the difficulties did not seem as overwhelm-
ing.

In his 1969 thesis, Alan Kay had described a small
computer system, the "reactive engine" [211, tha t
shared many of the characteristics of the new ma-
chine. Like Taylor, Kay wanted a system tha t would
provide a complete work environment for its user, in-
cluding text and graphics manipulat ion, Computing,
and communicat ions capability. By 1972, this vision
of computing had acquired a n a m e - - D y n a b o o k - - a n d
for a while, the Alto was called the "interim Dyna-
book" by its developers. Kay 's vision was that the
ul t imate Dynabook would be portable, so that it
could provide all the functions provided by books,
paper, pencil, and terminals. Although the Alto
never achieved this par t of his vision, it served for
a number of years as the hardware environment for
the Small talk system [16], in which a number of text
and graphics, music, and simulation applications were
built.

Lampson 's view of the capabilities of the new sys-
tem and its uses was perhaps the most explicit. In
a 1972 guest editorial [23] in Software-Practice and
Experience, he had predicted that within five years, it

would be possible to build a system ~.. . comparable
to a 360/65 in comput ing power for a manufactur-
ing cost of perhaps $500." In the same article, he
predicted significant advances in programming tech-
nology, and foresaw the some of the effects that would
follow from these developments:

As a result, millions of people will write non-
trivial programs, and hundreds of thousands
will t ry to sell t h e m . . . Almost everyone who
uses a pencil will use a computer , and al-
though most people will not do any seri-
ous programming, almost everyone will be
a potent ia l customer for serious programs
of some kind.

Although it was clear tha t we could not achieve
these goals in 1972, there was a clear consensus that
the new system should have characteristics that were
prototypical of this vision. Cost was not a pr imary
consideration in the design, but it could not be outra-
geous, since the system had to be producible in mod-
est quantities to justify the development of software
for it.

By late 1972, the principal features of the new ma-
chine had been defined. The major departure from
past systems was the machine 's display (see Figure
1). To emulate as many of the characteristics of pa-
per as possible, we chose to provide a full b i tmap,
in which each screen pixel was represented by a bit
of main storage, and to use raster scanning rather
than the lower-cost calligraphic techniques popular
at the time. We were encouraged by the earlier ex-
periences of a group in SSL, which had developed a
character generator for a similar, but higher resolu-
tion display. The display resolution was 606 pixels
horizontally by 808 pixels vertically, which allowed
display of a full page of text. The display image was
refreshed directly from main memory, so arbi t rary
graphics could also be produced using the machine's
load and store instructions. Initially, a specialized
instruction was provided to paint characters from a
font in memory into the b i tmap; this facility was later
superseded by the more general BitBlt primitive in-
vented by Dan Ingalls I17]. The Alto contained no
support for other graphic primitives, since we were
primari ly interested in text and engineering drawing
applications tha t could be done with specialized char-
acter sets and straight lines.

The decision to provide a high-performance display
came directly from our view tha t the most important
purpose of the machine and the software that would
be wri t ten for it was to provide a high bandwidth in-
terface to the human user. Timesharing systems had
made computing more accessible and decreased its

89

Figure 1: The Alto II Workstation. The Alto I had an identical display, keyboard, and mouse, but a slightly

different cabinet.

cost, but they had done little to increase the quality
of man-machine interaction. We viewed improvement
of the user interface as extremely important, and were
willing to expend a considerable fraction of the ma-
chine's resources in providing it.

Another important feature of the user interface
provided by the Alto was the use of a mouse as a
pointing device. This was not a PARC innovation;
it had been used with considerable success in the pi-
oneering NLS system of Englebart done at SRI in
the late sixties [12,11,10]. When rolled over a work
surface adjacent to the keyboard, the mouse provides
relative positioning information, usually used by soft-
ware to control the position of a cursor on the display

screen. It also provides additional input through but-
tons on its top surface. Subsequent research [5] has
shown that the mouse is a Fit ts ' Law device, in that it
is as efficient for target selection as manual pointing.
The practical impact of this is that in the domain for
which it was intended, the mouse, iike the compact
disk in the audio domain, does as well as the limits
of the human user allow. This is often overlooked by
those at tempting to provide better pointing devices.
The mouse is not as effective as a pencil or a graphics
tablet for freehand drawing, but very few graphic ap-
plications made use of a tablet, although an interface
for one was provided.

The display's cursor was a small image, sixteen pix-

90

els square, whose contents and position could be con-
trolled by software. Many programs made consider-
able use of the programmabi l i ty of the cursor, using
its contents to convey information about the i tem to
which the user was pointing.

The Alto keyboard was similar to that of a type-
writer; it was not accidental tha t it lacked the cursor
positioning keys and numeric keypad found on most
personal computers today. In addition to the normal
typing keys, it provided eight uncommit ted keys that
could be used by software as option or function keys.
A five-finger keyset, which had been used successfully
in Englebart ' s NLS, was provided as an enhancement
to the keyboard, but it required a trained operator for
use, and never became popular as an input device.

The original Alto contained 128 thousand bytes
of main storage, and a 2.5 million byte cartridge
disk. This was similar to contemporary minicom-
puters, and consti tuted a fairly serious error. If we
had understood how rapidly semiconductor technol-
ogy would advance, and how long the Alto would
live, we would have included more convenient means
for accessing a larger memory. We failed to do this,
and although the main memory was subsequently ex-
panded to 512 thousand bytes, it was difficult for pro-
grams to make use of the addit ional memory. This
hampered software development quite a bit in later
years.

The processor of the Alto was specified with flex-
ibility and expansion in mind. It was microcoded,
which allowed us to experiment with new instruc-
tion sets and with with new input-output devices.
The principal characteristic tha t served to differenti-
ate it f rom the minicomputers of its t ime was tha t the
microprogrammed processor was shared between the
emulation of a target instruction set and the servicing
of up to fifteen addit ional fixed-priority tasks, most
of which were associated with the machine 's input-
output devices. Task switching occurred rapidly, typ-
ically every few microseconds. This mechanism al-
lowed the input -output controllers to be very simple,
since they could make use of the processor for much of
their work. Since access to the single-ported memory
is the bottleneck in a small system, multiplexing the
processor in this way did not degrade system perfor-
mance. This technique had been used before on the
Lincoln Labora tory TX-2 [14]; it was very successful
in the Alto, and has been used in several of the Alto 's
successors.

To be an effective replacement for centralized
computing facilities, personal workstations require a
means for communicat ing with other nearby worksta-
tions and with servers tha t provide shared facilities
such as file storage, printing, and long-haul commu-

nication. When the Alto design was started, we re-
alized that such a facility would be needed, but did
not understand its requirements well enough to be-
gin a design. During late 1972 and early 1973, a
number of alternatives were considered, ranging from
star-connected serial links operat ing at a few hundred
thousand bits per second to a parallel bus scheme op-
erating at several million bytes per second. The need
for bulk file transfers ruled out the low bandwidth of
the first approach, and the complexity of the required
cabling made the parallel bus unat tract ive. Coaxial
cable, connected with s tandard cable television com-
ponents, was tentat ively selected as the transmission
medium, since it would meet both the bandwidth and
reliability requirements.

Several transmission methods were also considered,
and a variant of the packet-based Aloha [1] radio sys-
tem was selected. In pure Aloha, stations needing
to t ransmit packets s imply do so, and the resulting
interference between stations reduces the channel ca-
pacity considerably. We realized tha t bet ter perfor-
mance was possible, since our cable Aloha stations
could detect when their own transmissions were being
interfered with, and abort them without t ransmit t ing
a complete packet. We chose a baseband, as opposed
to a carrier system because it is considerably sim-
pler, and the extra bandwidth afforded by the lat ter
scheme did not appear to be needed. These tentative
decisions about the form tha t the network would take
were made in late 1972, but little progress was made
on an actual network design until Bob Metcalfe, who
had joined CSL in mid-1972, and David Boggs, who
came to SSL in March, 1973, began working on what
was to become the Ethernet [31].

3 Implementat ion

In November 1972, implementat ion of the Alto be-
gan. The design was completed in approximately two
months, including an initial version of the microcode
for an instruction set emula tor and for the display
and disk controllers. Two proto type machines were
then built using wirewrap technology, and were in
operation in April 1973. One reason for the short
schedule was that we had developed a rapid proto-
typing facility as a par t of the construction of the
Maxc t imesharing system during 1971 and 1972. We
were also able to use the memory boards originally
developed for the Maxc system in the Alto, which
saved considerable engineering effort. The design of
the processor, memory subsystem, and display con-
troller was done by Chuck Thacker, while the disk
controller and its microcode were designed and im-

91

NTASK

--I=• 16x12

I ~ Address ~ '

PROM
Control Memory
t-2 Kw x 32

RAM
Control Memory
1o3 Kw x 32

CTASK

MIR R _ ~ . , . ~

ALUF[0:3]
LL
LT
F1[0:31
F2[0:31

Next

v +

Enter ~ wake'̀ ¢~
Requests

Address

Control
Signals

CTASK = I
RSel[0:2] , CI ~ . p

8x32x16
BS[02I

R ~ RSeI[0:2]
Registers

,~ RSeI[3:41
32x16 I~ IRIl:2]

< !~ IRI3:41

.~ Processor Bus ALU Results

Branch
Logic

Disk
Controller

f
IR J I Drivers, Parity

[~ - - ~ A d Data
dr MAn Memory

128-512 Kb

MAR I

T
Data

~,ddr Memory Bus
I/O Devices

Display Ethernet
Controller Controller

Figure 2: The Alto Microprocessor.

plemented by Ed McCreight. Larry Clark built the
early systems and designed the package.

The Alto was a very simple machine by today 's
standards. The processor {Figure 2), is composed
of three printed circuit boards containing about 200
small and medium-scale integrated circuits. Each of
the input-output controllers occupies a single board
containing approximately sixty integrated circuits.
The processor is organized around a 16-bit bus con-
nected to the main memory, an arithmetic unit, a
number of high speed registers (R and S), and the
input-output controllers. The transfer of data over
the bus, the operations to be performed on the data,
and the tests to be applied to it are controlled by a 32-
bit microinstruction taken from PROM or RAM con-
trol store. Microinstructions are executed by a two
stage pipeline which can start a new instruction every
170 nanoseconds. The processor is shared among six-
teen fixed priority tasks. The NTASK and CTASK
registers hold the number of the task currently in con-
trol of the processor. NTASK addresses the sixteen-
element MPC RAM, which holds the task program
counters. NTASK is loaded with the number of the
highest priority wakeup request whenever the running

task is willing to relinquish the processor. The only
state associated with a task that is saved by the hard-
ware is the task's program counter. Other machine
resources are shared among tasks by programming
convention. Normally, a task switch takes place with
no overhead, unless it is necessary for the task giving
up control to save and restore the L or T register.

The Alto main memory is synchronous with the
processor, which starts all references by explicitly
loading the memory address register {MAR). The
memory can read or write a single 16-bit word in five
machine cycles, or it can read a 32-bit doubleword in
six cycles. The doubleword read was originally pro-
vided to support the display, which consumes two-
thirds of the memory bandwidth even with this oper-
ation; it was also used very effectively by instruction
set emulators for instruction fetching and to manip-
ulate 32-bit quantities.

The Alto was not a high-performance machine,
even by the standards of its time. Without the per-
formance degradation caused by the input-output de-
vices, it requires between one and three microseconds
to execute a single emulated instruction. With the
display running, these times are increased by a factor

92

of three. Until software was developed that required
a great deal of computa t ion for simple user actions
{e.g., the Bravo text editor}, the speed of the ma-
chine was adequate. Perhaps more important than
the absolute speed is the fact that the performance
of the Alto is predictable. It is very difficult to pro-
vide this characteristic in a t imesharing system, and
its lack can be very disconcerting to the user. The
Alto cannot provide the peak performance of a time-
sharing machine, but it has the desirable property,
pointed out by Jim Morris, tha t it doesn ' t run faster
at night.

Once the design was complete, the microprocessor
was simple enough tha t the hardware worked almost
immediately. Debugging the microcode was more dif-
ficult, but was simplified considerably by an auxiliary
writeable microstore built for the purpose. This de-
vice was connected to the control logic of the Alto
under test. It replaced the PROM control store with
RAM, and also added several bits to the microword.
These additional bits were used to provide a break-
point capabili ty that made debugging much easier.
The test unit was under control of a dedicated mini-
computer tha t ran a microcode assembler and debug-
ger. Using these tools, microcode debugging could be
carried out as easily as debugging an assembly lan-
guage program on a conventional machine.

The first of several microcoded instruction set em-
ulators developed for the Alto was done for a vir tual
machine similar to the Data General Nova minicom-
puter. We had previously purchased a number of
these systems, and had developed for them a com-
piler for BCPL [32], a predecessor of the popular C
language. The main differences between the Alto in-
struction set {Figure 3) and that of the Nova were
that the size of the Alto 's address space was twice
that of the Nova, and a number of instructions were
added to support the Alto 's input-output and inter-
rupt system and to optimize BCPL procedure calls.

The resulting instruction set was not compatible
with that of the Nova, but it was sufficiently simi-
lar that modifying the compiler was straightforward.
Most of the early software for the Alto was writ ten
in BCPL. Only a small amount of assembly code was
ever writ ten for the machine. The microprocessor
hardware contained a small amount of logic to en-
hance the performance of the BCPL emulator. This
logic included a register to hold the instruction be-
ing executed and a method to address the registers
used for the emulated machine 's accumulators from
its fields. This logic was not used by later emulators,
and it probably would have been bet ter to have used
the same amount of hardware to provide functions
with more general utility.

Memory Reference InslzuclJons:
, , , , r , , ,

ol <uoo I mol,i l , , , oso, , , , , I
MFunc: X:
1: AC := Mem[EfAd] 0: EfAd := Disp
2: Marn{EfAd] := AC 1 : EfAd := PC + sign-extended Disp

2: EfAd := AC2 + slgn-extended Disp
3: EfAd := AC3 + sign-extended Disp

If I # 0 then Efad := Mern[EfAd]

Jump/J SRASZfDSZ Ins~.u~ons:
i , i , , , , , , , +

0 0 0 JFunc I X Disp
I i i I I f I i I i , i i i I i i

JFunc:

O: PC := EfAd
1 : AC3 := PC + 1 ; PC := EfAd
2: Mern EfAd := Mem[EfAd] + 1; ff Mem[EfAd] = 0 then Skip
3: Mern[EfAd] := Mem[Efad] - t ; if Mern[EfAd] ~ 0 then Skip

Accumulator-to-Accumulator Instructions:

tl + I stl + , + 1 s:" I °i INLI I
AFunct: Shift: CY:
0: Dest := NOT Sr¢ 0: none 0: Cin := Carry
l :Dest :=- ~ c t :LSH1 l :C in := 0
2: Dest := Src + 1 2: RSH 1 2: Cin := 1
3: Dest := Src 3: Swap 3: Cin := Carry'
4: Dest := Dest ÷S¢c bytes
5: Dest := Dest - Src
6: Dest := Dest - Src -1
7: Dest := Oest AND Src

Skip:
0: Never
1: Always
2: CResult = 0
3: Cresult # 0
4: Result = 0
5: Result # 0
6: (Result = 0)

OR (CResult = O)
7: (Result # 0)

AND (CResult # 0)

Speci~ Functlon Instru~ons:

I ' ' I ', F+un ' I o , , , , on, + , ,+me°t, , , , I
Memory

I + ToDest i fNL=O

Src S AC0 Load i f
- - E

AC1 ! NL = L

Dest C E AC2 r ~

J+/ Ac~ I

AFunc C~n

T T
SH I t~bi, S..+r I il ++"

Result

Skip ~Skip Sensor I

Figure 3: The BCPL Instruction Set and Processor
Model

Emulators for several other instruction sets, includ-
ing Smalltalk [18,16], Lisp [8,7], and Mesa [15] were
writ ten for the Alto. All were based on the idea of
encoding the instructions as byteeodes. This arrange-
ment allows instruction decoding to be done by a sin-
gle 8-bit dispatch, ra ther than the several dispatches
required to decode a BCPL instruction. The perfor-
mance gained in this way more than offsets the lack of
specialized decoding hardware. Most of the software
writ ten for the Alto after 1977 used Mesa, which was
the choice in CSL, or Smalltalk, which was the lan-
guage of choice in LRG. The Alto Lisp system was
unsuccessful, pr imari ly due to the lack of sufficient
memory.

93

Input-output devices can be connected to the Alto
in several ways. High performance controllers that
make use of the microprocessor or require a high
bandwidth connection to the memory are connected
directly to the processor bus. The display, disk, and
Ethernet controllers are examples of devices in this
class. Lower performance devices are attached to the
memory bus and addressed as locations at the end
of memory, as in the PDP-11. The keyboard and
keyset are connected in this way. Finally, a parallel
port is provided for low performance devices outside
the cabinet. This port was used to connect a variety
of devices, including impact printers, a PROM pro-
grammer, and X-Y digitizing tablet, and a cassette
tape deck.

The hardware controllers for the disk, the display,
and the Ethernet are similar. They contain data
buffering, logic to drive and receive control lines re-
quired by the device, and a small amount of device-
specific timing and control logic. Most of the com-
plexity associated with a controller is contained in its
microcode. The display, for example, makes use of
three of the Alto's sixteen microtasks: one is awak-
ened during the display's vertical synchronization pe-
riod, one is awakened during horizontal synchroniza-
tion, and one is responsible for transferring raster
data from main memory to the controller data buffer.
The controller hardware provides wakeup requests at
the appropriate times, but the microcode is respon-
sible for carrying out most of the work required to
maintain the display.

This arrangement, in which a device controller has
the full computational power of the processor at its
disposal, allowed us to provide convenient logical in-
terfaces between devices and the driver software that
operated them. The display interprets a chain of con-
trol blocks in main memory, each of which defines the
contents of a horizontal band on the display screen.
Since areas of the screen containing only white space,
such as the space between lines and paragraphs, are
not required to have any underlying bitmap memory,
this technique reduces the display storage required
by the standard text editor from the 61 thousand
bytes required to represent a full screen to approx-
imately 50 thousand bytes, a substantial saving in a
machine with only 128 thousand bytes of memory.
Drawing programs that allow the user to manipulate
full-screen images cannot take advantage of this econ-
omy, but such programs are considerably simpler and
smaller than the editor, so ei~cient use of space is less
important in these applications.

The disk controller also makes extensive use of the
Alto microprocessor. Like the display, it executes a
chain of control blocks from main memory. Eacl~ con-

trol block specifies a 512 byte page to be read or writ-
ten. The controller is able to transfer consecutive
physical sectors between the disk and memory, which
represented unusually high performance for the time.
The controller uses two of the Alto 's microtasks, o n e

of which is awakened every sector, and one which is
responsible for da ta transfers within a sector.

The disk controller and the file system were de-
signed concurrently by Ed McCreight and Butler
Lampson, with reliability as a p r imary goal. The de-
signers wanted to provide a system in which hardware
or software errors would result in a min imum amount
of information loss. An impor tan t innova t ion- - the
use of label b locks- -cont r ibuted substantial ly to the
system's reliability. Labels add a third record to the
header and da ta records customari ly contained in a
disk sector. The label record contains a unique inte-
ger identifier for the file containing the sector, the sec-
tor 's position in the file, the addresses of the previous
and next pages of the file, and the number of valid
bytes in the da ta record. The controller microcode
checks the information in the label block before doing
any operat ion on the da ta record. This check ensures
tha t the disk is properly positioned, bo th physically
and logically, before any access to the da ta is done.

The use of label blocks, combined with replication
of directory information in the first page of every file,
means tha t the directory, which is an ordinary file,
can be reconstructed f rom the contents of the disk it-
self if it becomes scrambled. Similarly, if da ta pages
are corrupted, it is possible to determine precisely
the extent of the loss, and to preserve the balance of
the file system. One of the earliest programs writ ten
for the Alto was the Scavenger, which verified the in-
tegrity of a file system and corrected inconsistencies.
This program, the first version of which was wri t ten
by J im Morris, makes the loss of even a small port ion
of a file system an extremely rare event.

The original Alto prototypes did not contain Eth-
ernet interfaces, but during 1973, substant ia l progress
on both network hardware and protocols was made.
The name ~Ethernet" was first used in May 1973 by
Bob Metcalfe. Metcalfe and David Boggs worked on
the network facilities during the summer and fall, and
the prototype machines were exchanging packets by
the end of 1973. Although the Alto was the first ma-
chine equipped with an Ethernet interface, Metcalfe
and Boggs went on to design controllers for all the
PARC computers, including Data General Novas and
DEC PDP-11s. The Ethernet transceiver, an analog
device that connects the controller to the coaxial ca-
ble, was designed by Tat C. Lam. The original Ether-
net was slower than the commercial version available
today. Its transmission rate was 2.94 million bits per

94

second, half the rate of the Alto master clock, and
it used Manchester encoding for the serial data. For
collision detection, it relied on comparison between
the actual signal on the coaxial cable and the sig-
nal the transmitting station was at tempting to send,
rather than the level monitoring done by the com-
mercial version. The 3 million bit per second band-
width of the network was of some concern initially,
in that we were not sure that it would be sufficient
for a large system. Subsequent measurements [33] of
a large network revealed that loads in excess of ten
percent of full capacity were rare. There might have
been less excess capacity if diskless workstations that
paged over the network had been employed, but the
use of local disks made this unnecessary.

In April, 1973, the first Alto prototype was com-
pleted. It was able to run simple programs to exercise
the disk and display. The first image to be displayed
was the Sesame Street 'Cookie Monster', which had
been carefully digitized by a member of Kay's group.

During the balance of 1973, nine more prototype
machines were built at PARC. During the summer,
the prototypes had been tested sufficiently that we
were willing to commit the design to printed circuit
boards. A t the same time, we realized that the lack
of writeable control store would be a serious limita-
tion in a machine intended for experimentation, and
added one thousand words of instruction RAM to the
original PROM control store. The original microcode
was improved substantially, and a number of test pro-
grams for the hardware were written. Software de-
velopment had begun, but there was not enough soft-
ware available by the end of 1973 for the Alto to re-
place our timesharing system as the main computing
facility for users.

One of the major strengths of the Alto in a research
environment was that it could provide very high per-
formance if the user were willing to accept the un-
pleasantness of microprogramming the processor di-
rectly. The first demonstration of such an application
took place in the summer of 1973. Alan Kay, who was
an accomplished organist, wanted a synthetic instru-
ment with natural sound quality. He believed that
this could be accomplished by recording and digi-
tizing a real organ, and doing table lookup to pro-
vide a completely faithful replica of the waveshape.
We decided to give him his wish, and purchased a
two-manual organ keyboard (with pedals), a preci-
sion digital-to-analog converter, and a high fidelity
amplifier and loudspeaker system. The keyboard and
DAC were interfaced so that a task-specific function
could read the keyboard as a bit vector, and load a
value into the DAC. The organ simulator kept in main
memory a table, consisting of the amplitudes at 256

95

points along a single cycle of the desired waveshape.
Samples were generated for the DAC at a 25 kHz rate
by taking points from this table at offsets which were
inversely related to the frequency to be generated.
The microprogram computed up to ten such samples
every 40 microseconds, one for each key that was de-
pressed. Samples were summed and the result was
transmitted to the DAC. A variety of different effects
could be generated by using different variations of the
'canonical cycle'. Although this application was fairly
frivolous, it was an impressive demonstration of the
real-time capability of the machine. Later, a serial
line concentrator that connected up to sixty-four se-
rial 300 baud lines to the Ethernet was built using
similar techniques. The only extra hardware used in
this device was a group of level converters and latches
to allow the microprogram to read the value of the re-
ceived data and store the data to be transmitted. All
other processing was done by specialized microcode.

By late 1973, we were ready to produce a quantity
of the machines for CSL and SSL. Although we had
been able to build a small number of prototypes, the
manufacture of the thirty systems we needed was be-
yond our capabilities. Fortunately, the company had
established a custom systems manufacturing group
in Los Angeles, and this group agreed to manufac-
ture the Alto for us. The first machines were deliv-
ered between May and September, 1974. This was
only slightly later than the first release of the basic
Alto software, which took place in March, 1974. This
early software consisted of the operating system [28],
the BCPL compiler, and a primitive text editor. It
allowed many of the researchers in CSL and SSL to
begin doing a substantial amount of their work on the
Alt% although the Maxc timesharing system was still
used for electronic mail, file storage, and printing.

4 S e r v e r s

The most important components of a distributed
computing system, after the workstations and the
network that interconnects them, are the servers that
provide shared facilities. We initially underestimated
the importance of servers, assuming that the facilities
provided by a set of workstations would be sufficient.
We soon discovered that this was incorrect. Some
functions, such as high-quality printing, are very ex-
pensive, and must be shared for economic reasons,
while in other cases, sharing is used to provide com-
munication between the users of the system. File
storage is an example of the latter situation, although
the low cost per byte of large disk files also provides
economy of scale.

The first PARC server was EARS, a printing server
named after its components: Ethernet, Alto, RCG
(research character generator}, and SLOT (scanning
laser output terminal}. This system was quite suc-
cessful, in spite of the considerable obstacle to its ac-
ceptance presented by its bizarre name. It was the
forerunner of the Xerox 9700 printer, which has been
an extremely successful product .

The printing port ion of EARS had been under de-
velopment even before PARC was founded. Gary
Starkweather, an optical engineer at the Xerox Web-
ster Research Center, joined SSL in 1971. He brought
with him a pro to type printing engine consisting of a
laser scanner a t tached to a s tandard Xerox copier.
This device used a rota t ing polygon to scan an
intensi ty-modulated laser beam across a s tandard xe-
rographic drum, building up a raster image of the
page being printed. During 1972, Ron Rider of SSL
and Butler Lampson designed and implemented a
character generator capable of printing high quality
text in several fonts on Starkweather 's engine, at a
speed of one page per second.

A printer based on these components, driven by a
Da ta General Nova minicomputer , was demonstra ted
in late 1973, but was never placed in service. In-
stead, Rider decided to build an Ethernet-based print
server. He modified the character generator to allow
it to be driven from an Alto, and wrote the necessary
software to control the printer. The network-related
port ions of the server were writ ten by Bob Metcalfe.
EARS was the first major application for the Ether-
net, and during its development, several experimen-
tal communicat ions protocols [30] were tested and re-
fined. EARS was placed in service in the Fall of 1974,
and provided printing service to CSL and SSL until
it was replaced by the Dover printer in 1977.

The final component needed for a complete dis-
t r ibuted comput ing system was a file server. The
hardware basis for several experimental file servers
was a high-performance disk controller designed by
Roger Bates in 1975. Like earlier Alto device con-
trollers, it made use of the Alto 's microprogrammed
tasking for many of its functions, but it was consid-
erably more complex than the earlier controllers be-
cause of the high bandwidth of the at tached disks.
Using this device, it was possible to connect as many
as seven 300 million byte disks to a single Alto.

The first file server, Juniper, was to have provided
page-level access to files, as well as atomic transac-
tions. Planning for Juniper began in 1974, but ac-
tual p rogramming did not begin until 1976. It was
completed in 1977, but was never used extensively
because of its poor performance.

The file server tha t was used most widely was the

~Interim File Server", or IFS. This software was writ-
ten in 1976 by Ed Taft and David Boggs, when it
became clear tha t Juniper would not be ready as
early as originally anticipated. It was an extension of
the simple Alto file system, combined with the PUP
(PARC Universal Packet} file transfer protocol [3]. It
provided only bulk file storage, but it was completed
rapidly and was reliable and efficient. However, as an
~interim" system, it was a failure, since the IFS still
provides the major i ty of the file storage in the Xerox
internetwork.

The most complex server built using the Alto was
the Dover printer, designed in 1976. Dover used a
raster printing engine tha t was a descendant of the
SLOT used in the EARS server, driven by a controller
tha t relied heavily on the input -output processing ca-
pabil i ty of the Alto. Dover was a large project, in-
volving several groups within the company. The de-
sign of the printing engine was done by the Special
Projects Group (SPG} in Los Angeles, the group that
manufactured the Alto. John Ellenby of CSL was re-
sponsible for management of the engine development.
Software for the Dover was wri t ten by Dan Swinehart
of SSL, and Bob Sproull of CSL. The development of
the controller was done by Severo Ornstein of CSL,
Bob Sproull, and J im Leung of SPG, from a design
by Butler Lampson.

The controller was considerably simpler than the
earlier EARS character generator. Instead of using
hardware to generate the bit s t ream for the printer
in real time, the controller built up the image to
be printed incrementally. Two buffer memories were
used, each capable of holding sixteen of the printer 's
scan lines. While one of these buffers was being serial-
ized and sent to the printer under hardware control,
the other was being loaded with video information.
The text to be printed and the b i tmap representa-
tions for the fonts to be used were kept in Alto main
memory, and writ ten into the buffer by a high prior-
ity microcoded task. This process was then repeated
for each of the roughly 250 bands tha t made up each
page. Spooling of files received from the network was
done by a BCPL program, which also sorted the con-
tents of each page into bands in prepara t ion for trans-
mission to the controller. The resolution of the Dover
was 384 pixels per inch, lower than the 500 pixels per
inch of EARS, but still adequate for text and line
graphics. The bandwidth requirements of the printer
were high enough tha t the machine could not receive
and spool files while printing, but its printing speed
of one page per second was high enough tha t this
was not a problem, since it could stop between pages
to receive files. Incremental image generation also
placed a limit on the complexity of pages tha t could

96

be printed. For the few images tha t exceeded the
limit, another server tha t composed an entire page
on disk and t ransmit ted it to a slower printing engine
was available.

The controller contained approximately 300 inte-
grated circuits, making it about one eighth as com-
plex as the character generator used in EARS. This
simplification was made possible by the extensive use
of the Alto 's microprocessor to provide the low level
control functions for the interface. Several dozen
Dovers were built, and a number are still in opera-
tion.

5 E x p a n s i o n

During 1975, the Alto was redesigned to improve its
reliability and reduce its cost. The work was done by
the Special Projects Group in Los Angeles that had
been producing Altos for PARC, and was planned
and supervised by John Ellenby of CSL. As par t of
this effort, all the boards and the package were re-
designed. The memory system was reimplemented
using 4 thousand bit RAM chips, and error correction
was added. The resulting machine was much easier to
build and service than the earlier system, and its cost
was much lower- -approximate ly twelve thousand dol-
lars, ra ther than eighteen thousand dollars. The Los
Angeles group had built a total of sixty of the origi-
nal systems over a period of two years, most of which
had been purchased by CSL and SSL. They were now
able to produce the system in high volume. Over the
next four years, approximate ly fifteen hundred Altos
were built, of which approximate ly a thousand are
still in use today. Most are used by individual engi-
neers and scientists in a number of Xerox facilities,
al though many were configured as servers, and a few
were used for market ing probes or donated to univer-
sity computer science groups.

A final redesign done in 1979 replaced the memory
with sixteen thousand bit RAM chips, and increased
the amount of memory that could be attached to 512
thousand bytes. At the same time, the microcode
store was changed from one thousand words of RAM
and two thousand words of PROM to one thousand
words of PROM plus three thousand words of RAM.
By this time, other language emulators had almost to-
tally superseded the original BCPL emulator. These
emulators were usually loaded at boots t rap t ime or
as par t of s tar t ing a program that used a part icular
language. The addit ional RAM control store made
it possible to spend less t ime minimizing the space
required by the microcode and concentrate instead
on its functionality and performance. The microcode

was improved somewhat after the final redesign, but
by 1980, most new development had shifted to the
Alto's successors, described in the next section.

Although most of the software developed in CSL
and SSL was distr ibuted with the Alto, three appli-
cation programs were pr imari ly responsible for the
machine 's popular i ty with technical professionals in
Xerox. The Bravo editor [22], designed by Charles
Simonyi and Butler Lampson, and implemented and
improved by Simonyi and others from 1974 through
1978, was the first and most impor tan t of these.
Bravo was the first W Y S I W Y G (what you see is what
you get) editor. It supported multiple fonts, and its
high quality output could be printed on one of the
many Dover printers tha t were available throughout
the company.

The second impor tan t application program was the
Laurel mail system [4], writ ten by Doug Brotz, Roy
Levin, and Mike Schroeder in 1978. Electronic mail
has a profound effect on communicat ion within an
organization, since it combines the permanence and
precision of memos with the speed of the telephone.
By 1980, the Xerox internetwork, composed of local
Ethernets connected by telephone lines, had been ex-
panded to most of the engineering and research sites
within the company. Laurel was rapidly adopted by
a large fraction of this community, and by 1983 there
were over four thousand regular electronic mail users
in Xerox.

The third popular application was a group of tools
~for digital logic design, including the SIL illustrator
[35] writ ten by Chuck Thacker in 1975, and a rout-
ing program for prototypes wri t ten by Ed McCreight.
These programs also produced high quality documen-
tat ion on the Dover printers. They increased the pro-
ductivity of designers significantly, and are used by
most of the electronic engineers in the company.

6 Succes sors

The Alto was only the first of several personal work-
stations built at Xerox. The Dorado [26,6,27] and the
Dicentra were developed at PARC, and the Dolphin
and the Dandelion were commercial systems designed
in the Electronics Division and the System Develop-
ment Division.

Dorado is the largest hardware engineering project
ever undertaken by the Compute r Science Labora-
tory. It was difficult to think of the Dorado as a
personal machine, since it consumed 2500 watts of
power, was the size of a refrigerator, and required
2000 cubic feet of cooling air per minute (while pro-
ducing a noise level tha t has been compared to that

97

of a 747 taking off).
It was used as a personal machine, however, and

supplied comput ing power comparable to three VAX-
11/780s. This may seem profligate, but it was consis-
tent with the view tha t the CSL hardware base should
be equivalent to tha t which would be commercially
available and affordable in five to ten years. With
hardware tha t is not limiting, it is possible to explore
ways of using computers tha t are considerably ahead
of current practice.

The Dorado project was s tar ted in CSL during
1975. It was moved to the System Development Di-
vision in 1976, but returned to CSL in 1977 when it
became clear tha t the machine 's high cost would not
meet SDD's needs. The initial design was completed
in late 1978, and two proto types were built. A re-
design, completed in 1979, was then done to simplify
the machine. Manufacture of the machine s tar ted in
1980 in a small product ion facility tha t had been es-
tablished for the purpose. By 1982, approximate ly
th i r ty systems had been built, and the Dorado had
replaced the Alto as the principal comput ing vehicle
in CSL and SSL.

The Dorado achieved its high performance through
its aggressive technology and a great deal of at tention
to detail on the par t of its designers. It uses emitter-
coupled logic (MECL 10K) with two to four nanosec-
ond gate delays. The processor is microprogrammed,
and like the Alto employs mult i tasking at the mi-
crocode level to operate input -output controllers. Un-
like the Alto, it has vi r tual memory, an eight thou-
sand byte cache, and a separate instruction fetch unit
associated with the CPU. Up to 16 million bytes of
main memory may be at tached to the Dorado. The
memory bandwidth available for input -output devices
and to service cache misses is 66 million bytes per sec-
ond. The processor executes microinstructions in a
three-stage pipeline tha t can s tar t a new instruction
every sixty nanoseconds. The separate instruction
fetch unit allows many instructions in the common
emulators to execute in a single microinstruction.

In terms of man-years expended on a single project
in CSL, the Dorado is second only to the Cedar pro-
gramming environment [9,34], which its high perfor-
mance made possible. The initial design was done
by Butler Lampson and Chuck Thacker; the design
was continued in SDD by Thacker, Brian Rosen, Don
Charnley, and Tom Chang. When the project re-
turned to PARC, it was part i t ioned into a number o f
subsystems: Ed McCreight and Severo Ornstein were
the project managers; Butler Lampson was the tech-
nical leader of the project. The microprocessor was
designed by Ken Pier, Roger Bates, and Ed Fiala.
The instruction fetch unit was designed and imple-

mented by Severo Ornstein, Gene McDaniel, and Will
Crowther. The storage system was done by Doug
Clark, Ed McCreight, and Ken Pier. A number of
individuals produced the microcode for the machine,
including Ed Taft, Peter Deutsch, Willie-Sue Hauge-
land, and Nori Suzuki.

The Dolphin was a much less ambit ious successor to
the Alto, designed in the Electronics Division of Xe-
rox in 1977-79. In a sense, it was the successor of the
Dorado, ra ther than the Alto, since it was done by the
same group (Thacker, Charnley, Rosen, Chang) tha t
had worked on the Dorado in SDD as well as a group
in Los Angeles tha t included Jack Cameron, Howard
Kakita , and Malcolm Thomson. Dolphin employed
a number of ideas tha t had been incorporated into
the Dorado, including vir tual memory and a high-
bandwidth input -output system. Its technology was
not as aggressive as tha t of the Dorado- -Scho t tky
TTL, ra ther than E C L - - and it was smaller and much
less expensive. The Dolphin was used as the proces-
sor in the Xerox 5700 Electronic Print ing System, and
a version configured as a Lisp workstat ion became
the 1100 Scientific Informat ion Processor. Although
PARC built approximate ly fifty Dolphins for internal
use, and provided emulators for the Alto instruction
set, Mesa, and Lisp, the machine was not popular.
It had a higher resolution display, more memory, and
a larger disk than the Alto, but it was only about
twice as fast. Dolphin became available slightly be-
fore the Dorado, but the performance of the lat ter
machine made it much more at t ract ive, part icularly
for a research environment.

The Dandelion [191 , known commercial ly as the
Star 8010 workstat ion, was implemented in 1979 and
1980 by a group in SDD consisting of Bob Belleville,
Rober t Garner, and Ron Crane. Dandelion was based
on a paper design called Wild flower done by But-
ler Lampson and Roy Levin of CSL. It was intended
to have high performance and extremely low cost,
but l imited configuration flexibility. The Dandelion
CPU used 2901 bit-slice processors, and employed a
fixed time-slice form of mult i tasking tha t was quite
different from tha t of the Alto. Dandelion was the
first of the Alto 's descendants tha t did not provide
an emulat ion mode in which Alto software could be
run. It was p rogrammed exclusively in Mesa and
the extended Mesa developed for the Cedar system.
Dicentra, built by David Boggs and Hal Murray in
1982, was a variant of the Dandelion which included
a Multibus ra ther than a propr ie tary bus for the at-
tachment of input -output devices and memory. It
provided a low-cost way to obtain a Mesa-compatible
processor to which industry s tandard peripheral con-
trollers and devices could be attached.

98

In addition to its direct descendants at Xerox, the
Alto has inspired a number of similar systems from
other commercial vendors. The Apple Lisa and Mac-
intosh are perhaps the most familiar of these; Table
3 in Lampson [24] lists several others.

7 C o n c l u s i o n

The Alto is small and slow by today's standards. The
four generations of memory and microprocessor de-
velopment that have passed since 1972 have made it
straightforward to build low cost personal worksta-
tions with a hundred times the memory capacity and
ten times the speed of the Alto. It seems likely that
progress in semiconductors will continue at its present
rate for perhaps another decade before fundamental
physical limits are reached, so much more powerful
systems are inevitable.

Higher bandwidth networks have also become much
easier to engineer with the advent of fiber optics.
However, experience with the Ethernet indicates that
even with very high performance machines such as the
Dorado, network bandwidth is not the limiting factor
in overall system performance.

A surprising fact that has emerged from the work
on the Alto and its successors is that the amount
of software required to support interactive user in-
terfaces is much greater than originally anticipated.
Invariably, the complexity of the software is much
greater than that of the hardware on which it runs.
Except in a few applications in which the users are ex-
perts (e.g., programmers using programming environ-
ments), it has not yet become possible to provide the
kind of symbiotic relationship between computer and
human envisioned by Licklider in 1960. Advances in
programming technology, as well as better hardware,
will be required to achieve the kind of system he de-
scribed. Distributed personal computing systems will
help bring about these advances by providing more
productive and efficient computing environments for
developers.

R e f e r e n c e s

[11

[21

[3[

N. Abramson. The ALOHA System. In Proc.
AFIPS FJCC, pages 281-285, 1970.

D.G. Bobrow et al. Tenex: A paged time-sharing
system for the PDP-10. Communications of the
ACM, 15(3):135-143, March 1972.

D.R. Boggs et al. Pup: An internetwork ar-
chitecture. IEEE Trans. Comm., 28(4):612-624,
April 1980.

[4] D.K. Brotz. Laurel Manual. Technical Re-
port CSL-81-6, Xerox Palo Alto Research Cen-
ter, 1981.

[5] S. Card et al. Evaluation of mouse, rate-
controlled isometric joystick, step keys and text
keys for text selection on a CRT. Ergonomics,
21(8):601-613, August 1978.

[6] Douglas W. Clark, B.W. Lampson, and Ken-
neth A. Pier. The memory system of a high-
performance personal computer. In The Dorado:
A High-Performance Personal Computer--Three
Papers, CSL-81-1, pages 51-80, Xerox Palo Alto
Research Center, 1981.

[7] L.P. Deutsch. Experience with a micropro-
grammed Interlisp system. IEEE Transactions
on Computers, C-28(10), October 1979.

[8] L.P. Deutsch. A Lisp machine with very compact
programs. In Proc. 3rd IJCAI, Stanford, 1973.

[9] L.P. Deutsch and E.A. WaTt. Requirements for an
experimental programming environment. Techni-
cal Report CSL-80-10, Xerox Palo Alto Research
Center, June 1980.

[10] D.C. Engelbart. The augmented knowledge
workshop. In Proc. A C M Conf. on History of
Personal Workstations, January 1986.

[11] D.C. Engelbart. A conceptual framework for
the augmentation of man's intellect. In How-
erton and Weeks, editors, Vistas in Information
Handling, volume 1, pages 1-29, Spartan Books,
Washington, 1963.

[12] D.C. Engelbart and W.K English. A research
center for augmenting human intellect. In Proc.
AFIPS Conf., pages 395-410, 1968.

[13] E.R. Fiala. The MAXC systems. IEEE Com-
puter, 11(5):57-67, May 1978.

[14] J.W. Forgie. The Lincoln TX-2 input-output
system. In Proc. Western Joint Computer Conf.,
pages 156-160, February 1957.

[15] C.M. Geschke et al. Early experience with
Mesa. Communications of the ACM, 20(8):540-
553, August 1977.

[16] A. Goldberg and D. Robson. Smalltalk-80: The
Language and its Implementation. Addison-
Wesley, 1983.

[17] D. Ingalls. The Smalltalk graphics kernel. Byte,
6(8):168-194, August 1981.

99

[18] D.H. Ingalls. The Smalltalk-76 programming
system: Design and implementation. In Proc.
5th ACM Syrup. Principles of Prog. Lang.,
pages 9-16, January 1978.

[19] R.K. Johnsson and J.D. Wick. An overview of
the Mesa processor architecture. ACM Sigplan
Notices, 17(4):20--29, April 1982.

[20] A.C. Kay. Microelectronics and the personal
computer. Scientific American, 237(3):236-245,
September 1977.

[21] A.C. Kay. The Reactive Engine. PhD thesis,
University of Utah, 1969.

[22] B.W. Lampson, editor. Alto User's Handbook.
Xerox Palo Alto Research Center, 1976.

[23] B.W. Lampson. Guest editorial. Software-
Practice and Experience, 2:195-196, 1972.

[24] B.W. Lampson. Personal distributed comput-
ing: The Alto and Ethernet software. In ACM
Conf History of Personal Workstations, January
1986.

[25] B.W. Lampson et al. A user machine in a time-
sharing system. Proc. IEEE, 54(12):1744-1766,
December 1966.

[26] B.W. Lampson, Gene A. McDaniel, and
Severo M. Ornstein. An instruction fetch unit
for a high-performance personal computer. In
The Dorado: A High-Performance Personal
Computer--Three Papers, CSL-81-i, pages 21-
50, Xerox Palo Alto Research Center, 1981.

[27] B.W. Lampson and K.A. Pier. A processor for
a high-performance personal computer. In Proc.
7th Syrup. Computer Arch., pages 146-160, ACM
Sigarch/IEEE, May 1980.

[28] B.W. Lampson and R.F. Sproull. An open op-
erating system for a single-user machine. ACM
Operating Sys. Rev., 13(5), November 1979.

[29] J. Licklider. Man-computer symbiosis. IRE
Trans. Human Factors in Electronics, HFFE-I:4-
11, March 1960.

[301 R.M. Metcalfe and D.R. Boggs. Ethernet: Dis-
tributed packet switching for local computer net-
works. Communications of the ACM, 19(7):395-
404, July 1976.

[31] R.M. Metealfe, D.R. Boggs, C.P. Thacker, and
B.W. Lampson. U.S. Patent 4,063,220: Multi-
point Data Communication System With Colli-
sion Detection. December 1977.

[32]

[33]

[341

[36]

M. Richards. BCPL: A tool for compiler writ-
ing and system programming. In AFIPS Conf.
Proc., pages 557-566, 1969.

J.F. Shoch and 3.A. Hupp. Measured perfor-
mance of an Ethernet local network. Communi-
cations of the ACM, 23(12):711-721, December
1980.

W. Teitelman. A tour through Cedar. IEEE
Software, 1(4), April 1984.

C.P. Thacker. SIL--a simple illustrator for cad.
In S. Chang, editor, Fundamentals Handbook
of Electrical Computer Engineering, Volume 3,
pages 477-489, Wiley, 1983.

C.P. Thacker et al. Alto: A personal computer.
In Siewiorek et al., editors, Computer Structures:
Principles and Examples, chapter 33, McGraw-
Hill, 1982. Also CSL-79-11, Xerox Palo Alto Re-
search Center (1979).

i00

