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Abstract 
 
A look though the history of computing shows very rapid growth of various technologies 
enabling computer industry to become the dominant force it is today.  Computers went 
from being immensely bulky, unreliable, and expensive to elegant, connected, and 
affordable.  Throughout this evolution process one important aspect always occupied the 
minds of system and application engineers - performance.  This paper will go through the 
history of computing beginning with 1940s and highlight important aspects which 
defined how computer performance was approached at each significant milestone of 
computing.   
 
Early computers were custom-made electronic digital machines commissioned by the 
military to perform intense numerical calculations.  Important aspect of these early 
machines was the ability for people to program, making its users to be first computer 
programmers.  Although the concept of software has not been born yet and programs 
consisted of switches-wires combinations, we already see programmers think about 
optimizing programs to work around performance bottlenecks.   
 
During 1950s-60s computer industry went through one of the most significant transitions 
in its short history.  Due to significant advances in hardware, computers were becoming 
increasingly powerful, and as a result computer applications were becoming increasingly 
complex.  To deal with complexity, we see a sharp separation of hardware and software.  
Ever since the separation the goal of software performance engineering has been to 
develop creative solutions to reduce or tolerate speed limitations placed on the system by 
hardware.  This principle is being followed by the industry until this day.  For example, 
disk and memory latencies have always been most noticeable performance bottlenecks.  
While the reduction and tolerance of latency involves hardware components, we also see 
software in constant evolution to work around these issues.  
 
Another important aspect is the tradeoff the software industry is willing to make for 
increased developer productivity, which usually comes at a system or application 
performance penalty.  This is highlighted by the development of compilers, libraries, 
abstraction layers, and execution frameworks.  All of these innovations have helped to 
significantly improve developer productivity, which in turn helps software vendors ship 
products faster.  In almost all cases, the software industry comes to a consensus that 
taking a reasonable performance hit for making developers more productive is perfectly 
acceptable.  User applications for PCs have enjoyed this trend through early 2000s, while 
semiconductor manufacturers were able to double the CPU clock speed every 18 months.  
Since 2004 the semiconductor industry has not delivered a CPU with significant 
improvement in CPU clock speed.  Moore’s law is expected to be followed for at least 
another decade, and CPU makers have decided to begin producing chips with multiple 



CPU cores.  Unlike CPU clock growth multiple cores will no longer allow software to 
automatically run faster with release of new wave of CPUs.  Instead software industry 
must find a way to adopt concurrency in its design of user applications. 
 
 
Early Machines (1940s) 
 
1940s witnessed the development of first fully electronic digital computers. All of such 
machines were very large scale expensive creations. They were primarily commissioned 
by the military, which had the need for computing power and was able to afford it. Such 
computers were designed with primary goal of performing high volume of similar 
calculations. In our discussion we will concentrate on one such machine, ENIAC, and 
examine the problems and trade-offs associated with its design and programming. 
 
ENIAC, which is acronym for Electronic Numerical Integrator and Computer, was first 
large-scale, fully electronic, digital computer with reprogramming capability, which 
enabled it to solve a range of problems. ENIAC was commissioned by U.S. Army 
Ballistics Research Laboratory to calculate artillery firing tables, however first 
calculations that were run on the machine were related to the design of the hydrogen 
bomb. It was unveiled in February of 1946 with the price tag of $500,000. 
 
The ENIAC proper consisted of 40 panels arranged in U shape. It had three portable 
function tables, a card reader, and a card punch. The units of the ENIAC were 
functionally classified into four categories: arithmetic, memory, input and output, and 
governing. The unit of the ENIAC referred to one or more panels and associated devices 
(such as, the portable function tables) containing the equipment for carrying out certain 
specific related operations. The arithmetic units included 20 accumulators (for addition 
and subtraction), one high-speed multiplier, and one combination divider and square 
rooter. The constant transmitter, three function tables, and the 20 accumulators provided 
numerical memory. The constant transmitter with associated card reader read from 
punched cards numbers that were changed in the course of a computation and made these 
numbers available to the computer as needed. The constant values were stored on the 
switches of the constant transmitter or of the portable function tables and were supplied 
when needed. 
 
ENIAC was capable of performing arithmetic operations of addition, subtraction, 
multiplication, division, and square rooting on signed numbers expressed in decimal 
form. ENIAC used ten-position ring counters to store digits. Arithmetic was performed 
by "counting" pulses with the ring counters and generating carry pulses if the counter 
"wrapped around", the idea was to emulate in electronics the operation of the digit wheels 
of a mechanical adding machine. Once configured to follow a routine consisting of 
operations in its repertoire, ENIAC carried out the routine without further human 
intervention. The machine could be instructed to carry out complex mathematical 
operations of interpolation and numerical integration and differentiation. The results were 
recorded on punched cards.  
 



The “clock” frequency of ENIAC was 10 microseconds. The fastest operation was 
addition, which executed in 20 cycles, allowing for 5000 additions to be executed per 
second. All other operations required an integral number of addition times, and as such, 
were measured in units of add-time. Despite slow operations, ENIAC could be 
configured to run the calculation in parallel, achieving much faster peak speeds. 

Nevertheless, before any computation could be performed on ENIAC, the machine 
required an extensive physical configuration. Input and output terminals of the units had 
to be connected into busses for communication of numerical data. Also, each of the units 
had to be setup as to recognize when they are to operate and which particular operations 
had to be performed. Program controls and program trays and cables were used to 
configure ENIAC for a particular computation. Each unit of the ENIAC had one or more 
program controls. Each program control for a unit that was capable of more than one 
operation or which was capable of performing operation in a variety of ways had a set of 
program switches of its own. As result, the machine setup, because of its complexity, was 
a science in itself and required extensive periods of time to accomplish. Usually a setup 
took one or more days. 

Another issue of concern was testing proper functionality of ENIAC. The machine was 
very complex. It had about 20,000 tubes and thousands of switches and plug-in contacts. 
Since any of these or other things could fail, it was not surprising that the duration of an 
average run was only a few hours. A power failure could spoil several tubes. Some of the 
failures were not clear-cut, that rendered a vacuum tube inoperable, but rather caused it to 
operate improperly once in a hundred to a thousand times. As result, half of the operation 
time was spent on testing. 

Complexity of the programming and testing of ENIAC prompted several improvements 
to be made from 1948. A primitive read-only stored programming mechanism using the 
Function Tables as program Read Only Memory (ROM) was introduced. Three digits of 
one accumulator were used as the program counter, another accumulator was used as the 
main accumulator, and another accumulator was used as the address pointer for reading 
data from the function tables. Also, a converter and register devices were added to 
alleviate negative impact on speed of the above changes. The converter converted any 
two-digit number to a program pulse in one add-time, thus freeing up cycles for other 
operations. The register device was a set of one hundred ten-digit registers with three 
operations: It could clear its old argument and receive a new argument in one add-time; it 
could receive a number, clear that register designated by its current argument and send 
the number to that register, increasing its argument by one; it could send out (and also 
keep) the number designated by its current argument.  
 
The implemented hardware changes achieved several drastic improvements in 
programming and functional testing: 
 

1 The programming ENIAC became clearer and straightforward. It allowed 
scientific personnel with no prior experience with computing machines to code 
their own problems and prepare tests.  



 
2 Not only programming of ENIAC became easier, it became faster and allowed for 

problems four times larger to be programmed on the machine.  
 
3 The problems were input in the new system by setting switches on the function 

table, instead of the old method of plugging numerous cables. The computation 
setup was accomplished in hours instead of days. Furthermore, the switch settings 
made in the function tables could be systematically and rapidly debugged.  

 
Besides easing the switch settings check, the new method eased the ENIAC functional 
testing. Testing was of outmost importance, and it was done thoroughly, rapidly and 
systematically without touching any cables or switches. On one function table, programs 
were set up at will to test any suspected unit.  Thus, the implemented improvements in 
programming and testing attributed to the ENIAC delivering results at a greater rate 
despite the reduction in computing speed by a factor of six. 
 
It was also observed that ENIAC remained I/O bound because of the difference of 
electronic speed of computation and electromechanical speed of input and output 
generation. I/O remained to be the bottleneck for practical real world problems even after 
the speed reduction from the modifications described above. 
 
 
Early machines II: (1950s – 1960s) 
 
During 1950s computer industry went through important improvements in the area of 
hardware that allowed for significant leaps in software development. For the purposes of 
the discussion we will analyze a sample machine from the period, made by IBM which 
was a dominant computer hardware manufacturer of the time.  
 
In early 1950’s IBM introduced machines of the 700 series. The 700 series were large-
scale electronic digital computers. IBM 701 was formally announced in May of 1952 and 
was IBM’s first commercial scientific computer. Its business counterpart was IBM 702. 
The computers and associated components were not bought but rather rented from the 
manufacturer. The price for the rental of the main analytical unit was $8000 per month, 
with other components costing slightly less. Even though the cost of using computers 
dropped comparing to previous decade, the computing time remained very expensive. As 
result high utilization of the machine remained a priority. 
 
The 701 contained the arithmetic components, the input and output control circuitry, and 
the stored program control circuitry. Also, mounted on the 701 was the operator's panel. 
The arithmetic section contained the memory register, accumulator register and the 
multiplier-quotient register. Each register had a capacity of 36 bits. The 36 bits was the 
necessary number of bits to represent signed integers to an accuracy of ten decimal digits. 
It also allowed for storage of six alphanumeric characters encoded in a six-bit character 
encoding. The accumulator register also had two extra positions called register overflow 
positions. The system used electrostatic storage, consisting of 72 cathode ray tubes, three 



inches in diameter each. The tubes provided capacity of 1024 bits each, giving a total 
memory of 2048 word of 36 bits each. Memory could be expanded to a maximum of 
4096 words of 36 bits by the addition of a second set of 72 tubes. Another option was to 
replace two of the electrostatic storage units (IBM 706) with magnetic core storage unit 
(IBM 737) of equal capacity. The magnetic core offered faster access times of 12 
microseconds versus 30 microseconds of electrostatic storage. The functional machine 
cycle of the 701 was 12 microseconds; the time required to execute an instruction or a 
sequence of instructions was an integral multiple of this cycle. A whole word addition 
operation took 60 microseconds, 5 cycles, 456 microseconds or 38 cycles were required 
for execution of multiply or divide instructions. All operations of the Type 701 were 
controlled by a program stored in a single address space.  

The usual method of input to the system was magnetic tape, but entry could also be 
gained from punched cards through the card reader or from the operator's console, if 
special instructions were required. All information, whether part of the data to be 
processed or part of the program of instructions, started out on punched cards. Then, it 
either could be converted directly to magnetic tape before being read into the system or it 
could be read directly.  

The control section decoded the stored program and directed the machine in 
automatically performing its instructions. Instructions were entered into the control 
section through storage or manually from the operator’s panel. The entire machine could 
be controlled from the operator’s panel through various buttons, keys and switches. The 
operator could manually control the insertion of information into various registers. The 
content of various registers could also be displayed in neon lights for examination. The 
operator’s panel was primarily used for the initial testing of a program for new operation 
and the beginning of the program execution. 

The results of the processing were either produced on a line printer, on a magnetic tape, 
or on punched cards. If the operator did not want to tie up the entire system while the 
relatively slow printing or punching was accomplished, he or she could produce an output 
tape, then connect a tape unit directly to the printer or card punch and print out or punch 
the results without using the principal components of the system.  

What is of interest is the programmability of the machines. The earlier computer systems 
were programmed by hand, via physical configuration of cables and front panel switches 
that were used to enter instructions and data. The switches represented the address, data 
and control lines of the computer system. To enter data into memory, the address 
switches were toggled to the correct address, the data switches were toggled next, and 
finally the write switch was toggled. This wrote the binary value on the front panel data 
switches to the specified address. Once all the data and instruction were entered, the run 
switch was toggled to run the program. The programmer also needed to know the 
instruction set of the processor. Each instruction needed to be manually converted into bit 
patterns, so that the front panel switches could be set correctly. Obviously, this methods 
were slow and error prone.  
 



The improvements in the production techniques of memory modules allowed for 
increases in memory sizes and lower costs. The larger memory sizes allowed for a logical 
next step of writing a program to interpret another. The new interpreter, assembler, would 
be run by the computer, and translate the actual mnemonics of the assembly language 
into operation codes of  machine instructions, the task previously done manually by 
programmers. Furthermore, it lowered the entry barrier to become a programmer, 
removing the need to know instruction codes. The new approach was vastly superior to 
previous method. It eliminated translation errors, greatly sped up the conversion to 
machine code and allowed for easier error checking and changes. The net effect was 
faster program development cycle. Thus, the development for IBM 701 could be done in 
assembly. 

 
In April of 1954 IBM introduced IBM 704, the first mass produced computer with 
floating point arithmetic hardware. The Type 704 was twice as fast as its predecessor 
IBM 701. IBM 704 multiplies or divides took 240 microseconds, or approximately 4,000 
operations per second. The usage of cathode ray tubes was completely abandoned in 
favor of magnetic core memory.  Three index registers were added to allow for indirect 
memory addressing. To support these new features the instructions were expanded from 
18 bits to full word length of 36 bits. 
 
In addition to this high-speed memory, the 704 had a magnetic drum reader and recorder. 
Each of the two drums of the magnetic core could hold 4096 words, for the total capacity 
of 8192 words of permanent storage with 50 milliseconds of random access time. The 
drum could be used for storage of parts of the program, intermediate results, rate tables, 
or other information. Finally, the magnetic tape unit acted as bulk storage as well, each 
holding up to 5 million characters. 

Even though automation of assembler greatly simplified programming there remained 
several important inherent disadvantages, which remain true to this day: 

1 The programmer requires knowledge of the processor architecture and 
instruction set.  

 
2 Source programs tend to be large and difficult to follow, since many 

instructions are required to achieve small tasks.  
 
3 Programs are machine dependent, requiring complete rewrites if the 

hardware is changed. 

The idea of high level programming languages existed in early 50's, for example the 
seminal work by Grace Hopper on the A-0 programming language, but the machines of 
the early 50s were still not powerful enough to allow for their realization. FORTRAN 
team led by John Backus at IBM is generally credited for having introduced the first 
complete compiler, in 1957 on IBM 704.  



A compiler is itself a computer program written in some implementation language. Early 
compilers were written in assembly language. Also, because of the existing memory 
limitations the compilers of the time were split into smaller programs each of which made 
a pass over the source or some representation of it, performing required analysis and 
translations. 

A draft specification for The IBM Mathematical Formula Translating System was 
completed by mid-1954. The first manual for FORTRAN appeared in October 1956, with 
the first FORTRAN compiler in April 1957. FORTRAN offered a considerable reduction 
in the training required to program, as well as in the time consumed in writing programs 
and eliminating errors. It had an optimizing compiler and produced object programs 
which were nearly as efficient as those written in assembly language by human 
programmer. Otherwise customers would have been reluctant to use it. One of the 
features introduced by FORTRAN was ability to perform a repetitive task from a single 
set of instructions by using loops. 

The language was widely adopted by scientists for writing numerically intensive 
programs, which further encouraged compiler writers to produce compilers that could 
generate faster and more efficient code. The inclusion of a complex number data type in 
the language made FORTRAN especially suited to technical applications such as 
electrical engineering. In 1958 FORTRAN II was released. It was a significant 
improvement. It added the capability for separate compilation of program modules and 
dynamic linking of assembly modules. FORTRAN IV was released in 1961. It offered 
‘cleaned up’ version of FORTRAN II code and eliminated some machine-dependant 
language irregularities. Another major step forward was taken on May of 1962, when an 
American Standards Association (ASA) committee started developing a standard for the 
FORTRAN language, a very important step that made it worthwhile for vendors to 
produce FORTRAN systems for every new computer, and made FORTRAN an even 
more popular high level language. The new ASA standard was published in 1966, and 
was known accordingly as FORTRAN 66, it was the first high level language standard in 
the world. 

Parallel to FORTRAN there were other high level languages being developed. 
Particularly COBOL, Common Business Oriented Language, was designed for business 
use. Early COBOL efforts aimed for easy readability of computer programs and as much 
machine independence as possible. 

The idea of compilation quickly caught on, and most of the principles of compiler design 
were developed during the 1960s. Thus, while I/O still remained the bottleneck, the 
expansion of memory capacity allowed for advancements in software development 
granting faster development of larger and more complicated portable programs. Greatly 
reducing development and debugging times brought down the overall costs of computer 
utilization and increased the scope of addressable problems. 
 
 
 



Mainframes and Minicomputers 
 
Many innovations of 1960s have made it possible to drastically increase business 
applications for computers.  Because computer ownership (or leasing) costs were very 
high, businesses were willing to invest significantly in performance tuning to maximize 
their investment.  From business perspective it was very important that the computer’s 
processing power was fully utilized.   
 
There were many advances in I/O devices in 1960s.  Disk and tape drives were 
developed, and card readers/punchers continued to be widely used.  Most business 
applications manipulated large amounts of data, and were largely I/O bound.  This is in 
contrast to supercomputers which were primarily used for scientific compute-bound 
problems.  With moving mechanical parts disk drives inherently possess high latency for 
random I/O requests.  This is still a major bottleneck in system performance even today, 
and it is a job of many software architects and developers to engineer applications in a 
way to reduce random I/O.  Even when not counting latency as a factor, disk/tape transfer 
rates are far slower compared to CPU. 
 
Because I/O devices were recognized as sources of system bottlenecks, it was necessary 
to design a mechanism where the CPU would still be utilized while a program waited for 
a response from I/O device.  This was achieved using multiprogramming, where several 
programs were loaded at the same time, and the executing program would give up the 
CPU when it needed to wait for an I/O operation.  IBM introduced this concept with its 
MFT (multiple tasks of fixed size) operating system, which was later followed by MVT 
(multiple tasks of variable size).  The operating system stored away the context of a 
program when it reached an instruction requiring I/O, and loaded the context of another 
program ready to be executed. 
 
Many programs requested input from the user, which usually provides slower response 
time than an I/O device.  Letting only one user interact with a machine where the CPU is 
almost always idle would be very expensive and impractical for most businesses.  Time 
sharing systems solved this by letting several users connect into a mainframe machine 
using terminals.  This allowed operating systems to treat users as I/O devices, and use 
multiprogramming techniques to maximize the CPU utilization. 
 
In late 1970s, two seconds was the acceptable response time for time sharing systems.  It 
was largely believed that two seconds were acceptable because the person used it to think 
about next tasks that he/she would need to enter.  However, the “The Economic Value of 
Rapid Response Time” paper (by Walter J. Doherty, IBM and Ahrvind J. Thadani, IBM) 
describes a study done to show that a person typically has a sequence of actions in mind, 
and reducing the response time will result in more transactions between the person and 
the computer per unit of time.  This translates into a more productive working 
environment, and cuts business costs.  The study shows that the number of transactions a 
user completed in an hour goes up dramatically when response time is less than two 
seconds.  For example, with 3 seconds response time the study found that the user 
executes about 180 transactions per hour; however with 0.3 seconds response time the 



number of transactions went up to 361 (106% increase).  In other words, 2.7 seconds of 
response time saved 10.3 seconds of user time.  What’s even more interesting is study 
shows that an average experienced engineer working with subsecond response time was 
as productive as an expert engineer working with slower response time.  Finally, the 
study shows that users have higher enthusiasm working on systems with quicker response 
time, which directly translates into higher quality of work. 
 
Advances in multiprogramming and time sharing resulted in more programs loaded in 
memory at the same time.  The amount of physical memory was very limited, and fitting 
all needed programs in it was not practical.  The development of virtual memory allowed 
developers to write programs against a virtual address space instead of physical memory, 
which supported multiprogramming and allowed far greater flexibility.  Virtual memory 
didn’t come without performance cost.  Virtual to physical address translation worried 
many in the industry due to being potentially expensive.  Most operating systems use 
paging as part of virtual memory implementation.  Paging has opened a new class of 
performance issues.  When a requested page is not in physical memory, a page fault is 
issued, and its resolution requires issuing an I/O request.  In many cases applications are 
bound by the number of page faults they experience.  Minimizing the number of page 
faults in applications is still a goal for many software architects today. 
 
As previously stated software must deal with hardware’s limitations and adapt to running 
in a constrained environment to maximize resource utilization.  While hardware support 
for advances such as multiprogramming and virtual memory is required, software’s 
flexibility is what really allowed these primitives to take computing power to the next 
level.   
 
As we have already seen, operating systems started supporting MFT and MVT to allow 
maximum CPU utilization.  In this model the operating system must decide which 
program will be given the CPU when currently executing program makes an I/O request.  
Such decisions make up scheduling policies, which can be implemented exclusively in 
software, and easily plugged-in depending on the types of applications the system is 
expected to execute. 
 
With virtual memory and paging, the operating system must also make similar decisions 
about what memory pages should be swapped out to make room in physical memory for 
newly requested pages.  Such decisions are classified into policies, and are implemented 
in software, which again allows them to be plugged-in for specific purposes. 
 
At the application level software developers focused on minimizing the number of I/O 
operations as well as making those operations sequential rather than random.  For time 
sharing systems, the response time was the metric used to assess performance, and as we 
have already seen, there was substantial business case for making response time quicker.   
 
The computer industry was making significant investments during 1960s-70s to 
maximize the utilization of very expensive machines.  We see these investments being 
spread out all across the industry.  System manufacturers innovated with new approaches 



at hardware and operating system levels to allow applications to fully utilize the CPU.  
Businesses that relied heavily on mainframe computers made significant investments at 
increasing throughput and response time (on time sharing systems) of their business 
applications.  During this time, many engineers started to specialize in tuning systems 
and applications to maximize performance.  Consulting companies started forming to 
help businesses optimize their applications. 
 

Early Personal Computers (1970s – 1980s) 

In order for personal computers to be developed a significant advancement had to take 
place in hardware. Such advancement was the development of the microprocessor. As 
with many advances in technology, the microprocessor was an idea whose time had 
come. Prior to microprocessor invention, electronic CPUs were typically made from 
bulky discrete switching devices or small-scale integrated circuits, containing the 
equivalent of only a few transistors. By integrating the processor onto one or a very few 
large-scale integrated circuit packages, containing the equivalent of thousands and later 
millions of discrete transistors, the cost of processor power was greatly reduced. Since 
the advent of the integrated circuits, the microprocessor would become the most 
prevalent implementation of the CPU, nearly completely replacing all other forms. 

What is widely accepted to be the first commercial single chip microprocessor was Intel 
4004. Intel 4004 had 4-bit processor meant for a calculator. It processed data in 4 bits, but 
its instructions were 8 bits long. Program and data memory were separate, 1K data 
memory and a 12-bit PC for 4K program memory. There were also sixteen 4-bit or eight 
8-bit general purpose registers. The 4004 had 46 instructions, using only 2,300 
transistors. It ran at a clock rate of 740 kHz, eight clock cycles per CPU, with the cycle of 
10.8 microseconds. In 1972 Intel released Intel 4040, which was an enhanced version of 
the 4004, adding 14 instructions, larger stack, 8K program space, and interrupt abilities, 
including shadows of the first 8 registers.  
 
Intel offered Busicom, the calculator manufacturer, a lower price for the chips in return 
for securing the rights to the microprocessor design and the rights to market it for non-
calculator applications. Busicom, in financial trouble, agreed. 
 
Texas Instruments followed the Intel 4004/4040 closely with the 4-bit TMS 1000, which 
was the first microprocessor to include enough RAM, and space for a program ROM, and 
I/O support on a single chip to allow it to operate without multiple external support chips, 
making it the first microcontroller. It also featured an innovative feature to add custom 
instructions to the CPU. It included a 4-bit accumulator, 4-bit Y register and 2 or 3-bit X 
register, which combined to create a 6 or 7 bit index register for on chip RAM. 
 
The 8080 was the successor to the 8008, similar to 4040 design, 8008 was released in 
April 1972 and was intended as a terminal controller. While the 8008 had 14 bit PC and 
addressing, the 8080 had a 16 bit address bus and an 8 bit data bus. Internally it had seven 
8 bit registers, a 16 bit stack pointer to memory which replaced the 8 level internal stack 



of the 8008, and a 16 bit program counter. It also had 256 I/O ports. As such, I/O devices 
could be hooked up without taking away or interfering with the addressing space. 
 
Shortly after Intel's 8080, Motorola introduced the 6800 microprocessor. Some of the 
designers left to start MOS Technologies, which introduced the 650x series which 
included the 6501 and the 6502. Like the 6800 series, variants were produced which 
added features like I/O ports or reduced costs with smaller address buses. The 650x was 
little endian and had a completely different instruction set from the big endian 6800.  
Unlike the 8080 and its kind, the 6502 and 6800 had very few registers. It was an 8 bit 
processor, with 16 bit address bus. Inside, there was one 8 bit data register, two 8 bit 
index registers, and an 8 bit stack pointer. At the time, RAM was actually faster than 
microprocessors, so it made sense to optimize for RAM access rather than increase the 
number of registers on a chip. It also had a lower gate count and cost than its competitors. 

Microprocessors made possible the advent of the microcomputer in the mid-1970s. It also 
allowed for the new form of computers to be born. The home or otherwise known as 
personal computers were made possible by significant reduction in processor 
manufacturing costs, which translated to lower prices. What is accepted to be the first 
personal computer was MITS Altair 8800, a microcomputer design based on Intel 8080 
CPU. Altair 8800 was announced in January of 1975 and sold as a kit that had to be 
assembled by users. Altair’s user interface consisted of the front panel filled with lights 
and switches. The switches allowed direct input of the machine code into registers. There 
was no way to store programs, and as such they had to be entered anew after every power 
down. Despite of the limited repertoire Altair 8800 gained popularity among computer 
hobbyists and several thousand units were sold. 

Despite of the relative success of the Altair, the established electronics and computer 
manufacturers did not consider personal computers as a viable market that could generate 
profit. It took up and coming company of Apple Computers Inc. to produce Apple II, the 
machine that started personal computer revolution. 

The first Apple II computers were demoed at the West Coast Computer Fair in 1977 and 
went on sale on June 5, 1977. Apple II looked like an appliance rather than a piece of 
electronic equipment, having been placed into a plastic case with the keyboard. Apple II 
utilized MOS Technology 6502 microprocessor, primarily because of its low cost, 
running at 1 MHz and 4 KB of RAM. It also boasted high-resolution graphics modes, 
sound capabilities, Integer BASIC programming language interpreter, also written by 
Wozniak, and placed into the ROMs and audio cassette interface for loading programs 
and storing data. The programs that could be written in BASIC were loaded directly into 
RAM and executed. Due to absence of virtual memory, programs needed to be 
constrained in size in order to fit into the available physical memory.  Therefore 
optimizing programs for size was also a top priority.  
 
Because, its target audience were the general public rather then an eclectic group of 
computer enthusiasts, Apple II sparked personal computer revolution. Thanks to the open 
design of the system that was extensively documented in the supplied manual, allowed 



people to write software and later design extensions for Apple II. At first simple games 
and software, that were written by other computer hobbyist, appeared in computer stores. 
As the popularity of the system grew, third parties designed different hardware extension 
cards. In 1978, Steve Wozniak in another feat of engineering ingenuity built an external 
51/4 -inch floppy disk drive, the Disk II, that attached via controller card to Apple II. The 
floppy drive took two weeks to design and build, just in time for the demonstration at the 
computer fair in Las Vegas along with newly designed office software VisiCalc. The 
introduction of floppy disk, which allowed for much faster load and store times, along 
with VisiCalc, opened business market for Apple II and launched it to new heights. Even 
though there were two other personal computers in the market, the abundance of features, 
great extensibility and later the myriad of software and hardware designed for Apple II, 
put it out of reach of its competition. Thanks to the great success of Apple II, Apple 
Computer Inc, went public in 1980. 
 
Apple II was eventually superseded by Apple II Plus that was also designed around 
MOST 6502 microprocessor and had 48 KB of RAM, expandable to 64 KB. Apple II 
Plus included Applesoft BASIC programming language that supported floating point 
operations and as its predecessor Integer BASIC was stored in the ROM. Applesoft was 
supplied by up and coming software company Microsoft.  
 
The Apple II Plus was followed in 1983 by the Apple IIe, a cost-reduced yet more 
powerful machine that used newer chips to reduce the component count and add new 
features, such as the display of upper and lowercase letters and a standard 64 KB of 
RAM, expandable to 128 KB. ProDOS operating system was introduced along with the 
machine. The IIe was the most popular Apple II ever built and was widely considered the 
"workhorse" of the line. It also has the distinction of being the longest-lived Apple 
computer of all time -- it was manufactured and sold with only minor changes for nearly 
eleven years. 
 
Realizing the success and great revenue potential of personal computers IBM scrambled 
to respond. The response came in the form of IBM PC in August of 1981. IBM PC was a 
result of new approach to design cheap alternative to then dominant Apple II computer. 
Rather than going through usual IBM process, a special team of thirteen engineers was 
assembled with authority to bypass normal company procedures, in order to release a 
product to the market. The team designed IBM PC with off-the-shelve components. It 
was based on Intel 8088 microprocessor that run at 4.77 MHz, had 16 KB of RAM, 
expandable to 64 KB. The original PC had Microsoft BASIC loaded into ROM. It had 
Color Graphics Adapter video card that could use standard television for display. The 
standard storage device was cassette tape or a floppy drive for additional cost. No hard 
disk was originally available. IBM had an extensive penetration of the business market 
and decided to go with the open hardware specifications allowing for third parties to 
replicate the design. Even though, original IBM PC was too expensive for home users, it 
proved to be a great success with businesses. Eventually the IBM PC design spread, 
providing massive support for hardware and software. The consumers opted to join a 
larger world of PC clones which provided greater support. According to Steve Wozniak, 



Apple's consulting experts advised against allowing cloning of the system, since it was 
believed to be a mistake. 
 
The operating system of choice for IBM PC and clones were versions of Disk Operating 
System (DOS). MS-DOS was single user, single task OS with command line interface 
and batch scripting facility. Originally written by Tim Paterson from Seattle Computer 
Products in 1980, it was first licensed and later bought outright by Microsoft for total sum 
of $75,000, prior to IBM PC official release. IBM supplied PC-DOS, a validated and 
packaged version of Microsoft-DOS (MS-DOS), with their PCs. Because of the great 
penetration of the home computer market by PC clones, MS-DOS managed to establish 
itself as dominant operating system. 

Even though processor speeds progressed by leaps and bounds the RAM remained to be 
small and very expensive. The early models of personal computers were also lacking hard 
disks for permanent storage.  As result the programs had to be optimized for size. The 
programming was done in high level languages, such as BASIC. But that required a 
relatively large memory footprint. The alternative of assembly language provided less 
portable but faster and smaller programs and thus was favored for system applications 
such as OS. Also, some business applications were written in assembly, such as Lotus 1-
2-3. Because of its features and most importantly speed it became the killer-application 
for IBM PC 

Personal Computers (1990s-2000s) 

While Moore’s law has been followed consistently through the years, 1990s saw an 
unprecedented growth in CPU clock rates.  Semiconductor manufacturers were able to 
roughly double the clock rate every year, producing very powerful CPUs.  Combination 
of very fast CPUs, growing amount of memory and disk space, and the advent of the 
internet – have created a booming demand for personal computers at homes and 
businesses, opening new markets for software makers. 
 
Many agree that while the speed and size of various computer components has grown at 
astounding rate, applications developed for these systems do not benefit users by the 
same factor.  By rough approximation, machines of early 2000s are about 10,000 times 
more powerful than average machines of 1970s; however the applications are not 10,000 
more beneficial to its users.  With such a discrepancy, one would think that applications 
running on such systems would hardly ever have any performance issues.  As any 
hardware or software developer would knows this is not true.  If applications are not 
10,000 times more beneficial to users and still suffer from well known performance 
issues, then where does all the processing power go?  Following analysis tries to answer 
this question:    
 

1. With advances in hardware and operating systems support, today’s PCs have 
many characteristics of supercomputers.  Most modern operating systems support 
multiprogramming and multithreading, which benefit users by perceiving that 
many different tasks run at the same time.  Unlike server systems, where it’s 



typical to have the entire server dedicated to running only one applications, user 
PCs can have many applications running at the same time, and competing for 
system resources.  We see this trend becoming more and more prevalent, where 
with each new release of Windows we see more and more parallel services 
running together.  While individual applications have only marginal benefits from 
increased power of PCs, users are able to work at much higher throughput 
because systems are able to run many simultaneous tasks. 

 
2. Powerful PCs have lead to development of new code execution environments.  

Compilers, libraries, interop layers and managed code frameworks (such as .NET 
and JVM) allow application developers to be much more productive and cut 
development time by paying penalty during code execution time.  Users typically 
are not concerned with technology used to implement applications.  However, 
users are concerned with quality and release schedule, which are both improved 
with managed execution environment. 

 
3. Current operating systems don’t make full use of very large RAM sizes on PCs.  

Having a PC with a lot of physical memory is only useful when that memory is 
filled with useful code or data for applications that need it.  Most modern 
operating systems still use old policies and algorithms for figuring out what pages 
need to be in memory and at what time.  In the old model (where physical 
memory was very expensive), the operating system’s job was to only maintain 
actively used pages in memory, while swapping any unused pages out to disk.  As 
a result, many client applications don’t fully benefit from having very large 
amounts of physical memory.  New models are immerging where large parts of 
unoccupied memory are used as caches, which are filled with relevant code or 
data, based on some profiling data collected during normal computer usage.  
Windows Vista’s SuperFetch does exactly this by recording usage patterns, and 
using those data to pre-fill memory with code and data that are most likely to be 
used in the near future. 

 
4. While CPU clock speed has grown at a very rapid pace during 1990s-2000s, the 

speed of other system resources has not.  Namely, disk and memory latency have 
not seen substantial growth since 1960s, and are major factors in limiting system 
performance in today’s PCs.  A typical user application is I/O bound as a whole, 
with small periods of time when it becomes memory or compute bound.  Most 
performance architects (working on user applications) spend most of their time 
figuring out how to make applications less I/O bound.  Techniques such as 
caching, working set reduction, profile-guided optimization, careful memory 
layout, and others are used. 

 
5. In conclusion, another point should be considered.  Is it reasonable to assume that 

new useful code for user applications can be developed at the same pace as 1990s-
2000s phenomenal CPU clock growth?  While I believe that disk and memory 
size increases do pace together with the rate of new software development, I 
contend that the CPU clock rate growth greatly outpaced it.  If this is true, then 



the answer to where all the CPU power goes is very simple – nowhere yet, 
because software industry has not yet caught up with high CPU clock rates (for 
user applications). 

 
The point about user applications being mostly I/O bound should be further discussed.  A 
natural question is why would a user application be I/O bound on a PC with 1GB of 
RAM? 
 

1. When considering steady state, most user actions will work on code and data 
which are already in memory, making most user scenarios memory/compute-
bound, giving users fast response time.  While considering steady state makes 
sense for applications running on the server, client application performance is 
measured in terms of response time to user actions, which may or may not put the 
application out of the steady state.  In many cases users launch other application 
features, read new data into an application, or simply run other applications in 
parallel.  Any of these actions can put a given application out of steady state and 
cause a series of page faults, which in turn cause the response time to drastically 
increase for a period of time.  Even though most of the time an application runs in 
a “warm” mode (where there are no hard page faults) giving user a fast response 
time, it is those infrequent situations when users experience slow response times 
which get attention of most performance developers and architects working on 
user applications.  Because in most cases the slowdown in response time is 
attributed to not having the right set of pages in memory (and require I/O requests 
to satisfy hard page faults) – it is said that user applications are I/O bound.   

 
2. Many user applications work on data coming from an I/O device (disk, network 

card, USB stick, etc), and are therefore bound by performance characteristics of a 
given device. 

 
So why has disk and memory latency not experienced any significant improvements over 
past several decades? 
 
Electronic storage devices have three main requirements – to be non-volatile, large, and 
cheap.  While there have been efforts to develop non-volatile memory without involving 
mechanically moving parts, most of those efforts have not been able to meet the other 2 
requirements (large and cheap) to be marketable.  As a result, vast majority of large 
electronic storage devices continue to be hard disks.  Disk latency is defined as the 
amount of time it takes for the selected sector to come around and be positioned under the 
disk read/write head.  In an effort to address common issues present with hard disks, a 
new jointly developed (by Samsung and Microsoft) technology – hybrid drive – is 
coming to marked in 2007.  Hybrid drive will offer up to 1GB buffer of non-volatile flash 
memory for caching most often used data.  Besides decreasing latency (for certain data 
accesses) the flash memory buffer will also allow the platters of the drive to be at rest 
most of the time, compared to spinning most of the time with regular drivers.  Less 
moving mechanical parts is expected to improve reliability as well as reduce power 
consumption. 



“Memory wall” term has been coined in 1995 to refer to the growing discrepancy 
between CPU and memory speeds.  It was approximated that between 1986 and 2000, the 
CPU speed improved at 55% per year, while the memory speed improved only at 10% 
per year.  It’s important to note that as with any data transfer, memory speed consists of 
latency and throughput.  While memory transfer throughput has seen improvements 
comparable to CPU, it’s memory latency which has been lagging behind.  This issue was 
first identified by John Backus in 1977 as “Von Neumann bottleneck”.  As CPUs 
becomes faster and memory becomes larger, the bottleneck becomes more and more a 
problem.  Backus advocated a solution of using a mechanism where large amounts of 
data get read or written to/from memory, instead of “pushing vast numbers of words back 
and forth”.  However, modern (object-oriented and functional) programming languages 
have not embraced this solution.   
 
Today’s systems use several techniques for dealing with memory latency:   
 

1. Reducing the latency.  This is primarily done with CPU caches located on the 
same die with CPU.  Getting the data out of the CPU cache has a significantly 
lower latency compared to main memory, which greatly benefits applications 
which are properly developed to take advantage special and temporal locality. 

 
2. Tolerating the latency.  One of the ways CPUs tolerate memory latency is by 

using hyper-threading (developed at Intel).  A Hyper-threaded CPU simulates 
multiple logical CPUs using only one physical CPU.  On a cache miss, the 
operating system schedules another thread to run on the CPU, which would 
otherwise be idle.  The CPU also uses various techniques to prefetch data out of 
memory to prevent potential cache misses.  

 
As with any market, economics has very big influence on how memory chips are made.  
Advanced circuit and layout techniques are potentially able to significantly reduce 
memory latency, but such techniques come at the expense of increased power 
consumption and cost.  Low cost and storage size have always had very significant 
impact on memory design criteria.  
 
The paper has discussed the CPU clock speed growth of 1990s through early 2000s.  
However, since 2004 semiconductor manufacturers have no longer been able to release 
chips with significantly faster clock rates.  While Moore’s law for reducing feature size 
and increasing the number of transistors on a single chip continues to be followed, 
physical limits of semiconductor-based microelectronics present major challenges for 
increasing clock rates.  Among those are heat dissipation, data synchronization, and 
others.  Instead semiconductor manufacturers have began focusing on producing CPUs 
with multiple cores.   
 
Before we get into how software is expected to benefit from multi-core CPUs, we’ll 
discuss why the approach of combining several cores on a single die makes sense, as 
opposed to other alternatives such as integrating more peripherals into the chip or 
significantly increasing CPU cache size).  Systems with multiple CPUs have been 



manufactured since 1960s primarily for HPC and server market.  An opportunity of 
placing multiple CPU cores on a single die presents several attractive advantages (over 
the traditional multi-chip approach): 
 

1. Having CPU cores closer together reduces the distance electromagnetic signals 
have to travel between the CPUs to maintain cache coherency. 

 
2. Multiple CPU cores laid out with proper geometry can use less power and space 

on printed circuit boards, compared to multiple CPU chips. 
 
3. CPU cores can share common circuitry (such as L2 cache), which reduces cost. 
 
4. Using the chip real estate for CPU cores is less risky or costly for semiconductor 

manufacturers than expanding the existing core with new functionality (such as 
integrating more peripherals).  Also, significantly increasing CPU cache size in 
favor of multiple cores is impractical due to diminishing returns; while increasing 
the number of CPU cores (with right software) will continue to provide significant 
performance boost for systems.  

 
Through early 2000s user applications automatically enjoyed improved performance due 
to rapid CPU clock growth.  In fact, as we have already demonstrated, the industry used 
increasing CPU power to expedite development of new features and delivering products 
to marked faster.  With stalled CPU clock rates, software industry has come to a point 
where existing and new user applications will no longer run faster with new multi-core 
CPUs.  A dramatic shift in strategy, in order to have client applications scale with number 
of CPU cores, is currently a hot topic in the academia and the industry. 
 
To make use of multiple CPU cores software running on the system must exploit 
parallelism.  While HPC and server applications are typically developed using 
multiprogramming and multithreading to exploit parallelism, most user applications are 
not easily parallelizable nor have there been motivation for exploring on how to make 
them parallelizable.  As a result many new research efforts are under way to explore 
various options of brining parallelism to user applications.  Some of these efforts will be 
discussed further. 
 
There is a very important dilemma, to which software industry is slowly waking up.  It is 
clear that the model to develop new software features and expect the next wave of 
processors to automatically run the software faster will no longer work.  So what model 
the software industry will adopt in the short and long term with respect to developing 
new software running on multi-core CPUs?   
 
In the short term software vendors generally have 2 choices: 
 

1. Invest substantially in adopting the model of writing concurrent software from 
HPC and server market.  This would include completely re-architecting the 
product, training software developers to write concurrent code, and using different 



development tools.  With this model new features would exploit parallelism and 
would scale with the number of CPU cores. 

 
2. Ignore the multi-core wave, and invest into optimizing the product for 

performance.  As we have already seen, software industry used rapid CPU clock 
growth to accelerate delivery of products to market, making less investment in 
code efficiency and resource utilization.  This leaves room for companies to make 
investments in using traditional methods of improving performance, and ensure 
that the product is optimized to maximize resource utilization. 

 
Depending on the type of software, companies will generally adopt a short term model 
which falls somewhere between 1 and 2.  A number of compute-bound parallelizable 
scenarios will be identified and implemented to execute concurrently.  A good example 
of this approach is Excel 2007, where concurrency is used for executing several compute-
bound classes of tasks.  This leaves many user scenarios not using multiple cores.  
Because software vendors were not making large investments in performance or resource 
utilization in the past, I believe this leaves room for several years where additional 
investment in software can help run existing and new software faster.  As discussed 
earlier, user applications are typically I/O bound, where CPU is idle for a large part of 
program lifetime.  This leads to the point that disk and memory latency are still main 
bottlenecks in most user applications before the CPU is even considered.  It should also 
be pointed out that GPUs are increasingly being used in today’s systems for rendering 
graphics, letting the CPU execute application code. 
 
While individual applications need to be changed in order to scale with multiple CPU 
cores, it’s important to highlight scenarios where existing systems will immediately take 
advantage of multiple cores.  Using virtual machines executing on a single physical 
machine will automatically benefit from having multiple cores, because each virtual 
machine can run concurrently independent of each other.  Also systems with many 
processes executing concurrently will also benefit from multiple cores, which is inline 
with a trend in operating systems where more and more services run in the background.  
 
In the long term, the industry is expecting new research to pave the way for collective 
development of new hardware and software to allow developing concurrent applications 
with little or no additional expertise on concurrency.  While no single solution has yet to 
emerge in industry or academic research, there are several classes of efforts which are 
expected to drive the development of future hardware, operating system, and compiler 
features to ease the development of concurrent applications.   
 

1. Many existing automatic vectorization and parallelization compiler techniques 
currently used exclusively in HPC market are being further researched and 
developed to enhance compilers used to compile user applications. 

 
2. Techniques for augmenting code with attributes or hints to help the compiler 

make right decisions about concurrency have been around for many years.  
Namely OpenMP and MPI have become industry standards in this area.  Similar 



efforts are underway to extend popular programming languages with rich support 
for concurrent execution.  Although this approach doesn’t achieve hiding 
concurrency from developers, many believe that this is the most realistic solution 
in the near future. 

 
3. A completely new approach to solving typical concurrency problems (such as 

locks) is transactional processing.  Researching this technique is currently gaining 
momentum from the industry and engineering departments of universities.  
Prototypes have emerged, and systems supporting some level of transactional 
processing are expected within next several years.  Although researches have yet 
to agree on the right mix, transactional approach will require additional support 
from hardware and operation systems. 
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