

Software Vulnerabilities:

Full-, Responsible-, and Non-Disclosure

Andrew Cencini, Kevin Yu, Tony Chan

{cencini, tigeru, tonychan} @ u.washington.edu

December 7, 2005

 ii

Table of Contents

ABSTRACT .. 1

1. INTRODUCTION .. 1

1.1 Structure.. 2
1.2 Motivations ... 3
1.3 Terminology.. 4
1.4 Timelines... 5

2. LOSSES DUE TO EXPLOITATION ... 7

3. TYPES OF VULNERABILITY DISCLOSURE... 9

3.1 Non-Disclosure ... 9
3.2 Full Disclosure .. 10
3.3 Responsible Disclosure ... 12

4. EXISTING PRACTICE, POLICIES AND PROPOSALS ... 13

4.1 NTBugtraq by Russ Cooper .. 15
4.2 Full Disclosure Policy (RFPolicy) version 2 by RFP ... 17
4.3 Vulnerability Disclosure Policy by CERT/CC ... 17
4.4 Responsible Vulnerability Disclosure Process by Christey and Wysopal .. 18
4.5 Vulnerability Disclosure Framework by NIAC .. 19
4.6 Guidelines for Security Vulnerability Reporting and Response ver. 2 by OIS................................. 21

5. RISKS, REWARDS AND COSTS ... 22

5.1 Costs and Risks ... 22
5.2 Cost-Benefit Analysis ... 23
5.3 Non-Disclosure ... 24
5.4 Full Disclosure .. 25
5.5 Responsible Disclosure ... 26

6. CONCLUSION .. 26

 1

Abstract

When a software vulnerability is discovered by a third party, the complex question of who, what and

when to tell about such a vulnerability arises. Information about software vulnerabilities, when released

broadly, can compel software vendors into action to quickly produce a fix for such flaws; however, this

same information can amplify risks to software users, and empower those with bad intentions to exploit

vulnerabilities before they can be patched. This paper provides an analysis of the current state of affairs

in the world of software vulnerabilities, various techniques for disclosing these vulnerabilities, and the

costs, benefits and risks associated with each approach.

1. Introduction

Computer security vulnerabilities are a threat that have spawned a booming industry – between the

heightened global focus on security, and the proliferation of high-profile computer viruses and worms that

have had major impacts worldwide – the time is right to be in the computer security business. When one

thinks about who benefits from security problems, typically the first thought would be that attackers are

the primary beneficiary – breaking into vulnerable computer systems and stealing money and valuable

information from victims can be an easy and profitable line of work.

However, there is another side to this burgeoning industry: the community of security professionals who

build a reputation and earn a living finding and reporting security problems. While attackers stand to gain

substantially from illegal activity, working as a computer security professional can be quite lucrative, with

the benefit of not having to break the law or compromise one’s ethics – and quite often, the technical

details and challenges of this legitimate work are not much different from those when the work is done for

less legitimate purposes.

 2

This paper provides an analysis of the current state of affairs in the world of computer vulnerabilities,

various techniques for disclosing these vulnerabilities, and the costs, benefits and risks associated with

each approach. There are two particular bounds to be added to this discussion – the first is that this paper

is scoped only to software vulnerabilities (while interesting, hardware, and physical vulnerabilities are not

covered here – nor are vulnerabilities in online services, which may prove to be an interesting area of

future research). The other bound placed here is that it is assumed that we are only dealing with

vulnerabilities found and disclosed by ‘legitimate’ security researchers – that is, by those whose intent is

to find and expose vulnerabilities in a lawful manner (it is, by this logic, assumed that ‘illegitimate’

researchers are generally unlikely to widely disclose their findings, or apply conventional ethical

reasoning to such disclosures).

1.1 Structure

The first section of the paper will cover software vulnerabilities, and what are the actual and possible

losses that may be incurred in the case of exploitation of such vulnerabilities. A survey of the historical

record of actual attacks will be presented, as well as hypothetical examples built off of existing and

possible future attack vectors. This section will provide the reader to the threat field from a cost

perspective, as well as to provide actual examples to illustrate the scope of the threat.

The second section will provide an overview of the various types of vulnerability disclosure. The main

classes of software vulnerability disclosure are presented, providing canonical definitions that will be

used in later sections of the paper.

The third section will elaborate on the overview of disclosure types by presenting various existing and

proposed practices and policies for disclosing vulnerabilities. This section brings together the first two

sections by providing concrete examples of predominant disclosure practices and policies, and these

 3

sections together, should provide enough information to introduce the fourth section which covers risks,

rewards and costs of these disclosure methods.

1.2 Motivations

When discussing disclosure of software vulnerabilities, it is important to consider the motivations of those

involved. The stakes are quite high in the computer security industry – being credited as the first person

or company to discover a particular vulnerability is extremely important – both in finding employment

and building a customer base, as it demonstrates the ability to find vulnerabilities better than others. As

the ability to find vulnerabilities is a key metric that employers and customers use to measure the skill of

a computer security professional or company, this situation is one of the core drivers that sets up the

tricky ethical framework in the area of how one goes about disclosing vulnerabilities once they have been

found.

Other motivations that security professionals and companies have, to find and disclose software

vulnerabilities may be purely personal or competitive – for example, a security researcher may feel

particular dislike for a software company, developer, or product, and as a result spends great time and

effort searching for security flaws in that product. Researchers may also be motivated to disclose

vulnerabilities because they feel that such disclosure will force vendors to be responsive in patching

software and to place a greater emphasis on shipping more secure software. Finally, some researchers

enjoy the intellectual challenge of finding vulnerabilities in software, and in turn, relish disclosing their

findings for personal gratification or credibility from others in the field.

 4

1.3 Terminology

Throughout this paper, several pieces of terminology are used that may have a variety of meanings – first,

some definitions are provided that have been adapted from Shepherd’s paper “Vulnerability Disclosure:

How do we define Responsible Disclosure?”1

• Product: A software product.

• Flaw: A flaw in the logical operation of a product. The behavior exhibited by the flaw is such that

the product is left in an undesirable state.1 Flaws often may simply be functional in nature (for

example, causing a program not to behave as specified) – but in other cases, flaws can also

become security risks (see next definition).

• Vulnerability: A flaw becomes a vulnerability if the exhibited behavior is such that it can be

exploited to allow unauthorized access, elevation of privileges or denial of service.1 For the

purposes of this paper, the terms flaw and vulnerability generally are interchangeable.

• Exploit: A tool or script developed for the sole purpose of exploiting a vulnerability.1

• Discoverer: The first person to reveal a flaw and determine that it is a vulnerability. Depending

on how the vulnerability is discovered the discoverer may or may not be known. For example if a

vulnerability is released anonymously the identity of discoverer may not be apparent.1

• Originator: The person or organization that reports the vulnerability to the vendor.1 Note that

the originator may in fact be different from the discoverer.

• Vendor: An entity that is responsible for developing and/or maintaining a particular piece of

software. In the case of Open Source software, the “vendor” is actually a community of software

developers, typically with a coordinator or sponsor that manages the development project. In the

scope of this paper, the “vendor” is typically the entity (or entities) responsible for providing a fix

for a software vulnerability.

 5

• Customer/End User: Someone who purchases or otherwise installs and uses a piece of software.

Customers are the parties that are typically the most adversely affected by exploited

vulnerabilities, and are also responsible for keeping their systems patched and protected from

black hat hackers.

Additionally, a few other definitions are provided for terms that are used throughout this paper:

• Black Hat: (or, often, “hacker”) someone who finds or exploits security holes in software for

malicious or illegal purposes. Rescorla4 defines a vulnerability discovered by a black hat hacker

as “discovered by someone with an interest in exploiting it.”

• White Hat: Someone who finds or exploits security holes in software for generally legitimate and

lawful purposes, often to improve the overall security of products and to protect users from black

hat hackers. Alternately4, a vulnerability discovered by a white hat hacker is described as being

“discovered by a researcher with no interest in exploiting it”.

• Script Kiddie: A non-technical “hacker” who consumes scripted exploits in order to break into

other computers. Script kiddies are fairly low in the hacker food-chain; however, script kiddies

can inflict real damage on real systems given the automated exploits they are provided with,

which means they are more than merely an annoyance.

1.4 Timelines

There are several published timelines outlining the life of software vulnerabilities – perhaps one of the

most widely accepted timelines is specified by Arbaugh, Fithen and McHugh in their paper “Windows of

Vulnerability: A Case Study Analysis”5 - which is neatly summarized by Shepherd1 as follows:

 6

• Birth: The birth stage denotes the creation of the vulnerability during the development process. If

the vulnerability is created intentionally then the birth stage and the discovery stage occur

simultaneously. Vulnerabilities that are detected and corrected before deployment are not

considered.

• Discovery: The life cycle changes to the discovery stage once anyone gains knowledge of the

existence of the vulnerability.

• Disclosure: The disclosure stage occurs once the discoverer reveals the vulnerability to someone

else. This can be any disclosure, full and public via posting to Bugtraq or a secret traded among

black hats.

• Correction: The correction stage persists while the vendor analyzes the vulnerability, develops a

fix, and releases it to the public.

• Publicity: In the publicity stage the method of achieving publicity is not paramount but knowledge

of vulnerability is spread to a much larger audience.

• Scripting: Once the vulnerability is scripted or a tool is created that automates the exploitation of

the vulnerability, the scripting stage has been set in motion.

• Death: When the number of systems vulnerable to an exploit is reduced to an insignificant amount

then the death stage has occurred. This can happen by patching vulnerable systems, retiring old

systems, or a lack of interest in the exploit by hackers.

Rescorla4 provides a similar summary, and notes “these events do not necessarily occur strictly in this

order” – specifically, publicity and correction may occur at the same time, particularly in cases where the

discoverer is the software vendor, who will also issue the patch for the vulnerability as part of the

publicity. This paper largely focuses on the discovery, disclosure, correction and publicity stages.

 7

2. Losses Due to Exploitation

Complex information and communication systems give rise to design, implementation and management

errors. These errors can lead to vulnerabilities - a flaw in an information technology product that could

allow exploitation.

There are several methods of classifying exploits. Exploits can be classified by the type of vulnerability

they attack. For example, buffer overflow, integer overflow, memory corruption, format string attacks,

race condition, cross-site scripting, cross-site request forgery and SQL injections. Today, buffer

overflow related exploits remain to be the majority type.

Exploits can also be classified by how the exploit contacts the vulnerable software. A "remote exploit"

works over a network and exploits the security vulnerability. A "local exploit" requires prior access to the

vulnerable system and usually increases the privileges of the person running the exploit. Due to the

popularity of the Internet, network-borne computer viruses and worms are the main forms of

exploitations. A computer worm is a self-replicating and self-contained exploitation. It can spread with

no human intervention. A computer virus requires actions on the part of users, such as opening email

attachments. Viruses and worms were the most cited form of exploitation (82%). From a recent survey

14, 33% of victims recovered in one day, 30% recovered in one to seven days, and 37% took more than a

week to recover or never recover.

At best, worms and viruses can be inconvenient and costly to recover from. At worst, they can be

devastating. Let’s look at a few recent widespread attacks 11,12,9,10 and the losses:

 8

The Blaster, Slammer, and Code Red worms are all exploits through buffer overflow vulnerabilities.

Blaster exploits Microsoft DCOM technology, Slammer exploits Microsoft SQL Server, and Code Red

exploits Microsoft IIS Web Server. Figure 1 shows that, after 24 hours, Blaster had infected 336,000

computers, Code Red infected 265,000, and Slammer had infected 55,000. In both cases of Blaster and

Code worms, 100,000 computers were infected in the first 3 to 5 hours. It is close to impossible for

security experts to analyze the worm and warn the public. So far, damages from the Blaster worm are

estimated to be at least $525 million. The cost estimates include lost productivity, wasted hours, lost

sales, and extra bandwidth costs.

Exploits can also be classified by the purpose of their attack. For example, curiosity (vandal), personal

fame (trespasser), personal gain (thief), and national interest (spy). With Blaster, Slammer and Code Red

attacks, millions of computers were infected. However, they were probably more inconvenient and costly

to recover from. Those, it turns out, may have been the good old days. Today, exploit with personal gain

as the goal is the fastest growing segment.6,7,8 These exploits can be email spam, email phishing,

Figure 1: Blaster, Slammer, and Code Red Growth Over Day One 12

 9

spyware, Bots, Botnet, Keystroke loggers, identity theft, and credential theft. In these types of exploits,

many people are spoofed, where over 60% visited a spoofed site, and more than 15% admitted they have

provided personal data. In the U.S., 1.2 million adults have lost money due to such exploits, totaling

$929 million!

3. Types of Vulnerability Disclosure

While every software vulnerability is different – from the process by which the flaw was discovered, to

the way in which the vulnerability is disclosed – there are a few general categories that may be used to

classify the vulnerability disclosure. There are a number of papers1,2 in existence that define and compare

various disclosure policies. The following is some background on the disclosure types being discussed

throughout the paper.

3.1 Non-Disclosure

The first disclosure type is referred to as “non-disclosure.” This disclosure type is probably the easiest to

describe, and the hardest to quantify – in cases of non-disclosure, a security researcher discovers a

vulnerability in a piece of software, and, rather than contact the software vendor or a computer security

coordinating authority, the researcher instead keeps the vulnerability secret. The black hat hacker

community is known for practicing a policy of non-disclosure.1

What makes cases of non-disclosure difficult to quantify is the paradox that there is no good way to

measure how many flaws have been found, but not disclosed. There is some discussion in the work done

by Havana and Röning3 that suggests that, based on their communication models, that up to 17.3% of

vulnerability findings are not disclosed; however, it remains uncertain how many vulnerabilities are

discovered but remain undisclosed.

 10

The motivations for non-disclosure can vary from malicious intent (for example, an attacker finds it to his

advantage to not disclose a vulnerability so that he is able to break into numerous systems at a leisurely

pace without having to worry about a patch being issued and deployed) to laziness (someone

inadvertently discovers a flaw in the logic of a piece of software that lets her access supposedly protected

data, but never bothers to report the vulnerability either because it is too burdensome to contact the

vendor, or possibly too hard to reproduce the scenario).

There is fairly broad criticism of non-disclosure policy – major complaints take issue with the fact that

systems remain unprotected while a vulnerability (and exploit) may be known, that the lack of publicity

about a vulnerability may not motivate software vendors to repair the flaw in a timely manner, and that it

is impossible to define a subset of “trusted” individuals who should have access to vulnerability

information.1

Other variations on the non-disclosure method tend to have the same net end result – greater risk to users

of vulnerability exploitation – for example, in some cases, a researcher may discover a flaw in a piece of

software, and instead of reporting the vulnerability to a legitimate authority, the attacker will share the

vulnerability (and possibly an exploit) with other hackers (essentially, “on the black market”) which

increases the risk to end users significantly. These types of cases, however, can tend to metamorphose

into cases of full disclosure (discussed in the next section) as information spreads from the underground

community into the “legitimate” world.

3.2 Full Disclosure

When a researcher discovers a vulnerability, in the full disclosure model in its purest sense (as it is

defined here), the researcher informs the community at large (for example, using full disclosure methods

specified by Rain Forest Puppy17) of the specifics of that vulnerability – how found, what software

 11

products (and versions) are affected – and in some cases one or both of the following: how to exploit the

flaw, and how to protect systems against exploitation of the flaw. There are many arguments for and

against full disclosure. Advocates of full disclosure tend to argue two main points – roughly, the first

point being that it is ethically correct to inform the community at large of software flaws as soon as

possible (before a patch may even be issued) so that users can protect themselves by disabling the

affected software (or related functionality) before an exploit is issued.1 The second point traditionally

argues in favor of full disclosure is that this tactic motivates software vendors to quickly acknowledge and

patch flaws (and, presumably, for users to also quickly patch their systems) – rather than simply sit on the

knowledge that a flaw exists, as can happen with other disclosure techniques (see Responsible Disclosure

and its variants in the next section). 1 Intrinsically, one other benefit comes along with full disclosure, in

this case, for the researcher – that is, when a vulnerability is announced immediately, the researcher gets

credit immediately, without having to worry about being “beaten to the punch” by another researcher

while going through a variant of the responsible disclosure process. Clearly, given the motivations and

incentives of the security industry (be they professional or personal), full disclosure is a disclosure

technique that can be attractive to security researchers.

On the other hand, arguments against the full disclosure method tend to parallel the arguments for full

disclosure. The most salient argument made against full disclosure is that exposing a vulnerability

without first consulting with a software vendor (thus allowing a patch to be developed and released)

increases the risk of widespread exploitation of user computer systems – for example, many point out that

within days, or even hours, following full disclosure of a vulnerability, a scripted exploit becomes

available for “script kiddies” to consume.1 This runs contrary to the argument that full disclosure protects

users, because, in reality, even with heightened focus on security and automatic system updates, users are

not security experts and do not follow the multitudes of security bulletins and reports that are generated

on a daily basis. Additionally, while software vendors may be motivated to more quickly release software

patches in cases of full disclosure, patch adoption, availability and testing may take days, weeks, or even

 12

months in some cases (particularly in cases where a patch is being deployed across a large organization,

where extensive and time-consuming testing processes are often in place) – so there exists a large window

of vulnerability where a flaw is widely known amongst the security community, but the user community

is unable to protect itself due to a lack of a patch (or similar issues). Finally, while full disclosure may

not necessarily include exploit code for a vulnerability, this lack of code can be irrelevant as the

disclosure can still make it easy for technical members of the black hat community to develop and script

an exploit. 1

There are clearly cases where it makes sense to disclose a vulnerability to the broader community for their

general protection – if a software vendor is not being suitably responsive in a responsible disclosure case

for example (see the next section), or in cases where a vulnerability is already fairly well known (for

example, originating from the black hat community) it makes sense ethically and tactically to fully

disclose the vulnerability so that users and vendors may attempt to protect themselves and fix the

problem, respectively, in parallel.

3.3 Responsible Disclosure

A final type of disclosure discussed here is “responsible disclosure.” Responsible disclosure falls into

what many would more broadly refer to as the class of vulnerability disclosures known as partial

disclosure, or limited disclosure (see Shepherd1 for more discussion on limited disclosure, or Laakso, et al

for discussion of constructive disclosure, where, amongst other things, a vulnerability disclosure is

accompanied by a test suite to be used to verify future releases do not contain similar flaws).

The responsible disclosure method has many possible definitions, however, what will be used in this

paper is from Stephen Shepherd's work1 on responsible disclosure. To paraphrase, responsible disclosure

is a policy in which software vulnerabilities are disclosed in a manner that puts users at the least risk

 13

without stifling the security research community. In the simplest terms, when a vulnerability is

discovered, the researcher informs the software vendor, and if the vendor is not responsive (Shepherd

proposes a 30 day response deadline on an initial contact1), the researcher may then go to the community

and proceed with, essentially, full disclosure of the vulnerability. The details of Shepherd's proposal1 are

somewhat more complicated, but the spirit of the proposal is as follows:

• Researcher discovers software flaw, and notifies the software vendor.

• If the software vendor quickly reproduces and acknowledges the flaw (and, usually, credits the

person who discovered it) and develops, tests and issues a patch, the process is complete.

• If the vendor does not respond to initial contact or fails to continue communication, the originator

has no option but to proceed with public disclosure without a vendor supplied patch.1

• In both cases, when the vulnerability is disclosed, the principles of responsible disclosure, in the

Shepherd model, require that exploit code not be included with the public disclosure – while,

ultimately, an exploit may be developed, there is no reason to include the exploit code in the

disclosure (this also allows time for users to test and deploy the patch in their environments).

There are many partial implementations of Shepherd's responsible disclosure scheme, but there has not

yet been a perfect solution developed yet that has been uniformly adopted by the computer security

community. Responsible disclosure, or some variant (such as NTBugTraq16, described later) is still an

open and developing issue in the security community, but appears to be the largely preferred middle road

accepted by most researchers, users, and software vendors.

4. Existing Practice, Policies and Proposals

Researchers and vendors alike share the same primary goal: reducing the risks to information systems and

stopping related malicious activities. They want to inform customers and the public of vulnerabilities, but

 14

often they have disagreements on how, when, what, and whom to disclose. The disputes are complex and

there are no standards.

Organizations and individuals have proposed and conformed to various disclosure policies.13 Six

distinctive policies or proposals dated from 1999 to 2004 are chosen for examination in this report. Some

of the policies support open disclosure while others support responsible disclosure. Some were designed

by private sectors and some were designed by organizations funded by government. The following is a

list of policies/proposals and brief introduction.

• NTBugtraq by Cooper in July 1999.

The disclosure policy of NTBugtraq is one of the earliest one established in the industry and it is

still in practice today. Cooper is an independent consultant specialized in Windows security.

• Full Disclosure Policy by RFP in June 2000.

RFP is a security expert and its proposal advocates full disclosure policy. The policy is mainly

focused on researchers.

• Vulnerability disclosure by CERT/CC in October 2000.

CERT/CC is funded by government and their main goal is informing the public regarding security

vulnerabilities. CERT/CC utterly opposes releasing of full vulnerability details and exploit code.

• Responsible Vulnerability Disclosure Process by Christey and Wysopal in February 2002.

This proposal was an Internet-draft submitted to IETF, but it expired and was not accepted as a

Request For Comments (RFC).

• Vulnerability Disclosure Framework by NIAC in January 2004.

NIAC was formed by Executive Order and submitted this recommendation report to the President

of the United States. The report advised building a framework in addition to defining disclosure

guidelines.

 15

• Guidelines for Security Vulnerability Reporting and Response by OIS in September 2004.

OIS was formed by a group of vendors in private sectors only. It suggested responsible disclosure

policy.

A summary is presented in Table 1 for comparison.

4.1 NTBugtraq by Russ Cooper

NTBugtraq was established in 1997. It is a mailing list for the discussion of security exploits and security

bugs in Windows NT/2000/XP and applications running on these operation systems. There are currently

more than 35,000 subscribers.15 Russ Cooper is the founder and moderator of the NTBugtraq discussion

list. 16

In NTBugtraq, Cooper acts as a coordinator between discover and vendor. When a discoverer finds out

vulnerability, he submits a report to NTBugtraq. Next, Cooper ensures the accuracy of report by

reproducing the claim himself. After Cooper is satisfied with the result, he contacts the associated

vendor. The vendor is then given 48 hours (excluding Saturday and Sunday) to confirm the vulnerability

and a maximum of 14 calendar days to provide a fix. Once a fix is available, vulnerability information is

sent to the mailing list subscribers. However, there are two clarifications in Cooper’s policy. First,

Cooper does not place any restrictions on the vulnerability information to be disclosed. It is because

discoverers can always choose to post the information to other mailing list or newsgroups.16 Second,

throughout the entire process, discoverers can demand to disclose the vulnerability to the public at any

time. Discoverers have the “ultimate call.” 16

 16

Policy / Proposal NTBugtraq Full Disclosure Policy
(RFPolicy) version 2

CERT/CC Vulnerability
Disclosure

Responsible
Vulnerability Disclosure
Process (Internet-Draft)

Vulnerability Disclosure
Framework

Guidelines for Security
Vulnerability Reporting
and Response version 2

Author Russ Cooper Rain Forest Puppy CERT / Coordination
Center

Christey and Wysopal National Infrastructure
Advisory Council (NIAC)

Organization for Internet
Safety

Published date Jul 1999 Jun 2000 Oct 2000 Feb 2002 Jan 2004 Sep 2004

Web Reference http://www.ntbugtraq.com
/default.aspx
?sid=1&pid=47&aid=48

http://www.wiretrip.net
/rfp/policy.html

http://www.cert.org
/kb/vul_disclosure.html

http://www.wiretrip.net
/rfp/txt/ietf-draft.txt

http://www.dhs.gov
/interweb/assetlibrary
/vdwgreport.pdf

http://www.oisafety.org
/guidelines/secresp.htm

Vendor should
acknowledge initial
vulnerability report

Within 48 hours (except
Saturday and Sunday)

Within 5 working days (in
respects to discoverer)

Not Applicable Within 7 days Within 7 business days (in
respects to vendor)

Within 7 calendar days

What happens if
vendor fails to
acknowledge the
discoverer

Vulnerability information
will be disclosed
immediately.

Discoverer may choose
to disclose the
vulnerability

Not Applicable Discoverer should ask a
coordinator to notify the
vendor. If vendor is still
unresponsive, coordinator
should identify the best
available resolution for the
vulnerability

Discoverer should attempt
to escalate the issue with
the vendor. If it is still
unsuccessful, seek for
assistance from a third-
party coordinator.

Discoverer sends a Request
for Confirmation of Receipt
to vendor. Vendor has 3
calendar days to reply. If
vendor fails to reply,
discoverer can get a
coordinator or arbitrator for
assistance.

Vendor notifies
discover regarding the
status updates

Not specified. Vendor
should fix the vulnerability
within 14 calendar days

Every 5 working days Not Applicable Every 7 days. Vendors
may negotiate for less
frequent updates

Not specified, but “vendor
should keep the discoverer
informed regarding
progress.“

Every 7 calendar days

When and what
information to
disclose initially

If the severity of
vulnerability is low,
disclosure will be released
immediately. Otherwise,
Cooper will wait until a fix
is available from vender.
However, discoverers
have the “ultimate call.”
They may insist on
releasing information
immediately.

Disclose full details after
a fix is ready

Disclose to the public 45
days after the initial
report, regardless of the
existence or availability of
patches or workarounds.

Vendor should work with
discoverer and
coordinators to arrange a
date after which the
vulnerability information
may be released

Discoverers should try to
find a balance that will
provide sufficient details
without unnecessarily
jeopardizing users.

Security advisories with brief
information is released only
after a remedy is available

When to disclose full
details and exploit
code

There is no limitation on
the technical
explanations, exploit
code, or proof of concept
programs

At the same time when
the vulnerability is alerted
to the public

Never. The number of
people who can benefit
from the availability of
exploits is small
compared to the number
of people who get harmed
by people who use
exploits maliciously.

Vendor may ask the
discoverer to allow a grace
period up to 30 days,
during which details that
could make it easier for
hackers to create exploit
programs, are not
released.

Never. Discoverer should
withhold from any outside
party any release of exploit
code or detailed guide to
exploiting the vulnerability
when publishing advisories.

During the first 30 days of
disclosure, full exploit data is
shared only with people or
organizations associated
with defending systems
against vulnerability,
protecting critical
infrastructures, law
enforcement, etc.

Recommended
communication
method

E-mail with PGP, Phone Email E-mail through PGP or
shared DES, STE/STU-III
telephones, Secure FAX

E-mail Encrypted and signed
e-mail

Email

Table 1: Summary of various disclosure policies

 17

4.2 Full Disclosure Policy (RFPolicy) version 2 by RFP

Rain Forest Puppy (RFP) is a security expert 29 and wrote the initial version of RFPolicy in June 2000.

The objective of its policy was to “help establish concrete guidelines for disclosure of security

problems.”17

The RFPolicy is fairly simple. When a discoverer finds out vulnerability, he notifies the vendor. Then,

the vendor should acknowledge the discoverer within 5 working days and thereafter provide status

updates every 5 working days. The discoverer can disclose the vulnerability to the public if the vendor

fails to respond or communicate on time. RFP favors releasing vulnerability in all aspects including

exploit code. The rationale is that “other researchers are then just as likely to discover the problem and

they may not bide by the guidelines set by this policy.”17

4.3 Vulnerability Disclosure Policy by CERT/CC

CERT Coordination Center (CERT/CC) was established in November 1988. It is operated by Carnegie

Mellon University and is primarily funded by the U.S. Department of Defense and the Department of

Homeland Security. The objective of CERT/CC is to “analyze the state of Internet security and convey

that information to the system administrators, network managers, and others in the Internet community.”19

The center offers numerous secure communication methods for the publics to send sensitive information,

such as encrypted email through PGP, secure network connection through shared DES key, STE/STU-III

telephones, and secure FAX.

When a vulnerability report is received, CERT/CC will forward the information to the affected vendor.

Vulnerability information is disclosed to the public 45 days after receiving a report from a discoverer.

The goal of CERT/CC’s policy is balancing “the need of the public to be informed of security

 18

vulnerabilities with the vendors' need for time to respond effectively.” 19 Consequently, a vulnerability is

published regardless of the availability of patches or workarounds after 45 days. However, the time

period may be shortened if there is evidence of active exploitation or extended if major changes are

required to fix the vulnerability, such as core operating system components.

CERT/CC is against of releasing exploit code. They believe that the number of people who get harmed is

much larger than the number of people who can benefit from the availability of exploits.19 However, the

disclosure policy does not define any rules for discoverers and vendors.29

4.4 Responsible Vulnerability Disclosure Process by Christey and Wysopal

In February 2002, Steven Christey of MITRE and Chris Wysopal of @stake released an Internet-Draft to

the members of Internet Engineering Task Force (IETF) and general public for commentary. The draft

proposed “a formal, repeatable process for the reporting, evaluation, resolution and publication of

vulnerability information.”18 Unfortunately, the proposal did not get passed and was expired after six

months.

In the draft, Christey and Wysopal explained the responsibilities for all stakeholders: discovers, vendors,

coordinators, and users. When a discoverer finds out vulnerability, he should notify the vendor. The

Vendor should acknowledge receipt within 7 days. If the vendor is unreachable, the discoverer should get

assistance from a coordinator. Upon the receipt of notification, the vendor must provide status updates to

discover and coordinator every 7 days, and attempts to resolve the vulnerability within 30 days. After a

fix is ready, the vendor should work with the discoverer and coordinator to arrange a disclosure date. The

authors did not oppose disclosing full vulnerability details because they recognized that the security

community needs the details to enhance detection tools and perform research.18 However, to prevent

 19

hackers from creating exploits easily, vendor can ask to postpone the release of vulnerability details up to

30 days.

4.5 Vulnerability Disclosure Framework by NIAC

The National Infrastructure Advisory Council (NIAC) was formed by Executive Order in October 2002.

The council recognized that a consistent vulnerability framework could improve vulnerability

management and potentially mitigate the risks to information systems.20 Fifteen months after NIAC was

established, in January 2004 NIAC finalized the report of Vulnerability Disclosure Framework. The

report included specific recommendations to the President of the United States to direct the U.S. federal

government as appropriate. Recommendations included aspects in various areas, such as vulnerability

naming, scoring, communications, information sharing, and legal framework. Also, the report provided

clear guidelines and identifies the responsibilities of stakeholders.

Naming. To reduce confusion and increase efficiency, NIAC recommended using universal naming

conventions to uniquely identify vulnerabilities, similar to the project of Common Vulnerability and

Exposures (CVE) by MITRE Corporation. The project assigns a common name to each vulnerability

discovery so that it is easier to share data across separate databases, tools, and services among different

vendors and government agencies. CVE only contains the standard name with status indicator, a brief

description, and references to related vulnerability reports and advisories.21

Scoring. NIAC believed that a consistent threat scoring system could allow the publics to understand the

severity of vulnerability. 20 The vulnerability score can assist public and private sectors to better allocate

their resources and prioritize efforts to remediate those vulnerabilities with greater impacts to their

systems. 20 The score can be adjusted at any time to reflect research results and active exploitation status.

 20

Communication. NIAC recommended encrypting and signing all e-mail related to vulnerability

management. Encryption can preserve the confidentiality of sensitive information, and signing can assure

the original sender of message and prevent repudiation. Currently, there are products like PGP available

to perform these tasks. However, acceptance is slow because many encryption products do not

interoperate well. In addition, many corporations and government agencies have clear-text archive

requirement and encryption is prohibited. 20 As the result, these groups of people have to send sensitive

information in clear-text with the risk of being compromised or render themselves unable to contact other

stakeholders who use encrypted communication. 20 NIAC recommended stakeholders to use SSL-

encrypted web site for communication as one of the last resorts. 20

Information Sharing. Information sharing is one of the key elements to protect critical infrastructures.

NIAC recommended using Information Sharing and Analysis Centers Council (ISACs) as the channel for

sharing information on vulnerabilities and their solutions. 20 Besides sharing, NIAC emphasized that the

accuracy of information is very important. Inaccurate vulnerability reports can distract vendors and

service providers from their primary operations and may unfairly damage their reputation. However,

vendors should try their best effort and not to deny a report until they are positive that the report is

inaccurate. Vendors should not threaten discoverer who reports vulnerabilities with legal actions since

this will undermine the economy, businesses, and citizens. 20

Legal Framework. Today, some stakeholders hesitate to disclose vulnerability because they are fearful

of potentially violating laws and incurring financial liabilities or reputation injury. For example, in July

2005, Michael Lynn planned to disclose the details of a vulnerability in Cisco’s Internetwork Operating

System (IOS) at a Black Hat conference in Las Vegas. Cisco Systems attempted to stop his presentation

by filing a retraining order by U.S. District Court.22 For another example, in 1999, under the law of the

Digital Millennium Copyright Act (DMCA), DVD Copy Control Association (CCA) and the Motion

Picture Association of America (MPAA) filed a lawsuit to prevent Jon Johansen from publishing codes

 21

that can circumvent the Content Scrambling System (CSS).23 Again in August 2002, Hewlett Packard

attempted to use DMCA and computer crime laws to prosecute Secure Network Operations (SnoSoft)

who disclosed vulnerabilities in HP TruUnix Operating System.24,25 Although the United States has the

Freedom of Information Act (FOIA) for disclosing information, vulnerability disclosure is exempted from

the law.20 NIAC suggested the U.S. government to review and reform the legal framework and public

policy so that stakeholders can share information without the fear of financial or other liability.

Guidelines. Under NIAC’s recommended framework, discoverers should “find a balance that will

provide sufficient details without unnecessarily jeopardizing users” when publishing advisories. 20 NIAC

opposed releasing exploit code and complete guides to exploiting the vulnerability. Vendors should

acknowledge the discoverer within seven business days after receiving a report. A third-party coordinator

should be used for assistance if a discoverer cannot contact the vendor. End users and organizations

should employ deployment and mitigation plans after they have received notification of the vulnerability

and corresponding fix.

4.6 Guidelines for Security Vulnerability Reporting and Response ver. 2 by OIS

The Organization for Internet Safety (OIS) was formed by a group of vendors including @stake, ISS,

Microsoft, Oracle, SGI, and Symantec in September 2002.27 Surprisingly, researchers and end users are

not invited to join.28 OIS believed that “the industry should self-regulate” and does not support a federal

law codifying the disclosure process or any kinds of mandates.27 The document of Guidelines for

Security Vulnerability Reporting and Response provided step-by-step instructions and flow charts

illustrating what stakeholders should perform during each phrase of the vulnerability window.

In OIS’ guideline, when a discoverer finds a vulnerability, he should send a Vulnerability Summary

Report (VSR) to the vendor. The vendor is then required to acknowledge receipt of the report within

 22

seven calendar days and thereafter provide updated status every seven calendar-days. Although the

vendor is given a conventional 30 calendar days to fix vulnerability, OIS noted that the thoroughness of

investigation and high quality of fix are also important in addition to speed. 27 Vendors and discoverers

should release vulnerability information to the public only after a remedy is available. To protect critical

infrastructures, exploit code and detailed data are shared only with people or organizations associated

with defending systems (i.e. intrusion detection and anti-virus vendors) during the first 30 days. The 30

days grace period may be shortened if the vulnerability becomes actively exploited.

During the entire process, if a discoverer does not receive a response, they can remind the vendor by

sending a Request for Confirmation of Receipt (RFCR). The vendor must respond to a RFCR within

three calendar days. If the RFCR fails, the discoverer can get assistance from a third-party coordinator to

facilitate the communication between discoverer and vendor. An arbitrator can also be employed if a

disagreement occurs. However, there are several preconditions in OIS’ guideline. The coordinator and

arbitrator can be used only if both the vendor and discoverer mutually agree. In addition, both the vendor

and discoverer must have a mutual consent on the scope of authority and duty for the coordinator and

arbitrator. This mutual agreement could be challenging to accomplish in real practice.

5. Risks, Rewards and Costs

5.1 Costs and Risks

In some cases, disclosure of software vulnerabilities can help improve the overall security of computer

systems, while in others, such disclosures can lead to costly widespread exploitation of security problems

by black hat hackers. In any case, discovery of a software vulnerability is not free: costs are incurred by

software vendors to process, verify, fix, and distribute patches for a vulnerability; researchers spend

 23

considerable time and effort in locating software flaws; and users and administrators spend large amounts

of time finding, testing and deploying patches to their systems.

Rescorla4 proposes a cost model for software vulnerabilities that is general enough to span the spectrum

of actual possible losses that may be incurred as part of the software vulnerability cycle. In his model, the

costs are largely user-costs – centered around what it costs to apply fixes for a given vulnerability, as well

as the costs incurred in case of an exploitation (not included are costs to vendors in actually fixing flaws,

as well as the costs to a vendor’s reputation in high-profile exploitation cases). The model states that, for

the task of applying patches, there is a cost incurred that is roughly linear with the number of machines

that are patched; risks (of intrusion) are incurred in the period when a vulnerability is known about

privately but not publicly; and there are actual costs and risks to un-patched systems when a disclosure

has been made (in any case of intrusion of a single system, the cost scales with the value of the system –

but for wide-scale intrusions, like worms, the costs may become significantly higher due to other

collateral damage).

5.2 Cost-Benefit Analysis

An excellent cost-benefit analysis of disclosure is proposed1 where the question of whether or not to

disclose a vulnerability is posed, based on the short and long term implications of the disclosure. Since

actual costs of exploitation (large- and small-scale) can vary so much and can be so hard to measure (see

discussion earlier in this paper on actual incidents), an abstract model is used to form the decision matrix

of whether or not to disclose. For a discovered vulnerability, the choice to disclose only reduces the

expected cost of intrusions based on the formula4:

 24

Pr (Cpriv + Cpub) > Cpub

where: 1. Pr is the probability that a vulnerability will be rediscovered.

2. Cpriv is the cost of private exploitation (where a vulnerability is exploited by black hat
hackers without being known about publicly)

3. Cpub is the cost of public exploitation (where a vulnerability is exploited, but has also been
disclosed)

In other words, if a vulnerability is to be disclosed, the additional cost of private exploitations by black

hat hackers must be greater than the cost of exploitations incurred by disclosing the vulnerability in the

first place.4 So, by this logic, if a researcher discovers a flaw in a product, the only reason she should

make use of the full disclosure policy would be in cases that not disclosing the vulnerability immediately

puts users at greater risk in the short term than would be incurred as part of disclosure performed in the

longer term (presumably, after a vendor can generate a patch).

Relative to the probability of vulnerability rediscovery, Ozment30 also provides some background,

looking at what value is provided by the vulnerability discovery process in general.

5.3 Non-Disclosure

When discussing the risks and rewards of a non-disclosure policy, it is clear (as discussed earlier) that the

benefits of non-disclosure tend to be limited to black-hat hackers who discover and exploit vulnerabilities,

but do not disclose them – and benefits can extend as well to software companies whose reputations are

not tarnished by the disclosure of security flaws. Vidstrom2 provides examples of “fake” arguments that

are commonly made in favor non-disclosure policies – arguments such as:

• Money. The vendors simply think they will make more money from keeping the vulnerabilities

secret. The web site of Ntsecurity.nu performed a poll on question: “Do you think that software

vendors deliberately neglect security to increase short-term profit?” The result was 87% Yes, 7%

 25

No, and 6% Not Sure. If we don't trust the vendors, we need some kind of balancing force - for

example full disclosure. 2

• Control. "If I keep the information secret I will be in control, me and my elite security expert

friends will not allow anybody else to enter our closed elite group."2

The main losers in the case of non-disclosure of vulnerabilities are users – in all cases, as described

previously, there is a real risk to all users when a security flaw is known but not disclosed to software

vendors – as such, the costs and risks of non-disclosure far outweigh the perceived benefits of non-

disclosure.

5.4 Full Disclosure

In the cost-benefit analysis model from Rescorla1, above, it is asserted that the policy of full disclosure is

only less costly than that of partial or responsible disclosure when the immediate short-term risks of

private exploitation are greater than the longer-term risks of public exploitation.

Some of the purported benefits of full disclosure for a vulnerability are that the vendor is motivated to

provide a patch or workaround in a timely manner, that an administrator might make use of exploit code

to test for the existence of vulnerable systems, or to test the integrity of a patch that has been distributed

to correct a vulnerability. 1 However, the main benefits in many full disclosure cases are realized

primarily by the security researchers who found the vulnerabilities – on this point, Vidstrom2 contends,

again, that the personal fame associated with such a disclosure is a non-argument because of the potential

risks being incurred on the general public as a result of that disclosure.

 26

There are many risks that offset the benefits of full disclosure – for example, a policy of full-disclosure

arms hackers with pre-made exploits for attacking systems – with arguments being made that hackers are

less likely to spend time discovering new vulnerabilities. Additionally, as has been stated several times

previously, full disclosure of a vulnerability without giving a vendor time to release a fix puts all users at

risk (see the cost benefit model above). On the whole, the risks and costs incurred as part of full

disclosure (in its purest sense) outweigh the benefits.

5.5 Responsible Disclosure

The benefits of responsible disclosure (and many other “partial disclosure” policies) are that the risks to

end users (and thus, the costs incurred by end users) tend to be the smallest. While difficult to define a

trusted set of individuals in the most perfect sense, responsible disclosure keeps information about a

vulnerability within that trusted set of individuals until a patch is released, and when disclosure does take

place, the full technical details of the vulnerability are only provided once a patch has been provided by

the vendor.1 Essentially, the path of responsible disclosure tends to be the lowest-cost, highest-benefit

path that vulnerability discoverers can take in many cases using Rescorla’s cost-benefit model. Aside

from the limitations factored into that model, other risks of responsible disclosure can be that vendors

may not be motivated to repair flaws in a timely manner (thus expanding the risk window of private

exploitation by black hats), potential liability issues for security researchers releasing information to

software vendors, and the general re-discoverability problem (see Ozment30) – on the whole, however,

forms of responsible disclosure tend to be one of the most widely agreed upon best practices, with the

fewest standard implementations1 (NTBugTraq16 being one of the more widely accepted forms).

6. Conclusion

The Internet will continue to grow and change the role that software plays in our lives. As our lives

depend more and more on the Internet and software, security becomes essential. When software

 27

vulnerabilities are discovered, it is in the public interest that existing systems with vulnerabilities are

being fixed in a timely fashion. The question is that when vulnerabilities are discovered, how discoverers

should disclose them. If discoverers disclose vulnerabilities publicly with exploitation details, script

kiddies or black hats can use the same information to launch attacks. If discoverers do not disclose

vulnerabilities publicly, vendors have less motivation to fix their software and provide patches. Among

debates of disclosure policies, responsible disclosure policy tends to be one of the most widely agreed

upon best practices. However, the biggest challenge facing any new vulnerability disclosure policy is

universal adoption.

At the same time, while it is necessary to set policies for responsible disclosure, it could make all other

forms irresponsible. When a disclosure policy becomes adopted, it could be a small next step to pass

legislation criminalizing all other “irresponsible” disclosure. It is also a valid concern that vendors could

use legal actions to prevent disclosure of vulnerabilities, such as the cases of Cisco and Michael Lynn,

and HP and SnoSoft (as pointed out in section 4.5).

The Internet has brought the software industry to a global level. Vulnerability disclosure policy is not one

that a single nation can govern. For example, if the U.S. passes legislation for software vulnerability

disclosure, it won't necessarily apply to Russia. A global approach towards adoption of the new policy is

the best strategy. Instead of relying on laws, we should apply economic principals when thinking of the

disclosure policy, which should motivate both the discoverers and the vendors.

Ultimately, we need to have guidelines for a reasonable course of action for disclosing software

vulnerabilities. However, it is too early for the security community to understand the problem enough yet

to set a single enforceable vulnerability disclosure policy. The debate should continue. And let it

continue!

 28

Reference

1. S. Shepherd, “Vulnerability Disclosure: How do we define Responsible Disclosure?” SANS Institute,
http://www.giac.org/practical/GSEC/Stephen_Shepherd_GSEC.pdf, Feb 2003.

2. A. Vidstrom, “Full Disclosure of Vulnerabilities – Pro/Cons and Fake Arguments,” Net Security,
http://www.net-security.org/article.php?id=86, Apr 2002.

3. T. Havana and J. Röning, “Communication in the Software Vulnerability Reporting Process”, MA
thesis, University of Jyvaskyla,
http://www.ee.oulu.fi/research/ouspg/protos/sota/FIRST2003-communication/paper.pdf, June 2003.

4. E. Rescorla, “Is Finding Security Holes a Good Idea?” RTFM Inc,
http://www.dtc.umn.edu/weis2004/rescorla.pdf, Jul 2004.

5. W. Arbaugh, W. Fithen, and J. McHugh, “Windows of Vulnerability: A Case Study Analysis,” IEEE
Computer Society Press, http://www.cs.umd.edu/~waa/pubs/Windows_of_Vulnerability.pdf,
Dec 2000.

6. S. Wildstrom, “Probing Your PC’s Weak Spots,” BusinessWeek Online,
http://www.businessweek.com/technology/content/may2005/tc2005052_2731_tc024.htm, May 2005.

7. S. Wildstrom, “Clicks that Make PCs Sick,” BusinessWeek Online,
http://www.businessweek.com/technology/content/may2005/tc20050510_5936_tc205.htm,
May 2005.

8. S. Wildstrom, “Viruses Get Smarter and Greedy,” BusinessWeek Online,
http://www.businessweek.com/print/technology/content/nov2005/tc20051122_735580.htm,
Nov 2005.

9. Wikipedia, “Timeline of Notable Computer Viruses and Worms,”
http://en.wikipedia.org/wiki/Timeline_of_notable_computer_viruses_and_worms, Nov 2005.

10. SANS Institute, “The Twenty Most Critical Internet Security Vulnerabilities Version 6.01,” SANS
web site, http://www.sans.org/top20, Nov 2005

11. D. Litchfield, “Unauthenticated Remote Compromise in MS SQL Server 2000,” NGSSoftware
Insight Security Research Advisory, http://www.nextgenss.com/advisories/mssql-udp.txt, Jul 2002

 29

12. R. Pethia, “Computer Viruses: The Disease, the Detection, and the Prescription for Protection,”
CERT/CC, http://www.iwar.org.uk/comsec/resources/virus-nov-06-03/Pethia1784.htm, Nov 2003.

13. University of Oulu Secure Programming Group (OUSPG), “Vulnerability Disclosure Publications
and Discussion Tracking,” http://www.ee.oulu.fi/research/ouspg/sage/disclosure-tracking, May 2005.

14. R. Richardson, “2003 CSI/FBI Computer Crime and Security Survey,” Computer Security Institute,
http://www.security.fsu.edu/docs/FBI2003.pdf,

15. TruSecure Corporation, “TruSecure’s Research” http://www.trusecure.com/knowledge/research,
Dec 2005

16. R. Cooper, “NTBugtraq Disclosure Policy,” NTBugtraq,
http://www.ntbugtraq.com/default.aspx?sid=1&pid=47&aid=48, Jul 1999

17. Rain Forest Puppy, “Full Disclosure Policy (RFPolicy) v2.0,”
http://www.wiretrip.net/rfp/policy.html, Jun 2000.

18. S. Christey and C. Wysopal, “Responsible Vulnerability Disclosure Process,” IETF draft,
http://www.wiretrip.net/rfp/txt/ietf-draft.txt, Feb 2002.

19. CERT Coordination Center, “CERT/CC Vulnerability Disclosure Policy,”
http://www.cert.org/kb/vul_disclosure.html, Oct 2000.

20. J. Chambers and J. Thompson, “Vulnerability Disclosure Framework,” National Infrastructure
Advisory Council, http://www.dhs.gov/interweb/assetlibrary/vdwgreport.pdf, Jan 2004.

21. MITRE Corporation, “CVE Frequently Asked Questions,” http://www.cve.mitre.org/about/faq.html,
Oct 2005.

22. J. McCormick, “Researcher Heats up Black Hat Conference with Controversial Cisco Presentation,”
TechRepublic, http://techrepublic.com.com/5100-1009_11-5810871.html, Aug 2005.

23. S. Pruitt, “Norway Indicts Teen Creator of DeCSS,” IDG News Service,
http://www.pcworld.com/news/article/0,aid,79285,00.asp, Jan 2002.

24. J. Schiller, “Responsible Vulnerability Handling: ‘A Hard Problem’,” Secure Business Quarterly, Vol
2, Issue 3, http://www.sbq.com/sbq/vuln_disclosure/sbq_disclosure_hard_problem.pdf, Sep 2002.

 30

25. K. Zetter, “HP, Bug-Hunters Declare Truce,” PCWorld,
http://www.pcworld.com/news/article/0,aid,103853,00.asp, Aug 2002.

26. Organization for Internet Safety, “Guidelines for Security Vulnerability Reporting and Response,”
http://www.oisafety.org/guidelines/secresp.html, Sep 2004.

27. Organization for Internet Safety, “About Organization for Internet Safety,”
http://www.oisafety.org/about.html , Dec 2005.

28. D. Verton and J. Vijayan, “When Is It Safe to Disclose Security Flaws? Industry Group Sets New
Guidelines for Reporting Software Holes,” ComputerWorld,
http://www.pcworld.com/news/article/0,aid,111879,00.asp, Aug 2003.

29. Y. Tian, “Regulation for Reporting Security Flaws,” Helsinki University of Technology,
http://users.tkk.fi/~tianyuan/slides/template, Nov 2002.

30. A. Ozment, “The Likelihood of Vulnerability Rediscovery and the Social Utility of Vulnerability
Hunting,” University of Cambridge, http://infosecon.net/workshop/pdf/10.pdf, Jun 2005.

