
1

Open Source Security

Imran Ali
Derek Cheng
Asad Jawahar

Osama Mazahir
Jared Smelser

2

Table of Contents
Open Source Security ... 1

What is Open Source?... 3
Inherent Security Advantages ... 8

Security Through Disclosure .. 8
Software Complexity .. 9
Communal interest in Security of Open Source Software (OSS) 9
Support -- you may fix it yourself! ... 9
Full Disclosure of Bugs and holes .. 10
Behavior of developers ... 10
Diversity.. 10
OSS Security Tools... 11
Code Audit .. 11

Inherit Security Disadvantages ... 11
The Downside of the “Many Eyes” Approach ... 11
Accountability... 12
Development Style and Discipline.. 12
Open Source Responses to Security Problems ... 12

Comparison of Security in Open Source Versus Other Products 13
Case Study 1: Linux Versus Windows ... 13

Issue Discovery... 13
Fixing Issues ... 14
Issue Severity .. 16
Exploit Environment... 16
Summary ... 17

Case Study 2: MySQL Versus SQL Server and Oracle.. 18
Case Study 3: IE Versus Firefox... 19

Introduction... 19
Background... 19
Reporting Security Bugs ... 20
Security Features... 20
Checking in Code.. 21
Statistics .. 21
Internet Explorer http://secunia.com/product/11/ ... 21
Mozilla Firefox http://secunia.com/product/4227/ ... 22
Conclusions... 24

Overall Conclusions.. 25

3

What is Open Source?

Introduction

Just as the internet and World Wide Web find their origins of creation in attempts
to encourage the dissemination of information between users, the Open Source
community finds its own origin in a similar wellspring. Open Source Software and the
majority of its variants is an attempt to be just that, an open arena of software
development stemming from a non-proprietary operating system. This openness allows
multiple programmers and users to build off one another’s ideas and creations, using the
source code as a common structure from which to start. Over the years, a set of criteria
for the distribution of this type of software has set the boundaries from which this
movement has solidified and prospered.

The following is a cursory examination of the Open Source Community through
its inception to its present day operations, primarily centering on GNU/Linux, its most
successful operating system. This will include a brief history of the Open Source
movement, to better understand the overriding philosophy that both guides and fuels this
community. Further we will explore how Open Source software is developed and
distributed and in doing so shed more light on how Open Source has become so
significant within a short period of time.

A Brief History

As mentioned above, the internet and WWW each began as open venues in which
mostly academics and some private institutions shared information between one another.
This same collegial atmosphere prevailed within the young computer science
communities of the sixties and seventies. While computer hardware was mostly
proprietary (as most business models of the time saw this as the only real revenue stream
from this market) software was passed freely from programmer to programmer, between
private industry and universities to lone enthusiasts. Within this community, AT&T’s
Bell laboratories developed the UNIX operating system. UNIX was created to be a
transferable, multi-tasking and multi-user operating system. It would be from this
operating system that the Open Source movement would begin to take shape, although
the Open Source moniker did not arrive until the late nineties.

Open Source began as the Free Software Movement, when in 1983 its founder
Richard Stallman, an MIT researcher and early programming pioneer published the GNU
project. GNU is a UNIX-like operating system, not under the licensing copyright of
AT&T’s UNIX, setup to be a building block from which programmers would have free
access to build on. Stallman created GNU in response to the restrictions the computer
industries were beginning to place on proprietary code. He intended that users be free to
study this source code, modify it when wanted and produce it as long as the subsequent
software was again free to other users. Stallman wanted a return to the collegial
programming community of the sixties and seventies where an open marketplace of ideas

4

would foster growth and innovation. To help this take place he created the Free Software
foundation and the General Public License (GPL); this non legal contract would give
licensees the right to copy, modify and sell these programs as long as they granted
downstream rights to future programmers, Stallman called this “Copylefting”.

While during the eighties and nineties open source code systems gained
prosperous inroads with UNIX programs such as Apache, Perl and Sendmail, (see chart
below) it would be with the creation of GNU and the subsequent Linux Kernel when
open source programs became market forces. The kernel is a program on UNIX and
UNIX-like operating systems which allocates the computers resources to other programs.
The Linux Kernel would streamline the already existing operating system (GNU)
creating a more efficient and reliable structure, this system would be called GNU/Linux,
and though much to the frustration of Richard Stallman, the GNU has been dropped from
the common nomenclature and is now most commonly referred to as Linux. In 1991
Linus Torvalds, while studying at the University of Helsinki, created the Linux kernel in
his spare time and since its release on September 17, 1991, this kernel and Torvalds
direction of its distribution has created a boon for Open Source software within the
marketplace.

Torvalds not only developed the last piece of the GNU puzzle, he also utilized the
open source community better than any one had previously. Within a month of its first
release, Torvalds, with the aid of hundreds of community programmers representing
thousands of programming man hours, released the second edition of Linux,
demonstrating how effective a decentralized programming network could be. Over the
next few years Torvalds refined this process by creating a hierarchical network of
programmers constantly working (under Torvalds umbrella, a type of quazi-control and
direction) on the betterment of Linux and Linux programs. From the start, Torvalds
would utilize only the best suggested refinements to the code. With the success of the
GNU/Linux operating system, more and more users including large corporations began to
take notice and show interest in the possibilities of how this new program and model of
development could be utilized, but the stigma of “Free” Software made many in the
private sector uneasy.

With the publication of Netscape’s source code into free software in 1998, a
group of GNU/Linux and Free Software users including Todd Anderson, Chris Peterson,
and Eric Raymond and others, saw a need to change the public perception of the Free
Software Movement and created the Open Source Initiative. This group created a more
business friendly model for promotion and licensing. Under the direction of the Open
Source Initiative, a definition of what Open Source should be was created and promoted
as an attempt to dispel private and public user’s misconceptions of what the “free” in
Free Software stood for.

The Open Source Definition

5

1. Free Redistribution. The license may not restrict any party from selling or
giving away the software as a component or an aggregate software distribution
containing several programs from several sources. The license may not require a
royalty or other fee for such sale.

2. Source Code. The program must include source code, and must allow
distribution in source code as well as compiled form. Where some form of a
product is not distributed with source code, there must be a well-publicized means
of obtaining the source code for no more than a reasonable reproduction cost --
preferably, downloading via the Internet without charge. The source code must be
the preferred form in which a programmer would modify the program.
Deliberately obfuscated source code is not allowed. Intermediate forms such as
the output of a preprocessor or translator are not allowed.

3. Derived Works. The license must allow modifications and derived works, and
must allow them to be distributed under the same terms as the license of the
original software

4. Integrity of The Author's Source Code. The license may restrict source-code
from being distributed in modified form only if the license allows the distribution
of "patch files" with the source code for the purpose of modifying the program at
build time. The license must explicitly permit distribution of software built from
modified source code. The license may require derived works to carry a different
name or version number from the original software.

5. No Discrimination Against Persons or Groups. The license must not
discriminate against any person or group of persons.

6. No Discrimination Against Fields of Endeavor. The license must not restrict
anyone from making use of the program in a specific field of endeavor. For
example, it may not restrict the program from being used in a business, or from
being used for genetic research.

7. Distribution of License. The rights attached to the program must apply to all to
whom the program is redistributed without the need for execution of an additional
license by those parties.

8. License Must Not Be Specific to a Product. The rights attached to the program
must not depend on the program's being part of a particular software distribution.
If the program is extracted from that distribution and used or distributed within
the terms of the program's license, all parties to whom the program is
redistributed should have the same rights as those that are granted in conjunction
with the original software distribution.

9. License Must Not Contaminate Other Software. The license must not place
restrictions on other software that is distributed along with the licensed software.

6

For example, the license must not insist that all other programs distributed on the
same medium must be open-source software

(opensource.or
g)

While these terms are written in the form of a social contract they have for the
most part been accepted and adhered to by the now re-named “Open Source” community.
This is largely due to the influence of many of the key figures within the community such
as Torvalds and Eric Raymond (president of the Open Source Initiative and author of The
Cathedral and the Bazaar). Although for many Open Source enthusiasts the underling
philosophy created by Stallman of information sharing and the free trade of ideas remain
the cornerstone of this movement.

Time line of UNIX Family Tree

7

Development and Distribution

In his essay The Cathedral and the Bazaar, Eric Raymond describes the Linux
development model by differentiating between Linux and more traditional programming
as two sides of a drastically different building scheme.

Linus Torvalds's style of development—release early and often, delegate
everything you can, be open to the point of promiscuity—came as a surprise. No
quiet, reverent cathedral-building here—rather, the Linux community seemed to
resemble a great babbling bazaar of differing agendas and approaches … out of
which a coherent and stable system could seemingly emerge only by a succession
of miracles. (cathedral)

This analogy, likening traditional programming to the strictness and structure of
cathedral building, illustrates in a dramatic fashion the way in which Torvalds utilizes the
seemingly chaotic nature of his development strategies to gain advantage over proprietary
systems. One of the most important ways in which Open Source programs and operating
systems are far superior to many of their proprietary counterparts is in the interactions
between the software and other programmers. For most proprietary programs and
operating systems this interaction has become a “can you break this” approach. Because
of this, large teams of programmers under strict constraints releasing products in the
market hope that they were able to isolate all of the vulnerabilities within the program.
While for Open Source programs and operating systems, users not only find and fix
problems in software, they find new and interesting ways to improve on it. This type of
interchange has made Open Source programs more readily adaptable to individuals
looking for ways in which to adjust software to meet certain criteria unique to their own
needs.

This however has been one of the main perceived drawbacks to Open Source
software, most programmers and subsequent users of Open Source traditionally have
more computer skills than the average user, raising complaints that Open Source
programs were not user friendly for the average user. While for the most part the Linux
community has taken great strides in fixing this problem on a programming level, they
have done little to dispel this misconception to the common user. This decentralized form
of development in which often lone programmers work on sections of programs or even
more recent trends of teams of programmers hired by such companies as IBM and HP,
has allowed Linux the opportunity to create a library of programs and operating systems
that would have cost in the billions of dollars in the traditional market. Only within the
last few years has Torvalds relinquished some of his power to others capable of
furthering the Linux agenda. Linux now also has a Board of Directors guiding it to more
consistent goals, allowing Torvalds to concentrate on the quality of development.

Although Linux continues to gain market share on rival Microsoft, Microsoft has
several inherent advantages to this decentralized model of development. First is market

8

place reputation; for most users there is an unwritten contractual understanding that
Microsoft will always fix problems as they arise, but with Linux there is only a veiled
presumption that this will take place, and when it does, the release dates are often times
sporadic. Should a user find that a problem affects too few other users for the community
to take notice, he might be left to his own devices. The second inherent advantage is this:
Microsoft has shown repeatedly that the release of new products and upgrades arrive on a
consistent schedule, where as Linux users often are at the mercy of an unknown entity to
release a needed product or upgrade.

Despite these hindrances many large corporations are entering the scene either as
backers or users of Linux-based products. Companies such as IBM, Novell, Intel and HP
have not only brought with them market credibility, but also leagues of professional programmers
that strengthen Linux’s ability to compete with Microsoft. In a Businessweek article written in
January, 2005, IBM is reported as having 600 programmers now working exclusively on
Linux, up from two in 1999. Due in large part to these changes, Linux’s market share
from 1997 to 2003 in servers rose from 6.8% to 24%, and this number is expected to
reach 33% by 2007. (Businessweek) With IBM and HP now pre-loading PC’s and servers
with Linux many more common users may find more and more reasons to switch from
Microsoft to Open Source systems.

While for the time being Microsoft is secure in its place at the table, for the first time in
many years they seem to have a competitor nipping at their heels; only time will dictate the extent
to which Linux will challenge Microsoft’s market dominance. Many experts postulate that the
recent upward trend of Linux’s market share is due to the drop in UNIX share and that once this
trend equalizes, Linux will flatten out. Others still have an enthusiastic optimism about Linux’s
possibilities and overall outcome. Regardless of Linux and Open Source software’s marketability,
much like the internet and World Wide Web before it, the way in which it has changed the
marketplace of ideas will be its most lasting contribution.

Inherent Security Advantages
There are several inherent security advantages to the open source software development
model. They are discussed below.

Security Through Disclosure
Open source software is distributed with its sources and hence it is analyzed and
reviewed by a large number of individuals in the open source community and by
developers who are trying to modify the code for their own use. This level of peer review
cannot be achieved by companies developing proprietary software. As a result of the
large number of reviews several vulnerabilities are found and fixed before they get
exploited “to many eyes, all bugs are shallow”1. There are several examples of security

1

ES Raymond, \The Cathedral and the Bazaar", 1998, at http://tuxedo.org/~esr/writings/cathedral-bazaar/

9

flaws being discovered by code reviews in the open source, for instance security
vulnerabilities discovered in CVS2.

Open source also provides accountability against developers who may place malicious
code like Trojans and other backdoors in the software. For example Borland’s InterBase
database had a backdoor that allowed any local or remote user to take over the system as
root. This hole remained undetected for several years until Borland made the sources
public and the flaw was discovered and reported with in six months of the release of the
source code. Similarly in January 1999 a Trojan Horse version of TCP Wrapper was
placed on a popular website. Due to the availability of source code, the backdoor was
quickly identified and removed.

Software Complexity
Open source software is usually less complex, more modular and readable than closed
systems. For example Windows is estimated to have between 40 and 60 million lines of
code, as compared to Linux with around 5 million. The smaller complexity of the open
source makes it easier to comprehend, review and fix.

Communal interest in Security of Open Source Software (OSS)
Every user and developer of open source software has a vested interest in the security of
the open source systems. Hence community plays a vital role in making OSS more
secure. The open source community is more receptive to vulnerabilities reported in their
software as opposed to proprietary software vendors and therefore more nimble in their
response. For example a serious vulnerability found recently in Sony’s DRM rootkit took
a couple of weeks and a lot of outcry from the customers before the vendor finally
acknowledged and decided to fix to the issue3 .

On the other hand the good will of the open source community and the free exchange of
source code allows for quick discovery of flaws, responsible disclosure and fast
development and deployment of security patches. This communal effect is unique to
OSS.

Support -- you may fix it yourself!
Lack of support is often cited as one of the biggest hurdle in adopting open source
software. However, this is not entirely true. Since the source code is available, anyone
can provide support for the software.

When a security flaw is discovered in a proprietary software system, the customers have
to wait till the vendor develops and provides a patch. The time taken between the
discovery of an exploit and the patch being available is notoriously long. To make the

2 SuSE: New cvs packages fix remote command execution
http://freshmeat.net/articles/view/1216/
3 Real Story of the Rogue Rootkit
http://www.wired.com/news/privacy/0,1848,69601,00.html

10

situation even worse, a lot of the time patches are released prematurely with insufficient
peer reviews and testing and end up causing more vulnerabilities. For example Sony’s
patch to the recent rootkit flaw causes further vulnerabilities4.

In the case of OSS, anyone in the open source community may fix the problem and since
the code of the patch is also open source, it gets peer reviewed and tested rigorously
hence the response time is shorter and the quality of the patch is better.

Full Disclosure of Bugs and holes
Users of proprietary software systems have to rely on the honesty and diligence of the
software vendor to have shipped a high quality and secure product. However not all
software vendors are as diligent as they need to be. Some vendors ship software with
known vulnerabilities largely due to financial reasons for instance to release the product
on time, cost of fix etc. Some vendors also take comfort in the complexity of the exploit
and think that no one will discover it. Most software vendors feel very uncomfortable
about the publicity of security flaws and argue that this helps the attackers. The open
source community has taken a different approach: security through disclosure. The open
source community is committed to sharing of knowledge about security flaws and
possible exploits through newsgroups and mailing lists. The (responsible) public
disclosure of security flaws has benefited the overall security of the OSS.

Behavior of developers
Most discussions about software quality revolve around hours of testing and mean time
before failure of the system. The value of testing is well understood, however, we must
acknowledge that testing does not guarantee absence of flaws. And the best way to make
quality software is to build quality/security into the system, ie, improve the way the
software is designed and developed. Research in human behavior and psychology has
shown that people demonstrate their best behavior and perform better when they are
under observation5. Given the natural human behavior, it is more likely that a developer
will write better code that is well designed, well structured/modularized, readable and
maintainable. The ‘fear’ of being scrutinized publicly makes developers write better more
secure code to start with.

Diversity
The diversity of the open source community also brings an interesting dimension to the
quality of the software. Research has shown that individual preferences and skills of
individuals have a profound affect on testing. A piece of software may have been tested
extensively by one person to a point where it seems to be reliable but when given to

4 Sony DRM infection removal vulnerability uncovered
http://www.theinquirer.net/?article=27714
5 The Immediate Effects of Being Observed
http://www.obmnetwork.com/resources/articles/ABA2004/Austin_Observed.ppt#272,15,Method

11

another tester, quickly reveals flaws6. Also test suites developed by testers employed by
proprietary software vendors tend to become stale after the initial test development phase
and stop catching new bugs. On the other hand open source community has unparalleled
diversity and ‘work force’ of testers in it’s members. Due to this reason open source
community is likely to find more bugs sooner.

OSS Security Tools
One of the big advantages of using open source is the availability of open source security
tools. These tools are freely available and can be used by anyone. This makes open
source a very attractive option for small businesses and individuals who cannot afford
expensive support and service contracts.

Code Audit
Open source also has the advantage that you can audit the code. As mentioned earlier
proprietary software systems have the possibility of undiscovered backdoors. For people
and agencies who are interested in deploying secure systems open source provides the
unparalleled opportunity to audit the code (or pay someone to do it) to satisfy their
requirements.

Inherit Security Disadvantages
The following section discusses inherent security disadvantages of open source software
and follows with a discussion of how the open source community responds to security
problems.

The Downside of the “Many Eyes” Approach
One obvious disadvantage of open source software is that the source code is available for
examination to everyone, including attackers. It is true that source code is not required to
understand the workings of a program or to find vulnerabilities, which may be
accomplished through reverse engineering the machine code. However, it is more time
consuming and requires a greater degree of skill to understand machine code. Security
through obscurity is fragile, but it can make discovery of a vulnerability and development
of a successful attack more difficult. This is one layer of defense that open source
software lacks.

Related to this point is a refutation of the “many eyes” argument. In the security context,
the “many eyes” argument is taken to mean that with the source code of an open source
program available to everyone, many people will review the code and quickly find and
fix any security problems. However, the typical open source programmer is seeking to
modify some aspect of the software to add a new feature or fix a bug, not to perform a
comprehensive security review, which is both time consuming and difficult. So the
availability of an open source program will likely benefit attackers more and defenders
less than is commonly perceived within the open source community.

6 RM Brady, RJ Anderson, RC Ball, \Murphy's law, the fitness of evolving species,and
the limits of software reliability", Cambridge University Computer LaboratoryTechnical
Report no. 471 (September 1999), available at http://www.cl.cam.ac.uk/ftp/users/rja14/babtr.pdf

12

Accountability
Another disadvantage of open source software with respect to closed source software is
the relative lack of accountability. Anyone can contribute code to an open source project
(though it may be reviewed and not necessarily accepted in some cases). An attacker
could attempt to add subtly malicious code to an otherwise benign open source program
to implement a Trojan horse attack against users of that program. As noted above, such
an attempt was made against the TCP Wrappers program in 1999. The attempt was
discovered quickly; however, a more cleverly disguised attack may have evaded
detection for longer.

Although counterexamples exist, this is a threat that seems much less likely with closed
source software produced by a company. An employee who launches such an attack is
endangering his livelihood. Additionally, his identity is known by his employer so he
may be more easily prosecuted than a relatively anonymous open source developer
contributing code over the Internet.

Development Style and Discipline
A final disadvantage of open source software is the relatively relaxed, unstructured way
in which software development occurs in that community. Creating secure software is a
difficult, complex task. Companies like Microsoft have discovered that disciplined
engineering processes are necessary to achieve this. Open source development often
lacks such disciplined processes. Closed source software is often created in a corporate
environment where it is easier to enforce such processes and discipline.

Open Source Responses to Security Problems
The responsibility for responding to a security flaw in open source software typically
falls on the community that creates that software. A patch for the flaw is typically
created, and then distributed in the same manner that the program is distributed (e.g.
downloading from an FTP server). An advisory for the flaw may be posted at various
security mailing lists or sites, such as bugtraq.

There is no uniform policy across all open source projects about how an open source
vulnerability should be disclosed. One major open source project, Mozilla, has
established a policy7 that attempts to reconcile two competing interests: (a) the desire to
be as transparent as possible and disclose vulnerabilities publicly and (b) deny attackers a
short-term advantage in exploiting the problem. Mozilla security bugs may be flagged as
“security sensitive” in their bug database, which controls access to the bug. Certain
Mozilla project members as well as the bug reporter have access to the bug. The bug
reporter may decide to make the bug public at any time.

Recourse for cyber attack victims is limited. As with closed source software, license
terms often restrict whether victims may sue the makers of the software. It is reasonable
to assume that major open source projects such as Linux or Mozilla will be fairly
responsive to security problems and will fix them. Projects of this size have large user

7 http://www.mozilla.org/projects/security/security-bugs-policy.html

13

bases they need to support and also large numbers of programmers to fix the problem.
Additionally, they are backed by major corporations (such as Red Hat, IBM or AOL)
who have interests in seeing such problems fixed. Smaller, more obscure open source
projects may be less well-maintained, in which case security problems may receive less
attention.

Comparison of Security in Open Source Versus Other Products

Case Study 1: Linux Versus Windows
In this section we compare Windows Server 2003 Datacenter Edition and Red Hat
Advanced Server with respect to security/vulnerability and how that relates to open
source versus proprietary software.

Both Linux and Windows are very complicated software packages. Windows is
estimated to have between 40 and 60 million lines of code and Linux has approximately 5
million. Complicated systems are much more difficult to build flawlessly. Windows is
about 10 times bigger than Linux which would makes it much more difficult to secure.

Windows also has a much bigger deployment base compared to Linux. This makes it a
more attractive and a more available target for attackers. Furthermore, a Windows
exploit has a more damaging effect to the industry than a Linux exploit.

Issue Discovery
We used trends gathered by Secunia to compare vulnerability patterns between
Windows8 and Linux9.

Figure 1: Windows Server 2003 Datacenter Advisories

8 http://secunia.com/product/1175
9 http://secunia.com/product/2534

14

Figure 2: RedHat Enterprise Linux AS 3 Advisories

As we can see from Figure 1 and Figure 2, the amount of advisories issued against Linux
is over three times as many compared to Windows (243 versus 72). Interestingly, the
chart shows that the issues raised against Linux climbed rapidly after release, reached a
peak and then started to fall. Almost a year elapsed from the initial advisory to the peak
volume of advisories. That makes sense, since issues begin to surface after the product is
adopted by consumers.

Surprisingly, the Windows advisories did not follow such a pattern. The trend shows that
the Linux issues were found rapidly in high volume whereas the Windows issues were
found in a somewhat erratic fashion and do not show signs of significant decline. This
could be due to various reasons. Firstly, a slower adoption of the new Windows version
would increase the amount of time it takes for issues to surface. Secondly, and more
interestingly, since Windows is not open source, it is more difficult to find the issues.
Without access to the source code, finding vulnerabilities can be a very time consuming
trial-and-error process.

Fixing Issues

15

Figure 3: Breakdown of solutions applied to vulnerable Windows machines

Figure 4: Breakdown of solutions applied to vulnerable Linux machines

From Figure 3 and Figure 4, we see that all the Linux patches were applied whereas only
88% of vulnerable Windows machines were patched. This is surprising considering the
amount of energy and infrastructure Microsoft devotes to providing customers with
automatic downloads and installs of patches.

The Microsoft security bulletins appear to be better than those published by Red Hat10.
The Microsoft bulletins describe mitigations, workarounds, and patch installation
walkthroughs. The RedHat bulletins, on the other hand, are very succinct and mostly just
describe the vulnerability.

This demonstrates that Microsoft must do even more if it wants all its customers to have
patches machines. The success rate of Linux patches compared to Windows can be
explained due to the low-impact that Linux patches tend to have11. Linux patches can
often be applied without seriously rebooting or bringing down the machine whereas
Windows patches usually require reboots or some cause some significant disturbance to
the service being provided by the machine.

10 http://www.sisecure.com/pdf/windows_linux_final_study.pdf
11 http://www.sisecure.com/pdf/windows_linux_final_study.pdf

16

Issue Severity

Figure 5: Severity of issues found in Windows

Figure 6: Severity of issues found in Linux

From Figure 5 we see that Windows has 36% issues that are extremely or highly critical,
39% moderately critical, and 25% less or not critical. However, Linux has 24%
extremely or highly critical, 35% moderately critical, and 41% less or not critical. Albeit,
Windows has a lot less issues, it has a higher percentage of critical issues.

Exploit Environment

17

Figure 7: Locations from where Windows issues can be exploited

Figure 8: Locations from where Linux issues can be exploited

Figure 7 and Figure 8 shows whether the vulnerabilities can be exploited by using
another machine on the network or whether they require physical access to the machine.
We see that both Windows and Linux are close (86% versus 82%) in regard to the
percentage of vulnerabilities that can be exploited without being locally logged into the
machine. However, Linux is more susceptible to an exploit being launched from a
remote network. That is, a higher percentage of Linux vulnerabilities can be exploited
from the Internet.

Summary
In summary, although there are three times as many advisories posted against Linux, we
do not see any direct evidence that open source is the reason for insecure software or
closed source is the reason for securer software. The security of software really depends
on the software development process and the engineering practices followed the
development team. Considering security throughout every step of the development life
cycle (e.g. specification, design, implementation, testing) is critical to building secure
software. The low defect count seen in Windows is a result of the Microsoft being
proactive about security in its software development practices.

18

Open source does demonstrate an advantage with regard to vulnerability discovery.
Vulnerabilities in Linux were found rapidly, and after reaching a peak, progress to a
downward decline. Vulnerability discovery in Windows is more erratic and does not
demonstrate a clear downward trend. As a result of being open source, the Linux source
code can be studied by everyone to find the issues. However, with Windows attackers
and security experts are left with a more time consuming trial-and-error approach.

We also see that the disturbance caused by having to patch the machines is expensive
enough for machine owners to take the risk of running vulnerable machines. Linux
machines can be patched without any service outage whereas Windows machines often
have to be rebooted. As a result, Linux owners are more likely to patch their machines
and Windows owners are not.

Case Study 2: MySQL Versus SQL Server and Oracle
We conducted a study of the vulnerabilities reported in the popular open source database:
MySQL and Microsoft’s SQL Server 2000. Both products have been in the market for
about the same time. We used SecurityFocus.com’s vulnerability database for our study.
We compared the vulnerabilities found in the two products on dimensions like defect
class, exploit class etc. The observations are summarized in the table below:

MySQL SQL Server 2000
Total vulnerabilities reported since 2000 * 53 40
Reported in 2000 3 8
Reported in 2001 4 4
Reported in 2002 10 22
Reported in 2003 8 5
Reported in 2004 15 0
Reported in 2005 14 1
Remote 36 25
Local 16 14
Defect: Boundary condition error/buffer overflow 17 22
Defect: Design Error 13 6
Defect: Input validation error 6 2
Defect: Access validation error 5 3
Defect: Failure to Handle Exceptional
Conditions 5 4
Defect: Configuration Error 4 1
Defect: Environment Error 1 0
Result: Denial of Service (DOS) 10 6
Result: Execute arbitrary code 19 22
Result: Information disclosure 5 2
Result: Elevation of privileges 6 8
Result: Script injection 2 2
Result: Admin cannot detect attack 1 0
Result: Account/session hijacking 6 3
Result: Unauthorized remote access 5 0
Result: Disclosure of credentials 5 2
Result: Data/file corruption 3 0

19

Exploit available ** 19 20
Exploit not available ** 35 20

It is interesting to note that a comparable number of vulnerabilities have been reported for
both MySQL and SQL Server 2000. It is also interesting to note that the most common
defect by far was buffer overflow in both products. MySQL has, however, relatively
larger proportion on design flaws.

The most common exploits reported in both products were denial of service (DOS)
attacks and execution of arbitrary code using buffer overflow exploits.

One big difference between the two products is the trend of the new vulnerability reports.
Where MySQL seems to have a more or less steady flow of vulnerability reports, SQL
Sever 2000 has seen a sharp decline in the past couple of years. This may be attributed to
a couple of factors:

1. Microsoft did not release new versions of SQL while several new versions of
MySQL has been released during this time.

2. Microsoft did a security push in 2002/2003 and this may be an indication that
there are not many easy to find exploits left.

* The number is based on the total number of reports in the SecurityFocus.com
database. Some reports had multiple vulnerabilities but they have been counted as one for
the purpose of this study.
** This information is based on SecurityFocus.com database. It is possible that exploits
may be available on the web but not reported on the website.

Case Study 3: IE Versus Firefox

Introduction
This case study will compare Internet Explorer 6 (IE) and Mozilla Firefox based on their
security flaws and features, how their code bases are managed and the security incident
statistics. Internet Explorer is a proprietary product developed by Microsoft and Firefox
is an open-source product managed by the Mozilla Foundation. This case study will drill
down more on how open source techniques can affect the effectiveness of dealing with
security bugs and design. This case study will not compare each browser on features that
are not directly related to security such as tabbed pages and RSS feed support.

Background
Both IE and Firefox are web browsers designed to browse the Web. IE 1.0 was first
released in 1995. It underwent several revisions until version 6 which was released in
2001. Firefox was first released under the codename ‘Phoenix’ which was made public in
2002 and is based on the Mozilla Foundation’s code base. After several name changes,
the latest version available is Firefox 1.0.2. According to PCWorld.com, IE currently has
a market share of 94%, whereas the market share for Mozilla browsers such as Firefox
and Netscape is now at approximately 4% of all users. IE and Firefox publish their latest
security flaws on a regular basis. Based on a review of recent security bulletins, both

20

browsers have exposed vulnerabilities of being able to execute code remotely. Firefox
allowed this through Linux and IE allowed this through the Windows operating system.
Statistics based on how long it takes to fix these bugs is not widely available for both
browsers.

Reporting Security Bugs
Mozilla regularly fixes security bugs without informing its user base. IE publishes
security bulletins for almost every bug found as this is company policy. Firefox does not
also have an automatic way for users to update their installs, whereas IE uses Windows
Update to automatically update a user’s install. In addition to this, IE releases security
updates on the second Tuesday of every month so that enterprise and consumers can plan
for these updates. Firefox’s inability to automatically update its customer’s installs
potentially leaves a large number of its customers with many different versions of
unpatched Firefox installs.

Firefox allows any users to report security bugs whereas IE allows user to report issues
but does not give them access to its internal bug tracking system to follow the progress of
the fix. Firefox has also allowed for it’s users to be rewarded monetarily for security bugs
that they find. As this is a recent initiative by the Mozilla foundation, there are no
meaningful statistics available yet on whether this has increased the number of bugs
found. Microsoft Corporation has teams of penetration testers who attack products like IE
so the reliance on external bug reporters is less than Firefox.

Security Features
Both Firefox and IE contain a plethora of security features with both claiming to have
features unique to each. There are still a few similar security features common to both
such as Pop-up blocking and the ability to purge personal data such as browsing history,
cookies, webform entries and passwords.

The key difference between IE and Firefox is that Firefox is not completely integrated
with Windows so that viruses attacking Windows will have minimal impact on Firefox
especially since Firefox is not closely integrated with the Windows file system and
network stack. Firefox also has no support for VBScript and ActiveX, both which are
sources for many security holes. Firefox does not use Microsoft’s Java Virtual Machine,
which has a history of more flaws than other Java VMs.

On the other hand, IE contains additional security features which do not exist in Firefox.
For example, IE has the concept of zones which allow the user to put trusted sites in
‘Trusted’ zones. This partition allows for trusted sites to be handled differently from
untrusted sites. For example a trusted site can be allowed to download ActiveX controls
without prompting. IE also has the ability to selectively block ActiveX usage which
allows the user to be prompted if an ActiveX control is to be downloaded. By being
closely integrated with the Windows operating system, users of IE automatically get
many of the Windows XP security features such as Windows automatic updates and the
Security Center containing tools to detect security vulnerabilities.

21

Checking in Code
IE and Firefox have very different processes for checking in code. Mozilla Firefox does
not necessarily have security reviews done on code before it is checked in. There are
assigned ‘module’ owners who are available to review code; however, this is not
mandatory for a checkin to be made. The fact that there are no consistent code reviews
opens the door to more potential security bugs especially when there are no code
reviewers dedicated to detecting security issues.

By contrast, IE has dedicated development and testing teams that have a strict process
whereby code is peer-reviewed and tested before any checkins are made. Also, the
Windows Division has a Secure Windows Initiative which is a team of security experts
within Microsoft that review all components checked into the Windows code base.

Firefox has a security policy that is subject to change and has changed based on the
opinions and votes of its user community. Firefox also has a security module owner who
is responsible for reviewing code only when security fixes are made. This is in contrast to
IE which does regular security reviews of all code. However, code that gets checked into
the Firefox code base potentially has more public exposure as there could be many more
people involved in a code review than the IE team which is usually of a fixed size. The IE
team will have a fixed number of people working on the product at one time and given
the environment at Microsoft it is still possible that security may take on a secondary role
when the IE team is in ‘crunch’ mode and must deliver on a release by a specific date.

The main advantage IE has over Firefox in terms of dealing with security bugs is the fact
that there is a dedicated team that will concentrate on security issues and performing
penetration testing on the product. However, Firefox has a lot more exposure given the
size of the developer community who contribute to the code base, which is sizeable
especially since Firefox is open source.

Statistics
One way of determining how secure a product is by analyzing the number and type of
security flaws found in the product in any given time period. Secunia12 is a renowned
security research company that monitors security flaws in thousands of products. The
following sections will discuss Secunia’s finding on the security flaws found in both IE
and Firefox over the last twelve months as Firefox was used extensively only recently
based on usage data available on its website. Data from the last three years related to IE
will also be discussed to illustrate any trends.

Internet Explorer http://secunia.com/product/11/

12 http://www.secunia.com

22

Fig 1-1 : IE 6 Advisories from 2003-2005

Fig 1-2 : IE 6 Advisories in 2005

Mozilla Firefox http://secunia.com/product/4227/

23

Fig 2-1: Mozilla Firefox Advisories from 2003-2005

Fig 2-2: Mozilla Firefox Advisories in 2005

Fig 1-1 shows that IE has been long plagued with many security advisories during the last
three years. However, the number of security advisories was reduced substantially after
the introduction of IE 6 which was released with Windows XP SP2. Fig 2-1 also shows
that the number of advisories increased substantially when Mozilla Firefox started to gain
popularity which is indicative of its increased market share of the browser market.

Fig 1-2 also indicates that there were only 15 security advisories issued this year so far,
as opposed to Fig 2-1 which shows that there were 21 advisories reported for Firefox
during 2005. However, according to Secunia, out of the current 15 issues reported for IE
this year, 47% of these have been unpatched as opposed to Firefox which has 0% security
issues which are unpatched. Looking at these statistics in more detail uncovers the fact
that 95% of the security issues for Firefox were patched by the vendor, whereas only 40%

24

of the issues for IE were patched by the vendor. This is indicative of the open-source
nature of Firefox where vendors who use Firefox invest their own resources to fix
problems. Microsoft vendors have limited access to the IE source code so the percentage
of vendor patches is smaller.

Secunia also reports on the criticality of reported vulnerabilities based on how a
malicious user could gain root access to the system or cause denial-of-service (DoS)
attacks, for example. The statistics show that 5% of Firefox vulnerabilities are ‘Extremely
Critical’ as opposed to 13% of IE vulnerabilities. However, given that these are
percentages, this account for approximately 2 security issues for Firefox and 2 issues for
IE.

The statistics above cannot conclusively determine how secure one product is as opposed
to each other, especially given the fact that Firefox has had a smaller market share and
does not have the ten year history that IE has. However, they do indicate that as Firefox
has become popular, the number of reported vulnerabilities has increased. Also, it
appears that IE has also started a downward trend towards less vulnerabilities reported
which may be attributed to its recent security push which started during the release of
Windows XP SP2.

Conclusions
Both Firefox and IE have been the target of recent media scrutiny whenever new security
bugs are found in their products. Firefox has started to attract a substantial number of
users and has taken some of the IE’s market share. The fact that Firefox is open-source
and is not integrated with the Windows operating system has led many to believe that it is
less vulnerable to security attacks. However, this case study has shown that in the past
year it has had more vulnerabilities reported than in IE. The way code is checked in,
security bugs are reported and fixes are reviewed may have contributed to this rise in
security issues. Firefox also lacks automatic updates which is not necessarily a side-effect
of open source but may be due to the fact that Firefox cannot piggyback on an operating
system such as Windows. For an open-source system, the infrastructure required to allow
automatic updated may not be feasible or even possible to create. Internet Explorer,
which is not open-source, is a mature codebase with dedicated development and test
teams. However, it is also subject to security flaws and vulnerabilities, some of which are
the result of it being too closely integrated with the Windows operating system.

Given all the above factors, it can be concluded that an open source product such as
Firefox may lend itself to more than or an equal number of security flaws as compared to
a proprietary product like IE. However, given the complexity of the Internet space and
operating system dependencies, open-source products are not inherently insecure
especially given the fact that IE, with all its stringent checkin policies and security
reviews, is still subject to many security flaws even after 10 years of existence. It is
possible that over time Firefox may take even more market share from IE especially if it
focuses on refining its checkin policies and security reviews, and perhaps incorporate
infrastructure such as automatic updates and adding more security features that are
already being used in the Windows operating system.

25

Links:
http://www.mozilla.org/security/announce/mfsa2005-59.html
http://www.mozilla.org/projects/security/known-vulnerabilities.html
http://www.mozilla.org/projects/security/security-bugs-policy.html
http://www.microsoft.com/technet/security/Bulletin/MS05-052.mspx
http://www.linuxpipeline.com/165600315

Overall Conclusions
We found significant advantages and disadvantages of open source software from a
security standpoint. The advantages and disadvantages center around two things: the
open-ness of the code, and the nature of the open source community. By the “many
eyes” argument, the open-ness of the code means many defenders will examine the code
and find and fix security issues. The corollary to this, of course, is that attackers can also
examine this code to find and exploit vulnerabilities more easily. The open source
community is large, diverse, and concerned about writing secure code that becomes
public. This same community, however, is not as accountable or structured as engineers
working for a company.

From our three case studies, we found that open source products have reported more
vulnerabilities than comparable closed-source products. Open source products do not
seem to have any significant advantage. Additionally, we found that the numbers of IE
and SQL Server vulnerabilities have dropped recently, coinciding with Microsoft’s
greater focus on security engineering processes. Firefox’s code handling policies and
lack of a strict security bug handling policy may have contributed to their relatively high
number of vulnerabilities.

We conclude therefore that security in software, whether open source or not, depends on
disciplined processes applied consistently throughout software design, implementation,
testing and review. From our case studies, open source software is not as effective as
closed source software in accomplishing this.

