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1. INTRODUCTION

The growth of the Internet has led to the need for highly scalable and highly available
services. This paper describes the Porcupine scalable electronic mail service. Porcupine
achieves scalability by clustering many small machines (PCs), enabling them to work to-
gether in an efficient manner. In this section, we describe system requirements for Porcu-
pine and relate the rationale for choosing a mail application as our target.

1.1 System Requirements

Porcupine defines scalability in terms of three essential system aspects: manageability,
availability, and performance. Requirements for each follow:

(1) Manageability requirements. Although a system may be physically large, it should
be easy to manage. In particular, the system mustself-configurewith respect to load
and data distribution andself-healwith respect to failure and recovery. A system man-
ager can simply add more machines or disks to improve throughput and replace them
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when they break. Over time, a system’s nodes will perform at differing capacities, but
these differences should be masked (and managed) by the system.

(2) Availability requirements. With so many nodes, it is likely that some will be down
at any given time. Despite component failures, the system should deliver good service
to all of its users at all times. In practice, the failure of one or more nodes may prevent
some users from accessing some of their mail. However, we strive to avoid failure
modes in which whole groups of users find themselves without any mail service for
even a short period.

(3) Performance requirements. Porcupine’s single-node performance should be compet-
itive with other single-node systems; its aggregate performance should scale linearly
with the number of nodes in the system. For Porcupine, we target a system that scales
to hundreds of machines, which is sufficient to service a few billion mail messages per
day with today’s commodity PC hardware and system area networks.

Porcupine meets these requirements uniquely. The key principle that permeates the
design of Porcupine isfunctional homogeneity. That is, any node can execute part or
all of any transaction, e.g., for the delivery or retrieval of mail. Based on this principle,
Porcupine uses three techniques to meet our scalability goals. First, every transaction is
dynamically scheduledto ensure that work is uniformly distributed across all nodes in
the cluster. Second, the systemautomatically reconfigureswhenever nodes are added or
removed even transiently. Third, system and user data are automaticallyreplicatedacross
a number of nodes to ensure availability.

Figure 1 shows the relationships among
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Fig. 1. The primary goal of Porcupine is scalability de-
fined in terms of manageability, availability, and perfor-
mance requirements. In turn, these requirements are met
through combinations of the three key techniques shown
above.

our goals and key features or techniques
used in the system. For example, dy-
namic scheduling and automatic recon-
figuration make the system manageable,
since changes to the size or the quality
of machines, user population, and work-
load are handled automatically. Simi-
larly, automatic reconfiguration and repli-
cation improve availability by making
email messages, user profiles, and other
auxiliary data structures survive failures.

Today, Porcupine runs on a cluster of
thirty PCs connected by a high-speed net-
work, although we show that it is designed
to scale well beyond that. Performance is linear with respect to the number of nodes in the
cluster. The system adapts automatically to changes in workload, node capacity, and node
availability. Data is available despite the presence of failures.

1.2 Rationale for a Mail Application

Although Porcupine is a mail system, its underlying services and architecture are appropri-
ate for other systems in which data is frequently written andgood performance, availability,
and manageability at high volume are demanded. For example,Usenet news, community
bulletin boards, and large-scale calendar services are good candidates for deployment us-
ing Porcupine. Indeed, we have configured Porcupine to act asa web server and a Usenet
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news node. In this paper, however, we focus on the system’s use as a large scale electronic
mail server.

We chose a mail application for several reasons. First is need: large-scale commer-
cial services now handle more than ten million messages per day. Anticipating continued
growth, our goal with Porcupine is to handle billions of messages per day on a PC-based
cluster. Second, email presents a more challenging application than that served by conven-
tional web servers, which have been shown to be quite scalable. In particular, the workload
for electronic mail iswrite intensiveand most of the Web scaling techniques, such as state-
less transformation [Fox et al. 1997] and caching [Chankhunthod et al. 1996; Pai et al.
1998], become useless for write-intensive workloads. Finally, consistency requirements
for mail, compared to those for a distributed file or databasesystem, are weak enough to
encourage the use of replication techniques that are both efficient and highly available.

1.3 Organization of the Paper

The remainder of this paper describes Porcupine’s architecture, implementation, and per-
formance. Section 2 presents an overview of the system’s architecture and compares our
architecture with alternatives. Section 3 describes how the system adapts to changes in
configuration automatically, while Section 4 presents Porcupine’s approach to availability.
In Section 5 we describe the system’s scalable approach to fine-grained load balancing.
Section 6 evaluates the performance of the Porcupine prototype on our 30-node cluster.
Section 7 discusses some of the system’s scalability limitations and areas for future work.
In Section 8, we discuss related work, and we draw conclusions in Section 9.

2. SYSTEM ARCHITECTURE OVERVIEW

Porcupine is a cluster–based, Internet mail service that supports the SMTP protocol [Postel
1982] for sending and receiving messages across the Internet. Users retrieve their messages
using any mail user agent that supports either the POP or IMAPretrieval protocols [Myers
and Rose 1996; Crispin 1996].

A key aspect of Porcupine is itsfunctional homogeneity: any node can perform any
function. This greatly simplifies system configuration: thesystem’s capacity grows and
shrinks with the number and aggregate power of the nodes, notwith how they are logically
configured. Consequently, there is no need for a system administrator to make specific
service or data placement decisions. This attribute is key to the system’s manageability.

Functional homogeneity ensures that a service is always available, but it offers no guar-
antees about the data that the service may be managing.Replicated stateserves this pur-
pose. There are two kinds of replicated state that Porcupinemust manage: hard state and
soft state. Hard stateconsists of information that cannot be lost and therefore must be
maintained in stable storage. For example, an email messageand a user’s password are
hard state. Porcupine replicates hard state on multiple nodes to increase availability and to
survive failures.Soft stateconsists of information that, if lost, can be reconstructedfrom
existing hard state. For example, the list of nodes containing mail for a particular user is
soft state, because it can be reconstructed by a distributeddisk scan. Most soft state is
maintained on only one node at a given instant, and is reconstructed from hard state after
failure. The exception is when directories that name and locate other state are themselves
soft state. Such directories are replicated on every node toimprove performance.

This approach minimizes persistent store updates, messagetraffic, and consistency man-
agement overhead. The disadvantage is that soft state may need to be reconstructed from



4 � Y. Saito, et al

distributed persistent hard state after a failure. Our design seeks to ensure that these re-
construction costs are low and can scale with the size of the system. In Section 6, we
demonstrate the validity of this design by showing that reconstruction has nominal over-
head.

The following subsections describe Porcupine’s data structures and their management.

2.1 Key Data Structures

Porcupine consists of a collection of data structures and a set of internal operations pro-
vided by managers running on every node. The key data structures found in Porcupine
are:

Mailbox fragment. The collection of mail messages stored for a given user at anygiven
node is called amailbox fragment; the fragment is also the unit of mail replication. A Por-
cupine mailbox is therefore a logical entity consisting of asingle user’s mailbox fragments
distributed and replicated across a number of nodes. There is no single mailbox structure
containing all of a user’s mail. A mailbox fragment is hard state.

Mail map. This list describes the nodes containing mailbox fragmentsfor a given user.
The mail map is soft state. For the sake of brevity, we pretendthat each user has only one
mailbox throughout this paper; in fact, Porcupine supportsmultiple mailboxes per user,
and the mail map actually maps a pair

�
user�mailbox� to a set of nodes.

User profile database. This database describes Porcupine’s client population, i.e., it
contains user names, passwords, etc. It is persistent, changes infrequently for a given
user, and is partitioned and replicated across nodes. The user profile database is hard state.

User profile soft state. Porcupine separates the storage and the management of user
profile, which is distributed dynamically to improve performance. Each Porcupine node
uniquely stores a soft-state copy of a subset of the profile database entries. Accesses and
updates to a profile database entry begin at the node holding the soft-state copy of that
entry. This data structure is soft state.

User map. The user map is a table that maps the hash value of each user name to a node
currently responsible for managing that user’s profile softstate and mail map. The user
map is soft state and is replicated on each node.

Cluster membership list. Each node maintains its own view of the set of nodes currently
functioning as part of the Porcupine cluster. Most of the time, all nodes perceive the same
membership, although a node’s arrival or departure may cause short-term inconsistencies
as the system establishes the new membership. During network partition, inconsistencies
may last for a long time. Various system data and services, such as the user map and
load balancer, automatically respond to changes in the cluster membership list. The cluster
membership list is soft state and is replicated on each node.

2.2 Data Structure Managers

The preceding data structures are distributed and maintainedon each nodeby several es-
sential managers shown in Figure 2. Theuser managermanages soft state including user
profile soft state and mail maps. By spreading the responsibility for servicing accesses
to the user profile database across all nodes in the system, larger user populations can be
supported simply by adding more machines.

Two managers, themailbox managerand theuser database manager, maintain persis-
tent storage and enable remote access to mailbox fragments and user profiles.
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Fig. 2. Each node in Porcupine runs the same set of modules shown in this picture. A solid arrow shows that a
module calls another module within the node, and a dotted arrow shows that a module calls another module in a
remote node using the RPC module.

The replication manageron each node ensures the consistency of replicated objects
stored in that node’s local persistent storage.

Themembership manageron each node maintains that node’s view of the overall cluster
state. It tracks which nodes are up or down and the contents ofthe user map. It also
participates in a membership protocol to track that state. The load balanceron each node
maintains the load and disk usage of other nodes and picks thebest set of nodes to store or
read messages. TheRPC managersupports remote inter-module communication.

On top of these managers, each node runs adelivery proxyto handle incoming SMTP
requests andretrieval proxiesto handle POP and IMAP requests.

The Porcupine architecture leads to a rich distribution of information in which mail stor-
age is decoupled from user management. For example, Figure 3shows a sample Porcupine
configuration consisting of two nodes and three users. For simplicity, messages are not
shown as replicated. The user manager on node� maintains Alice’s and Bob’s soft state,
which consists of their user profile database entries and their mail maps. Similarly, the user
manager on node� maintains Chuck’s soft state.
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Fig. 3. This picture shows how a two-node cluster might distribute email messages. The user map (shown as four-
entry wide in the picture, but 256-entry wide in the implementation) is replicated on each node. For example, a
node learns that Bob is managed by node� , because the hash value of the string “Bob” is 3, and the entrynumber
three in the user map is� . To read Bob’s messages, the mail client consults the user manager on� to obtain
Bob’s profile (password is shown as ‘*’) and mail map ((� � � )) and contacts each node in the mail map to read
Bob’s messages.

2.3 A Mail Transaction in Progress

In failure-free operation, mail delivery and retrieval work as follows.

2.3.1 Mail Delivery. Figure 4 shows the flow of control during mail delivery. An
external mail transfer agent (MTA) delivers a message to a user hosted on a Porcupine
cluster by discovering the IP address of any Porcupine cluster node using the Internet’s
Domain Name Service [Brisco 1995] (step 1). Because any function can execute on any
node, there is no need for special front-end request routers[Cisco Systems 1999; Foundry
Networks 1999], although nothing in the system prevents their use.

To initiate mail delivery, the MTA uses SMTP to connect to thedesignated Porcupine
node, which acts as a delivery proxy (step 2). The proxy’s jobis to store the message on
disk. To do this, it applies the hash function on the recipient’s name, looks up the user
map, and learns the name of the recipient’s user manager (step 3). It then retrieves the
mail map from the user manager (steps 4 and 5) and asks the loadbalancing service to
choose the best node from that list. If the list is empty or allchoices are poor (for example,
overloaded or out of disk space), the proxy is free to select any other node (step 6). The
proxy then forwards the message to the chosen node’s mailboxmanager for storage (step
7). The storing node ensures that its participation is reflected in the user’s mail map (step
8). If the message is to be replicated (based on information in the user’s profile), the proxy
selects multiple nodes on which to store the message.

2.3.2 Mail Retrieval. An external mail user agent (MUA) retrieves messages for a
user whose mail is stored on a Porcupine cluster using eitherthe POP or IMAP transfer
protocols. The MUA contacts any node in the cluster to initiate the retrieval. The contacted
node, acting as a proxy, authenticates the request through the user manager for the client
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Fig. 4. This picture shows how an external mail transfer agent (MTA) delivers a message to Bob. The MTA picks
B, through DNS-RR, as the SMTP session partner (step 1 and 2).B obtains Bob’s mailbox fragment from A
(steps 3 through 5) and determines that C is the best node to store the message (step 6). C updates Bob’s mailbox
fragment after storing the message (steps 7 and 8).

and discovers the mail map. It then contacts the mailbox manager at each node storing the
user’s mail to request mail digest information, which it returns to the MUA. Then, for each
message requested, the proxy fetches the message from the appropriate node or nodes. If
the MUA deletes a message, the proxy forwards the deletion request to the appropriate
node or nodes. When the last message for a user has been removed from a node, that node
removes itself from the user’s mail map.

2.4 Advantages and Tradeoffs

By decoupling the delivery and retrieval agents from the storage services and user man-
ager in this way, the system can balance mail delivery tasks dynamically; any node can
store mail for any user, and no single node is permanently responsible for a user’s mail
or soft profile information. A user’s mail can be replicated on an arbitrary set of nodes,
independent of the replication factor for other users. If a user manager goes down, another
will take over for that manager’s users. Another advantage is that the system becomes ex-
tremely fault tolerant by always being able to deliver or retrieve mail for a user, even when
nodes storing the user’s existing mail are unavailable. Thefinal advantage is that the sys-
tem is able to react to configuration without human intervention. Newly added nodes will
automatically receive their share of mail-session and storage-management tasks. Crashed
or retired node will be excluded from the membership list andmail maps automatically,
leaving no residual information on other nodes.

The system architecture reveals a key tension that must be addressed in the implemen-
tation. Specifically, while a user’s mail may be distributedacross a large number of ma-
chines, doing so complicates both delivery and retrieval. On delivery, each time a user’s
mail is stored on a node not already containing mail for that user, the user’s mail map (a
potentially remote data structure) must be updated. On retrieval, aggregate load increases
somewhat with the number of nodes storing the retrieving user’s mail. Consequently, it
is beneficial to limit the spread of a user’s mail, widening itprimarily to deal with load
imbalances and failure. In this way, the system behaves (andperforms) like a statically
partitioned system when there are no failures and load is well balanced, but like a dynami-
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cally partitioned system otherwise. Section 5 discusses this tradeoff in more detail.

2.5 Alternative Approaches

Existing large-scale mail systems assign users and their data statically to specific machines
[Christenson et al. 1997; Deroest 1996]. A front-end trafficmanager directs an exter-
nal client’s request to the appropriate node. We believe that such statically distributed,
write-oriented services scale poorly. In particular, as the user base grows, so does service
demand, which can be met only by adding more machines. Unfortunately, each new ma-
chine must be configured to handle a subset of the users, requiring that users and their
data migrate from older machines. As more machines are added, the likelihood that at
least one of them is inoperable grows, diminishing availability for users with data on the
inoperable machines. In addition, users whose accounts areon slower machines tend to
receive worse service than those on faster machines. Finally, a statically distributed system
is susceptible to overload when traffic is distributed non-uniformly across the user base.
To date, systems relying on static distribution have workedfor two reasons. First, ser-
vice organizations have been willing to substantially overcommit computing capacity to
mitigate short-term load imbalances. Second, organizations have been willing to employ
people to reconfigure the system manually in order to balanceload over the long term.
Because the degree of overcapacity determines where short-term gives way to long-term,
static systems have been costly in terms of hardware, people, or both. For small static
systems, these costs have not been substantial; for example, doubling the size of a small
but manageable system may yield a system that is also small and manageable. However,
once the number of machines becomes large (i.e., on the orderof a few dozen), disparate
(i.e., fast/slow machines, fast/slow disks, large/small disks), and continually increasing,
this gross overcapacity becomes unacceptably expensive interms of hardware and people.

An alternative approach is to adopt a typical Web server architecture: use a distributed
file system to store all hard state and run off-the-shelf software on a large number of state-
less, front-end nodes that serve clients [Fox et al. 1997; Pai et al. 1998]. This approach
has been successful in services that deliver mostly read-only data, such as Web servers
and search engines, because the front-end nodes can take significant load off the file sys-
tem by utilizing file caches. Write-intensive services suchas email, however, exhibit very
low access locality that makes caching nearly useless, and using this approach in email
requires the file system itself to be highly scalable under changing workload and system
configuration. Such file systems do exist (e.g., xFS [Anderson et al. 1995] and Frangipani
[Thekkath et al. 1997]), but they are still in an early research stage due to their sheer com-
plexity. Moreover, even if they were available now, their manageability and availability
would not match Porcupine’s because the file systems offer generic, single-copy semantics
and sacrifice availability along the way. For example, they tolerate only a limited number
of node failures, beyond which the entire system stops, and they stop functioning when the
network is partitioned. Porcupine, on the other hand, tolerates any number of node fail-
ures and continues to serve users after network partition byrelaxing the data consistency
guarantees.

Another approach is to build an email system on top of a cluster-based operating sys-
tem that supports membership agreement, distributed locking, and resource fail-over (e.g.,
[Kronenberg et al. 1986; Vogels et al. 1998; Sun Microsystems 1999; IBM 1998]). While
this solution simplifies the architecture of the software, it tends to cost more than previous
solutions because these systems run only on proprietary hardware. They also have limited
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scalability, only up to tens of nodes. More importantly, theprimary means of fault tol-
erance for such systems is shared disks, which statically tie a node to specific data items
and create the same manageability and availability problems present in the first approach,
albeit to a lesser degree.

Finally, the most obvious solution is
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Fig. 5. A schematic view of how different architectures
trade off cost, performance, availability and manageabil-
ity. Porcupine is an architecture that is available, man-
ageable, and cheap at the same time, whereas other solu-
tions need to sacrifice either cost or manageability.

to use a large monolithic server with re-
liable storage (e.g., RAID [Chen et al.
1994]). While this approach is the sim-
plest in terms of architecture and admin-
istration, it is rarely employed by Inter-
net services for two main reasons. First,
a large server machine is far more expen-
sive than a set of small machines with the
same aggregate performance. Moreover,
we can scale a single server only up to a
certain limit, beyond which we must scrap
the machine and buy a faster model. No-
tice, however, that the problem of making
a single node fast and available is orthogo-
nal to the problem of making a cluster fast
and available. Porcupine solves only the
latter problem, and it is perfectly reason-
able to build a Porcupine cluster using large-scale server nodes for those applications in
which a single node cannot handle the entire workload.

Figure 5 summarizes the cost and manageability trade-offs for these four solutions. Por-
cupine seeks to provide a system structure that performs well as it scales, adjusts auto-
matically to changes in configuration and load, and is easy tomanage. Our vision is that
a single system administrator can be responsible for the hardware that supports the mail
requirements of one hundred million users processing a billion messages per day. When
the system begins to run out of capacity, that administratorcan improve performance for
all users simply by adding machines or even disks to the system. Lastly, the administrator
can, without inconveniencing users, attend to the failure of machines, replacing them with
the same urgency with which one replaces light bulbs.

3. SELF MANAGEMENT

Porcupine must deal automatically with diverse changes, including node failure, node re-
covery, node addition, and network failure. In addition, change can come in bursts, creating
long periods of instability, imbalance and unavailability. It is a goal of Porcupine to man-
age change automatically in order to provide good service even during periods of system
flux. The following sections describe the Porcupine services that detect and respond to
configuration changes.

3.1 Membership Services

Porcupine’s cluster membership service provides the basicmechanism for tolerating
changes. It maintains the current membership set, detects node failures and recoveries,
notifies other services of changes in the system’s membership, and distributes new system
state. We assume a symmetric and transitive network in steady state, so that nodes even-
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tually converge on a consistent membership set provided that no new failure occurs for a
sufficiently long period (i.e., a few seconds).

The cluster membership service uses a variant of the Three Round Membership Protocol
(TRM) [Christian and Schmuck 1995] to detect membership changes. In TRM, the first
round begins when any node detects a change in the configuration and becomes the coordi-
nator. The coordinator broadcasts a “new group” message together with its Lamport clock
[Lamport 1978], which acts as a proposed epoch ID to identifya particular membership
incarnation uniquely. If two or more nodes attempt to becomea coordinator at the same
time, the one proposing the largest epoch ID wins.

In the second round, all nodes that receive the “new group” message reply to the co-
ordinator with the proposed epoch ID. After a timeout period, the coordinator defines the
new membership to be those nodes from which it received a reply. In the third round, the
coordinator broadcasts the new membership and epoch ID to all nodes.

Once membership has been established, the coordinator periodically broadcasts probe
packets over the network. Probing facilitates the merging of partitions; when a coordinator
receives a probe packet from a node not in its current membership list, it initiates the
TRM protocol. A newly booted node acts as the coordinator fora group in which it is the
only member. Its probe packets are sufficient to notify others in the network that it has
recovered.

There are several ways in which one node may discover the failure of another. The first
is through a timeout that occurs normally during part of a remote operation. In addition,
nodes within a membership set periodically “ping” their next highest neighbor in IP address
order, with the largest IP address pinging the smallest. If the ping is not responded to after
several attempts, the pinging node becomes the coordinatorand initiates the TRM protocol.

3.2 User Map

The purpose of the user map is to distribute management responsibility evenly across live
nodes in the cluster. Whenever membership services detect aconfiguration change, the
system must reassign that management responsibility. Therefore, like the membership list,
the user map is replicated across all nodes and is recomputedduring each membership
change as a side effect of the TRM protocol.

After the second round, the coordinator computes a new user map by removing the failed
nodes from the current map and uniformly redistributing available nodes across the user
map’s hash buckets (the user map has many buckets, so a node typically is assigned to
more than one bucket). The coordinator minimizes changes tothe user map to simplify
reconstruction of other soft state, described in the next section.

Each entry in the user map is associated with an epoch ID that shows when the bucket
management responsibility is first assigned to a node. In thefirst phase of the TRM, each
node piggybacks on the reply packet the index and the associated epoch IDs of all the user
map entries the node manages. For each bucket with a changed assignment, the coordinator
assigns the current epoch ID to the entry. On the other hand, for a bucket whose assignment
remains unchanged, the coordinator reuses the epoch ID returned by the participant node.
The epoch IDs in the user map are used by nodes to determine which entries in the user
map have changed.

Figure 6 shows an example of a user map reconfiguration. In this example, node�
crashes. A new membership is computed on node� , but the packet containing the new
membership fails to reach node� . Next,� recovers, and� receives a new membership
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Fig. 6. Example of membership reconfiguration. Arrows show messages exchanged among the nodes. Upper
boxes in each user map show the assignments of buckets to nodes, and lower boxes show the epoch IDs of buckets.
In this example, the node C crashes and then recovers. The node B fails to receive the membership renewal after
C’s crash. Shaded area in user maps show the entries that nodes recognize as changed.

and a new user map that are identical to the old one (on� ) except that the epoch ID for
the bucket managed by� is renewed. Without epoch IDs in the user maps,� would be
unable to detect that assignment for the last bucket of the user map has changed.

3.3 Soft State Reconstruction

Once the user map has been reconstructed, it is necessary to reconstruct the soft state
at user managers with new user responsibilities. Specifically, this soft state is the user
profile soft state and the mail map for each user. Essentially, every node pushes soft state
corresponding to any of its hard state to new user managers responsible for that soft state.

Reconstruction is a two-step process, completely distributed, but unsynchronized. The
first step occurs immediately after the third round of membership reconfiguration. Here,
each node compares the previous and current user maps to identify any buckets having new
assignments. A node considers a bucket assignment new if thebucket’s previous epoch ID
does not match the current epoch ID. Recall that the user map associates nodes with hash
buckets, so the relevant soft state belonging on a node is that corresponding to those users
who hash into the buckets assigned to the node.

Each node proceeds independently to the second step. Here, every node identifying a
new bucket assignment sends the new manager of the bucket anysoft state corresponding
to the hard state for that bucket maintained on the sending node. First, the node locates
any mailbox fragments belonging to users in the newly managed bucket and requests that
the new manager include this node in those users’ mail maps. Second, the node scans its
portion of the stored user profile database and sends to the new manager all pertinent user
profiles. As the user database is replicated, only the replica with the largest IP address
among those functioning does the transfer. The hard state stored on every node is “buck-
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eted” into directories so that it can be quickly reviewed andcollected on each change to
the corresponding bucket in the user map.

The cost of rebuilding soft state is intended to be constant per node in the long term,
regardless of cluster size for the following reason. First,the cost of reconfiguration per
node after a failure is roughly proportional to the total number of mailboxes to be dis-
covered on the node, because the disk scan is by far the most expensive operation in the
entire reconfiguration process. Second, the number of mailboxes to be discovered is de-
termined by the number of reassignments to the user map, assuming that mailboxes are
evenly distributed in each hash bucket. Third, the number ofuser map reassignments per
single node crash or recovery is inversely proportional to cluster size, because each node
manages��cluster-sizeof the user map. Consequently, the cost of reconfiguration per
node per failure isinversely proportionalto the cluster size. Finally, because the frequency
of reconfiguration increases linearly with cluster size (assuming independent failures), the
two factors cancel each other out, and the reconfiguration cost per node over time remains
about the same regardless of the cluster size.

3.4 Effects of Configuration Changes on Mail Sessions

When a node fails, all SMTP, POP, and IMAP sessions hosted on the node abort—an
unavoidable result given the difficulty of TCP session fail-over. Among them, the abortion
of the SMTP sessions is transparent to the senders and the recipients except for delay and
possible duplicate message delivery, because the remote MTAs retry delivery later. For
the aborted POP and IMAP sessions, the users must reconnect to the cluster. An SMTP
session that is hosted on another node and is about to store messages on the failed node re-
selects another node for storage until it succeeds. Thus, the node failure is masked from the
remote server (and the sender) and the recipient of mail. A POP or IMAP session hosted
on another node may report an error when it tries to read a message on the failed node, but
the session itself continues running and is able to retrievemessages stored on other nodes.

The combination of the mail-map update mechanism (Section 2.3) and the automatic re-
configuration mechanism makes each user’s mail-map consistent with respect to mailbox
fragments locations without introducing the complexity ofsolutions based on atomic trans-
actions [Gray and Reuter 1993]. We argue that sessions that are affected by node failures
keep mail maps consistent by considering four different failure scenarios.

(1) A node fails just after a message is stored in a new mailboxfragment on its disk, but
before the corresponding mail map is updated. This case causes no problem because
this copy of the message becomes non-retrievable after the node failure. The replica-
tion service (Section 4) ensures that another copy of the message is still available.

(2) A node fails just after the last message in a mailbox fragment on its disk is deleted, but
before the corresponding mail map is updated. Each node periodically scans the mail
maps it manages and removes all “dangling” links to nodes notin the membership.
The links will be restored when the failed nodes rejoin the cluster.

(3) A node stores a message in a new mailbox fragment on its disk, but the corresponding
user manager node fails before the mail map is updated. The message will be discov-
ered by the disk scan algorithm that runs after membership reconfiguration and will be
added to the mail map on a new user manager node.

(4) A node deletes the last message in a mailbox fragment on its disk, but the correspond-
ing user manager node fails before the mail map is updated. The same argument as
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above is applied: a new user manager will receive the result of a disk scan that excludes
the deleted mailbox.

3.5 Node Addition

Porcupine’s automatic reconfiguration procedure makes it easy to add a new node to the
system. A system administrator simply installs the Porcupine software on the node. When
the software boots, it is noticed by the membership protocoland added to the cluster. Other
nodes see the configuration change and upload soft state ontothe new node. To make
the host accessible outside of Porcupine, the administrator may need to update border
naming and routing services. Occasionally, a background service rebalances replicated
email messages and user database entries across the nodes inthe cluster1.

3.6 Summary

Porcupine’s dynamic reconfiguration protocols ensure thatthe mail service is always avail-
able for any given user and allow the reconstruction and distribution of soft state with
constant overhead. Client activities are affected minimally by a failure; after the ensu-
ing reconfiguration process, the soft state is restored correctly regardless of ongoing client
activities. The next section discusses the maintenance of hard state.

4. REPLICATION AND AVAILABILITY

This section describes object replication support in Porcupine. As in previous systems
(e.g., [Fox et al. 1997]), Porcupine defines semantics tunedto its application requirements.
This permits a careful balance between behavior and performance.

Porcupine replicates the user database and mailbox fragments to ensure their availabil-
ity. Our replication service provides the same guarantees and behavior as the Internet’s
electronic-mail protocols. For example, Internet email may arrive out of order, on occa-
sion more than once, and may sometimes reappear after being deleted. These anomalies
are artifacts of the non-transactional nature of the Internet’s mail protocols. Porcupine
never loses electronic mail unless all nodes on which the mail has been replicated are irre-
trievably lost.

4.1 Replication Properties

The general unit of replication in Porcupine is theobject, which is simply a named byte
array that corresponds to a single mail message or the profileof a single user. A detailed
view of Porcupine’s replication strategy includes these five high-level properties:

Update anywhere. An update can be initiated at any replica. This improves availability,
since updates need not await the revival of a primary. This strategy also eliminates the
requirement that failure detection be precise, since thereneed not be agreement on which
is the primary node.

Eventual consistency. During periods of failure, replicas may become inconsistent for
short periods of time, but conflicts are eventually resolved. We recognize that single-copy
consistency [Gray and Reuter 1993] is too strong a requirement for many Internet-based
services, and that replica inconsistencies are tolerable as long as they are resolved eventu-
ally. This strategy improves availability, since accessesmay occur during reconciliation or
even during periods of network partitioning.
�

In the current implementation, the rebalancer must be run manually.
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Total update. An update to an object totally overwrites that object. Sinceemail mes-
sages are rarely modified, this is a reasonable restriction that greatly simplifies update
propagation and replica reconciliation, while also keeping overheads low.

Lock free. There are no distributed locks. This improves performance and availability
and simplifies recovery.

Ordering by loosely synchronized clocks. The nodes in the cluster have loosely syn-
chronized clocks [Mills 1992; 1994] that are used to order operations on replicated objects.

The update-anywhere attribute, combined with the fact thatany Porcupine node may act
as a delivery agent, means that incoming messages are never blocked (assuming at least
one node remains functional). If the delivery agent crashesduring delivery, the initiat-
ing host (which exists outside of Porcupine) can reconnect to another Porcupine node. If
the candidate mailbox manager fails during delivery, the delivery agent will select another
candidate until it succeeds. Both of these behaviors have the same potential anomalous
outcome: if the failure occurs after the message has been written to stable storage but
before any acknowledgement has been delivered, the end usermay receive the same mes-
sage more than once. We believe that this is a reasonable price to pay for service that is
continually available.

The eventual-consistency attribute means that earlier updates to an object may “disap-
pear” after all replica inconsistencies are reconciled. This behavior can be confusing, but
we believe that this is more tolerable than alternatives that block access to data when replica
contents are inconsistent. In practice, eventual consistency for email means that a message
once deleted may temporarily reappear. This is visible onlyif users attempt to retrieve their
mail during the temporary inconsistency, which is expectedto last at most a few seconds.

The lock-free attribute means that multiple mail-reading agents, acting on behalf of the
same user at the same time, may see inconsistent data temporarily. However, POP and
IMAP protocols do not require a consistent outcome with multiple clients concurrently
accessing the same user’s mail.

The user profile database is replicated with the same mechanisms used for mail mes-
sages. Because of this, it is possible for a client to perceive an inconsistency in its (repli-
cated) user database entry during node recovery. Operations are globally ordered by the
loosely synchronized clocks; therefore, a sequence of updates to the user profile database
will eventually converge to a consistent state. We assume that the maximum clock skew
among nodes is less than the inter-arrival time of externally initiated, order-dependent op-
erations, such as Create-User and Change-Password. In practice, clock skew is usually
on the order of tens of microseconds[Mills 1994], whereas order-dependent operations are
separated by networking latencies of at least a few milliseconds. Wall clocks, not Lamport
clocks [Lamport 1978], are used to synchronize updates, because wall clocks can order
events that are not logically related (e.g., an external agent contacting two nodes in the
cluster serially).

We now describe the replication manager, email operations using replicas, and the details
of updating replicated objects.

4.2 Replication Manager

A replication manager running on each host exchanges messages among nodes to ensure
replication consistency. The manager is oblivious to the format of a replicated object and
does not define a specific policy regarding when and where replicas are created. Thus, the
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replication manager exports two interfaces: one for the creation and deletion of objects,
which is used by the higher level delivery and retrieval agents, and another for interfacing
to the specific managers, which are responsible for maintaining on-disk data structures.
The replication manager does not coordinate object reads; mail retrieval proxies are free to
pick any replica and read them directly.

4.3 Sending and Retrieving Replicated Mail

When a user’s mail is replicated, that user’s mail map reflects the set of nodes on which
each fragment is replicated. For example, if Alice has two fragments, one replicated on
nodes� and� and another replicated on nodes� and� , the mail map for Alice records��
� �� � � �� �� ��. To retrieve mail, the retrieval agent contacts the least-loaded node for

each replicated mailbox fragment to obtain the complete mailbox content for Alice.
To create a new replicated object (as would occur with the delivery of a mail message),

an agent generates an object ID and the set of nodes on which the object is to be replicated.
An object ID is simply an opaque, unique string. For example, mail messages have an
object ID of the form

�
type, username, messageID�, wheretypeis the type of object (mail

message),usernameis the recipient,and messageIDis an unique mail identifier found in
the mail header.

4.4 Updating Objects

Given an object ID and an intended replica set, a delivery or retrieval agent can initiate
an update request to the object by sending an update message to any replica manager in
the set. A delivery agent’s update corresponds to the storing of a message. The retrieval
agent’s update corresponds to the deletion and modificationof a message.

The receiving replica acts as the update coordinator and propagates updates to its peers.
The replication manager on every node maintains a persistent update log, used to record up-
dates to objects that have not yet been accepted by all replica peers maintaining that object.
Each entry in the update log is the tuple

�
timestamp, objectID, target-nodes, remaining-

nodes�:
—Timestampis the tuple

�
wallclock time, nodeID�, wherewallclock time is the time

at which the update was accepted at the coordinator named bynodeID. Timestamp
uniquely identifies and totally orders the update.

—Target-nodesis the set of nodes that should receive the update.
—Remaining-nodesis the set of peer nodes that have not yet acknowledged the update.

Initially, remaining-nodesis equal totarget-nodesand is pruned by the coordinator as
acknowledgments arrive.

The coordinating replication manager works through the log, attempting to push updates
to all the nodes found in theremaining-nodesfield of an entry. Once contact has been
made with a remaining node, the manager sends the replica’s contents and the log entry to
the peer. Since updates to objects are total, multiple pending updates to the same object
on a peer are synchronized by discarding all but the one with the newest timestamp. If no
pending update exists, or if the update request is the newestfor an object, the peer adds the
update to the log, modifies the replica, and sends an acknowledgement to the coordinator.
Once the coordinator receives acknowledgements from all replica peers, it notifies all the
participants of the update (including itself) of the completion of the update. Finally, the
participantsretire the completed update entry in their log (freeing that log space) after
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waiting for a sufficiently long period to filter out updates that arrive out of order. The wait
period we use, 3 minutes in our prototype, is set to the sum of the maximum clock skew
among nodes and maximum network-packetlifetime; i.e., the time long enough for most
packets to reach the destination. This retirement mechanism is a variant of the at-most-once
messaging algorithm using synchronized clocks [Liskov et al. 1991].

If the coordinator fails before responding to the initiating agent, the agent will select
another coordinator. For updates to a new object, as is the case with a new mail message,
the initiating agent will create another new object and select a new, possibly overlapping,
set of replicas. This helps to ensure that the degree of replication remains high even in the
presence of a failed coordinator. This design may deliver a message to the user more than
once. This duplicate delivery problem, however, is alreadyfairly common in the Internet
today; it may happen after a network transmission failure orsimply by a user pressing the
“Send” button twice. Message duplication due to node failures is far rarer than duplication
due to other causes.

The coordinators and participants force their update log todisk before applying the
update to ensure that the replicas remain consistent. As an optimization, a replica receiving
an update message for which it is the only remaining node neednot force its log before
applying the update. This is because the other replicas are already up to date, so the sole
remaining node will never have to make them current for this update. In practice, this
means that only the coordinator forces its log for two-way replication.

Should the coordinator fail after responding to the initiating target but before the update
is applied to all replicas, any remaining replica can becomethe coordinator and bring others
up to date. Multiple replicas can become the coordinator in such case, since replicas can
discard duplicate updates by comparing timestamps.

In the absence of node failures, the update log remains relatively small for two reasons.
First, the log never contains more than one update to the sameobject. Second, updates are
propagated as quickly as they are logged and are deleted as soon as all replicas acknowl-
edge. Timely propagation also narrows the window during which an inconsistency could
be perceived.

When a node fails for a long time, the update logs of other nodes could grow indefinitely.
To prevent this, updates remain in the update log for at most aweek. If a node is restored
after that time, it must reenter the Porcupine cluster as a “new” node, rather than as a
recovering one. A node renews itself by deleting all of its hard state before rejoining the
system.

4.5 Summary

Porcupine’s replication scheme provides high availability through the use of consistency
semantics that are weaker than strict single-copy consistency, but strong enough to service
Internet clients using non-transactional protocols. Inconsistencies, when they occur, are
short lived (the update propagation latency between functioning hosts) and, by Internet
standards, unexceptional.

5. DYNAMIC LOAD BALANCING

Porcupine uses dynamic load balancing to distribute the workload across nodes in the clus-
ter in order to maximize throughput. As mentioned, Porcupine clients select an initial
contact node either to deliver or to retrieve mail. That contact node then uses the system’s
load-balancing services to select the “best” set of nodes for servicing the connection.
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In developing the system’s load balancer, we had several goals. First, it must be fine-
grained, making good decisions at the granularity of message delivery. Second, it must
support a heterogeneous cluster, since not all the nodes areof equivalent power. Third, it
must be automatic and minimize the use of “magic constants,”thresholds, or tuning param-
eters that needs to be manually adjusted as the system evolves. Fourth, with throughput as
the primary goal, it needs to resolve the tension between load and affinity. Specifically, in
order to best balance load, messages should be stored on idlenodes. However, it is less
expensive to store (and retrieve) a message on nodes that already contain mail for the mes-
sage’s recipient. Suchaffinity-based schedulingreduces the amount of memory needed to
store mail maps, increases the sequentiality of disk accesses, and decreases the number of
inter-node RPCs required to read, write, or delete a message.

In Porcupine, delivery and retrieval proxies make load-balancing decisions. There is
no centralized load-balancing node service; instead, eachnode keeps track of the load on
other nodes and makes decisions independently.

Load information is collected in the same ways we collect liveness information (Section
3.1): (1) as a side-effect of RPC operations (i.e., each RPC request or reply packet contains
the load information of the sender), and (2) through a virtual ring in which load information
is aggregated in a message passed along the ring. The first approach gives a timely but
possibly narrow view of the system’s load. The second approach ensures that every node
eventually discovers the load from every other node.

The load on a node has two components: a boolean, which indicates whether or not the
disk is full, and an integer, which is the number of pending remote procedure calls that
might require a disk access. A node with a full disk is always considered “very loaded”
and is used only for operations that read or delete existing messages. After some experi-
mentation, we found that it was best to exclude diskless operations from the load to keep it
from becoming stale too quickly. Because disk operations are so slow, a node with many
pending disk operations is likely to stay loaded for some time.

A delivery proxy that uses load information alone to select the best node(s) on which to
store a message will tend to distribute a user’s mailbox across many nodes. As a result, this
broad distribution can actually reduce overall system throughput for the reasons mentioned
earlier. Consequently, we define for each user aspread; the spread is a soft upper bound on
the number of different nodes on which a given user’s mail should be stored. The bound
is soft to permit the delivery agent to violate the spread if one of the nodes storing a user’s
mail is not responding. When a mailbox consists of fewer fragments than its spread limit,
the delivery proxy adds a random set of nodes on message arrival to make up a candidate
set. Adding a random set of nodes helps the system avoid a “herd behavior” in which a
herd of nodes all choose the same node that is idle at one moment and instantly overloading
the node the next moment [Mitzenmacher 1998].

As shown in Section 6, the use of a spread-limiting load balancer has a substantial effect
on system throughput even with a relatively narrow spread. The benefit is that a given
user’s mail will be found on relatively few nodes, but those nodes can change entirely each
time the user retrieves and deletes mail from the server.

6. SYSTEM EVALUATION

This section presents measurements from the Porcupine prototype running synthetic work-
loads on a 30-node cluster. We characterize the system’s scalability as a function of its size
in terms of the three key requirements:
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Performance. We show that the system performs well on a single node and scales lin-
early with additional nodes. We also show that the system outperforms a statically parti-
tioned configuration consisting of a cluster of standard SMTP and POP servers with fixed
user mapping.

Availability. We demonstrate that replication and reconfiguration have low cost.

Manageability. We show that the system responds automatically and rapidly to node
failure and recovery, while continuing to provide good performance. We also show that
incremental hardware improvements can automatically result in system-wide performance
improvements. Lastly, we show that automatic dynamic load balancing efficiently handles
highly skewed workloads.

6.1 Platform and Workload

The Porcupine system runs on Linux-based PCs with all systemservices on a node exe-
cuting as part of a multi-threaded process. For the measurements in this paper, we ran on
a cluster of thirty nodes connected by 1Gb/second Ethernet hubs. As would be expected
in any large cluster, our system contains several differenthardware configurations: six
200MHz machines with 64MB of memory and 4GB SCSI disks, eight300 MHz machines
with 128MB of memory and 4GB IDE disks, and sixteen 350 MHz machines with 128MB
of memory and 8GB IDE disks.

Some key attributes of the system’s implementation follow:

—The system runs on Linux 2.2.7 and uses the ext2 file system for storage [Ts’o 1999].

—The system consists of fourteen major components written in C++. The total system size
is about forty-one thousand lines of code, yielding a 1MB executable.

—A mailbox fragment is stored in two files, regardless of the number of messages con-
tained within. One file contains the message bodies, and the other contains message
index information.

—The user map contains 256 buckets.

—The mailbox fragment files are grouped and stored in directories corresponding to
the hash of user names (e.g., if Ann’s hash value is 9, then herfragment files are
spool/9/ann andspool/9/ann.idx). This design allows discovery of mailbox
fragments belonging to a particular hash bucket – a criticaloperation during membership
reconfiguration – to be performed by a single directory scan.

—Most of a node’s memory is consumed by the soft user profile state. In the current
implementation, each user entry takes 76 bytes plus 44 bytesper mailbox fragment. For
example, in a system with ten million users running on 30 nodes, about 50 MB/node
would be devoted to user soft state.

We developed a synthetic workload to evaluate Porcupine because users at our site do not
receive enough email to drive the system into an overload condition. We did, however,
design the workload generator to model the traffic patterns we have observed on our de-
partmental mail servers. Specifically, we model a mean message size of 4.7KB, with a
fairly fat tail up to about 1MB. Mail delivery (SMTP) accounts for about 90% of the trans-
actions, with mail retrieval (POP) accounting for about 10%. Each SMTP session sends a
message to a user chosen from a population according to a Zipfdistribution with� � � ��,
unless otherwise noted in the text.
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Fig. 7. Throughput scales with the number of hosts. This graph shows how Porcupine and the sendmail-based
system scale with respect to cluster size.

For purposes of comparison, we also measure a tightly configured conventional mail
system in which users and services are statically partitioned across the nodes in the cluster.
In this configuration, we run SMTP/POP redirector nodes at the front end. At the back end,
we run modified versions of the widely used Sendmail-8.9.3 and ids-popd-0.23 servers.
The front-end nodes accept SMTP and POP requests and route them to back-end nodes by
way of a hash on the user name. To keep the front ends from becoming a bottleneck, we
determined empirically that we need to run one front end for every fifteen back ends. The
tables and graphs that follow include the front ends in our count of the system size. Based
on a priori knowledge of the workload, we defined the hash function to distribute users
perfectly across the back-end nodes. To further optimize the configuration, we disabled all
security checks, including user authentication, client domain name lookup, and system log
auditing.

For both Porcupine and the conventional system, we defined a user population with size
equal to 160,000 times the number of nodes in the cluster (or about 5 million users for
the 30-node configuration). Nevertheless, since the database is distributed in Porcupine,
and no authentication is performed for the conventional platform, the size of the user base
is nearly irrelevant to the measurements. Each POP session selects a user according to
the same Zipf distribution, collects and then deletes all messages awaiting the user. In
the Porcupine configuration, the generator initiates a connection with a Porcupine node
selected at random from all the nodes. In the conventional configuration, the generator
selects a node at random from the front-end nodes. By default, the load generator attempts
to saturate the cluster by probing for the maximum throughput, increasing the number of
outstanding requests until at least 10% of them fail to complete within two seconds. At
that point, the generator reduces the request rate and resumes probing.

We demonstrate performance by showing the maximum number ofmessages the system
receives per second. Only message deliveries are counted, although message retrievals
occur as part of the workload. Thus, this figure really reflects the number of messages the
cluster can receive, write, read, and delete per second. Theerror margin is smaller than
5%, with 95% confidence interval for all values presented in the following sections.
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Resource No replication With replication
CPU utilization 15% 12%
Disk utilization 75% 75%
Network send 2.5Mb/second 1.7Mb/second
Network receive 2.6Mb/second 1.7Mb/second

Table I. Resource consumption on a single node with one disk.

6.2 Scalability and Performance

Figure 7 shows the performance of the system as a function of cluster size. The graph
shows four different configurations: without message replication, with message replica-
tion, with message replication using NVRAM for the logs, andfinally for the conventional
configuration of sendmail+popd. Although neither replicates, the Porcupine no-replication
case outperforms and outscales conventional sendmail. Thedifference is primarily due to
the conventional system’s use of temporary files, excessiveprocess forking, and the use of
lock-files. With some effort, we believe the conventional system could be made to scale
as well as Porcupine without replication. However, the systems would not be function-
ally identical, because Porcupine allows users to read incoming messages even when some
nodes storing the user’s existing messages are down.

For replication, the performance of Porcupine scales linearly when each incoming mes-
sage is replicated on two nodes. There is a substantial slowdown relative to the non-
replicated case, because replication increases the numberof synchronous disk writes three-
fold: once for each replica and once to update the coordinator’s log. Even worse, in this
hardware configuration the log and the mailbox fragments share the same disk on each
node.

One way to improve the performance of replication is to use non-volatile RAM for the
log. Since updates usually complete propagation and retirefrom the log quickly, most of
the writes to NVRAM never need go to disk and can execute at memory speeds. Although
our machines do not have NVRAM installed, we can simulate NVRAM simply by keeping
the log in standard memory. As shown in Figure 7, NVRAM improves throughput; how-
ever, throughput is still about half that of the non-replicated case, because the system must
do twice as many disk operations per message.

Table I shows the CPU, disk, and network load incurred by a single 350Mhz Porcupine
node running at peak throughput. For this configuration, thetable indicates that the disk is
the primary impediment to single-node performance.

To demonstrate this, we made measurements on clusters with one and two nodes with
increased I/O capacity. A single 300MHz node with one IDE disk and two SCSI disks
delivered a throughput of 105 messages/second, as opposed to about 23 messages/second
with only the IDE disk. We then configured a two node cluster, each with one IDE disk and
two SCSI disks. The machines were each able to handle 38 messages/second (48 assuming
NVRAM). These results (normalized to single-node throughput) are summarized in Figure
8.

Lastly, we measured a cluster in which disks were assumed to be infinitely fast. In this
case the system does not store messages on disk but only records their digests in main
memory. Figure 9 shows that the simulated system without thedisk bottleneck achieves
a six-fold improvement over the measured system. At this point, the CPU becomes the
bottleneck. Thus Porcupine with replication performs comparatively better than on the real
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Fig. 9. Throughput of the system configured with infinitely fast disks.

system. The high performance observed in 2- and 4- node clusters is due to the shortcutting
of inter-node RPCs into function calls that happens often insmall clusters.

With balanced nodes, the network clearly becomes the bottleneck. In the non-replicated
case, each message travels the network four times ((1) Internet to delivery agent (2) to
mailbox manager (3) to retrieval agent (4) to Internet). At an average message size of
4.7KB, a 1Gb/second network can then handle about 6500 messages/second. With a single
“disk loaded” node able to handle 105 messages/second, roughly 62 nodes will saturate
the network as they process 562 million messages/day. With messages replicated on two
nodes, the same network can handle about 20% fewer messages (as the message must
be copied one additional time to the replica), which is about5200 messages/second, or
about 450 million messages/day. Using the throughput numbers measured with the faster
disks, this level of performance can be achieved with 108 NVRAM nodes, or about 137
nodes without NVRAM. More messages can be handled only by increasing the aggregate
network bandwidth. We address this issue further in Section7.
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Fig. 10. (a) Non-replicated and (b) replicated throughputson a 30-node system with various degrees of workload
skew. Graph (c) shows a close-up view of the non-replicated throughputs under a uniform workload.

6.3 Load Balancing

The previous section demonstrated Porcupine’s performance assuming a uniform workload
distribution and homogeneous node performance. In practice, though, workloads are not
uniformly distributed and the speeds of CPUs and disks on nodes differ. This can create
substantial management challenges for system administrators when they must reconfigure
the system manually to adapt to the load and configuration imbalance.

This section shows how Porcupine automatically handles workload skew and heteroge-
neous cluster configuration.

6.3.1 Adapting to Workload Skew.Figure 10 shows the impact of Porcupine’s dy-
namic spread-limiting, load-balancing strategy on throughput as a function of workload
skew for our 30-node configuration (all with a single slow disk). Both the non-replicated
and replicated cases are shown. Skew along the x-axis reflects the inherent degree of bal-
ance in the incoming workload. When the skew equals zero, recipients are chosen so that
the hash distributes uniformly across all buckets. When theskew is one, the recipients
are chosen so that they all hash into a single user map bucket,corresponding to a highly
non-balanced workload.

The graphs compare random, static, and dynamic load balancing policies. The random
policy, labeled R on the graph, simply selects a host at random to store each message
received; it has the effect of smoothing out any non-uniformity in the distribution. The
static spread policy, shown by the lines labeled S1, S2, and S4, selects a node based on
a hash of the user name spread over 1, 2 or 4 nodes, respectively. The dynamic spread
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policy – the one used in Porcupine – selects from those nodes already storing mailbox
fragments for the recipient. It is shown as D1, D2 and D4 on thegraph. Again, the spread
value (1, 2, 4) controls the maximum number of nodes (in the absence of failure) that
store a single user’s mail. On message receipt, if the size ofthe current mail map for the
recipient is smaller than the maximum spread, Porcupine increases the spread by choosing
an additional node selected randomly from the cluster.

Static spread manages affinity well but can lead to a non-balanced load when activity
is concentrated on just a few nodes. Indeed, a static spread of one (S1) corresponds to
our sendmail+popd configuration in which users are statically partitioned to different ma-
chines. This effect is shown as well on the graph for the conventional sendmail+popd
configuration (SM on Figure 10). In contrast, the dynamic spread policy continually moni-
tors load and adjusts the distribution of mail over the available machines, even when spread
is one. In this case, a new mailbox manager is chosen for a usereach time his/her mailbox
is emptied, allowing the system to repair affinity-driven imbalances as necessary.

The graphs show that random and dynamic policies are insensitive to workload skew,
whereas static policies do poorly unless the workload is evenly distributed. Random per-
forms worse than dynamic because of its inability to balanceload and its tendency to spread
a user’s mail across many machines.

Among the static policies, those with larger spread sizes perform better under a skewed
workload, since they can utilize a larger number of machinesfor mail storage. Under uni-
form workload, however, the smaller spread sizes perform better since they respect affinity.
The key exception is the difference between spread=1 and spread=2. At spread=1, the sys-
tem is unable to balance load. At spread=2, load is balanced and throughput improves.
Widening the spread beyond two improves balance slightly, but not substantially. The rea-
son for this has been demonstrated previously [Eager et al. 1986] and is as follows: in any
system where the likelihood that a host is overloaded is� , then selecting the least loaded
from a spread of� hosts will yield a placement decision on a loaded host with probability
� �. Thus, the chance of making a good decision (avoiding an overloaded host) improves
exponentially with the spread. In a nearly perfectly-balanced system,� is small, so a small
� yields good choices.

The effect of the loss of affinity with larger spread sizes is not pronounced in the Linux
ext2 file system because it creates or deletes files without synchronous directory modifica-
tion [Ts’o 1999]. On other operating systems, load balancing policies with larger spread
sizes will be penalized more by increased frequency of directory operations.

6.3.2 Performance under Uniform Workload.Figure 10 (c) shows the system through-
put under uniform workload. It is interesting to see that Porcupine’s load balancing service
can improve system performance even when the workload is uniform. D4, D2, S4 and
S2 all perform well; the difference among them is statistically insignificant. S1, which
emulates a statically partitioned system, performs about 5to 10% worse than the rest be-
cause of the lack of load balancing. Under uniform workload,the load balancing service
improves the performance mainly by avoiding nodes that are undergoing periodic buffer
flush activities (bdflush) that stall all other disk I/O operations for a few seconds. Rand
D1 both perform about 15 to 20% worse, but for different reasons. R performs worse be-
cause it lacks load balancing, and because it ignores message affinity. D1 performs worse
because it lacks load balancing, and because it tends to overload a few nodes that happen to
host hyper-active users. On the other hand, D2 and D4 host hyper-active users on multiple
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Fig. 11. Performance improvement by the Porcupine load balancing mechanism, without replication (a) and
with replication (b). X axis is the number of nodes with fast disks. The bottom of each bar each bar shows the
performance on the baseline system with a particular load balancing mechanism, and the height of the bar shows
the relative improvement over the baseline system.

nodes, and the load balancer is able to split the workload at fine grain to keep the load on
these nodes low.

6.3.3 Adapting to Heterogeneous Configurations.As mentioned in the previous sec-
tion, the easiest way to improve throughput in our configuration is to increase the system’s
disk I/O capacity. This can be done by adding more machines orby adding more or faster
disks to a few machines. In a statically partitioned system,it is necessary to upgrade the
disks on all machines to ensure a balanced performance improvement. In contrast, because
of Porcupine’s functional homogeneity and automatic load balancing, we can improve the
system’soverall throughput for all users simply by improving the throughputon a few
machines. The system will automatically find and exploit thenew resources.

Figure 11 shows the absolute performance improvement of the30-node configuration
when adding two fast SCSI disks to each of one, two, and three of the 300Mhz nodes,
with and without replication. The improvement for Porcupine shows that the dynamic load
balancing mechanism can fully utilize the added capacity. Here, a spread of four slightly
outperforms a spread of two, because the former policy is more likely to include the faster
nodes in the spread. When a few nodes are many times faster than the rest, as is the case
with our setting, the spread size needs to be increased. On the other hand, as described in
Section 5, larger spread sizes tend to reduce the system efficiency. Thus, spread size is one
parameter that needs to be revisited as the system becomes more heterogeneous.

In contrast, the statically partitioned and random messagedistribution policies demon-
strate little improvement with the additional disks. This is because their assignment im-
proves performance for only a subset of the users.

6.4 Failure Recovery

As described previously, Porcupine automatically reconfigures whenever nodes fail or
restart. Figures 12 and 13 depict an annotated timeline of events that occur during the
failure and recovery of 1, 3, and 6 nodes in a 30-node system without and with replication.
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Fig. 13. Reconfiguration timeline with replication.

Both figures show the same behavior. Nodes fail and throughput drops as two things oc-
cur. First, the system goes through its reconfiguration protocol, increasing its load. Next,
during the reconfiguration, SMTP and POP sessions that involve the failed node abort. Af-
ter ten seconds, the system determines the new membership, and throughput increases as
the remaining nodes take over for the failed ones. The failednodes recover 300 seconds
later and rejoin the cluster, at which time throughput starts to rise. For the non-replicated
case, throughput increases back to the pre-failure level almost immediately. With replica-
tion, throughput rises slowly as the failed nodes reconcilewhile concurrently serving new
requests.

Figure 14 shows the timing of events that take place during a reintegration of one node
(���) to a 29-node cluster. Overall, fourteen seconds are spent to reconfigure the mem-
bership and to recover the soft state. The first ten seconds are spent in the membership
protocol. Ongoing client sessions are not blocked during this period because the compu-
tational and the networking overheads of the membership protocol is minimal. The next
four seconds are spent to recover the soft state. Again, ongoing client sessions on existing
nodes are not affected during this period because the soft state recovery affects nodes other
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Fig. 14. Time breakdown of failure recovery procedure. The timeline is not to scale.

than��� only in a limited way — 6ms to scan the user profile and 20ms to scan mailbox
fragments. On the other hand,��� needs to scan its entire email spool directories to dis-
cover mailboxes and fill other nodes’ mail maps (step 8). In addition,��� needs to receive
its assigned portions of the user profile database and mail map from other nodes (steps 6
and 9). However, notice that the cost of step 8 is orders of magnitude larger than that of
all the other steps combined and depends only on the node’s disk capacity and not on the
number of nodes in the cluster. Thus, this analysis demonstrates that Porcupine’s failure
recovery scales with the cluster size.

7. LIMITATIONS AND FUTURE WORK

Porcupine’s architecture and implementation have been designed to run well in very large
clusters. There are, however, some aspects of its design andthe environment in which it is
deployed that may need to be rethought as the system grows to larger configurations.

First, Porcupine’s communication patterns are flat, with every node as likely to talk to
every other node. A 1Gb/second heavily switched network should be able to serve about
6500 messages/second (or 560 million messages/day) without replication. With replica-
tion, the network can handle 5200 messages/second, or 450 million messages/day. Beyond
that, faster networks or more network-topology-aware loadbalancing strategies will be
required to continue scaling.

Our membership protocol may also require adjustments as thesystem grows. Presently,
the membership protocol has the coordinator receiving acknowledgment packets from all
participants in a very short period of time. Although participants currently insert a random-
ized delay before responding to smooth out packet bursts at the receiver, we still need to
evaluate whether this works well at very large scale. In other work, we are experimenting
with a hierarchical membership protocol that eliminates this problem. In time, we may use
this to replace Porcupine’s current protocol.
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Our strategy for reconstructing user profile soft state may also need to be revisited for
systems in which a single user manager manages millions of users (many users, few ma-
chines). Rather than transferring the user profile soft state in bulk, as we do now, we could
modify the system to fetch profile entries on use and cache them. This would reduce node
recovery time (possibly at the expense of making user lookups slower, however).

8. RELATED WORK

The prototypical distributed mail service is Grapevine [Schroeder et al. 1984], a wide-area
service intended to support about ten thousand users. Grapevine users are statically as-
signed to (user-visible) registries. The system scales through the addition of new registries
having sufficient power to handle their populations. Nevertheless, Grapevine’s adminis-
trators are often challenged to balance users across mail servers. In contrast, Porcupine
implements a flat name space managed by a single cluster and automatically balances
load. Grapevine provided a replicated user database based on optimistic replication, but it
did not replicate mail messages. Porcupine uses optimisticreplication for both mail and
the user database.

As described earlier, contemporary email cluster systems deploy many storage nodes
and partition the user population statically among them, either using a distributed file sys-
tem [Christenson et al. 1997] or protocol redirectors [Deroest 1996]. As we demonstrate
in this paper, this static approach is difficult to manage andscale and has limited fault
tolerance.

Numerous fault-tolerant, clustered-computing products have been described in the past
(e.g., [Kronenberg et al. 1986; Vogels et al. 1998; IBM 1998;Sun Microsystems 1999]).
These clusters are often designed specifically for databasefail-over, have limited scalabil-
ity, and require proprietary hardware or software. Unlike these systems, Porcupine’s goal
is to scale to hundreds or thousands of nodes using standard off-the-shelf hardware and
software.

Fox et al. [Fox et al. 1997] describe an infrastructure for building scalable network
services based on cluster computing. They introduce a data semantics called BASE (Basi-
cally Available, Soft-state, Eventual consistency) that offers advantages for web-search and
document-filtering applications. Our work shares many of their goals: building scalable
Internet services with a semantics weaker than traditionaldatabases. As in Fox’s work,
we observe that ACID semantics [Gray and Reuter 1993] may be too strong for our target
applications and define a data model that is equal to the non-transactional model used by
the system’s clients. However, unlike BASE, our semantics support write-intensive appli-
cations requiring persistent data. Our services are also distributed and replicated uniformly
across all nodes for greater scalability, rather than statically partitioned by function.

A large body of work exists on the general topic of load sharing, but this work has been
targeted mainly at systems with long-running, CPU-bound tasks. For example, Eager et al.
[Eager et al. 1986] show that effective load sharing can be accomplished with simple adap-
tive algorithms that use random probes to determine load. In[Dahlin 1999; Mitzenmacher
1998], the authors propose a class of load distribution algorithms using a random spread of
nodes and a selection from the spread using cached load information. Their results show
that a spread of two is optimal for a wide variety of situations in a homogeneous cluster. In
the context of clusters and the Web, several commercial products automatically distribute
requests to cluster nodes, typically using a form of round-robin or load-based dispatching
[Cisco Systems 1999; Foundry Networks 1999; Resonate, Inc 1998; Platform Computing
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1999]. In [Pai et al. 1998], the authors describe a “locality-aware request distribution”
mechanism for cluster-based Web services. A front-end nodeanalyzes the request con-
tent and attempts to direct requests so as to optimize the useof buffer cache in back-end
nodes, while also balancing load. Porcupine uses load information, in part, to distribute
incoming mail traffic to cluster nodes. However, unlike previous load-balancing studies
that assumed complete independence of incoming tasks, we also balance the write traffic,
taking message affinity into consideration.

Transparent automatic reconfiguration has been studied in the context of disks and net-
works. AutoRAID [Wilkes et al. 1995] is a disk array that moves data among disks au-
tomatically in response to failures and usage pattern changes. Autonet [Rodeheffer and
Schroeder 1991] is a local area networking system that automatically reconfigures in re-
sponse to router failures.

Porcupine uses replicated user maps to partition the user management task among nodes.
This technique, called hash routing, has attracted wide attention recently, e.g., for web
serving [Pai et al. 1998; Valloppillil and Ross 1998; Kargeret al. 1997] and for operating
system function distribution [Anderson et al. 1995; Feeleyet al. 1995; Snaman and Thiel
1987]. Porcupine is the first system that combines the group membership protocol with
hash routing to let each node determine the exact change in the hash map.

The replication mechanism used in Porcupine can be viewed asa variation of optimistic
replication schemes, in which timestamped updates are pushed to peer nodes to support
multi-master replication [Agrawal et al. 1997; Wuu and Bernstein 1984]. Porcupine’s total
object update property allows it to use a single timestamp per object, instead of timestamp
matrices, to order updates. In addition, since updates are idempotent, Porcupine can retire
updates more aggressively. These differences make Porcupine’s approach to replication
simpler and more efficient at scale.

Several file systems have scalability and fault tolerance goals that are similar to Porcu-
pine’s [Anderson et al. 1995; Birrell et al. 1993; Lee and Thekkath 1996; Liskov et al.
1991; Thekkath et al. 1997]. Unlike these systems, Porcupine uses the semantics of the
various data structures it maintains to exploit their special properties in order to increase
performance or decrease complexity.

9. CONCLUSIONS

We have described the architecture, implementation, and performance of the Porcupine
scalable mail server. We have shown that Porcupine meets itsthree primary goals:

Manageability. Porcupine automatically adapts to changes in configurationand work-
load. Porcupine masks heterogeneity, providing for seamless system growth over time
using latest-technology components.

Availability. Porcupine continues to deliver service to its clients, evenin the presence of
failures. System software detects and recovers automatically from failures and integrates
recovering nodes.

Performance. Porcupine’s single-node performance is competitive with other systems,
and its throughput scales linearly with the number of nodes.Our experiments show that
the system can find and exploit added resources for its benefit.

Porcupine achieves these goals by combining three key architectural techniques based
on the principle of functional homogeneity: automatic reconfiguration, dynamic transac-
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tion scheduling, and replication. In the future, we hope to construct, deploy and evaluate
configurations larger and more powerful than the ones described in this paper.
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