Manageability, Availability and Performance in
Porcupine: A Highly Scalable, Cluster-based
Mail Service

YASUSHI SAITO, BRIAN N. BERSHAD, and HENRY M. LEVY
University of Washington

This paper describes the motivation, design, and performance of Porcupine, a scalable mail server.
The goal of Porcupine is to provide a highly available and scalable electronic mail service using
a large cluster of commodity PCs. We designed Porcupine to be easy to manage by emphasizing
dynamic load balancing, automatic configuration, and graceful degradation in the presence of
failures. Key to the system’s manageability, availability, and performance is that sessions, data,
and underlying services are distributed homogeneously and dynamically across nodes in a cluster.

Categories and Subject Descriptors: C.Zémputer-Communication Networks]: Distributed Systems-Bis-
tributed applications C.4 [Performance of Systems]: Reliability, Availability, and Serviceability; C.5.5Gom-
puter System Implementation]: Servers; D.4.5Qper ating Systems]: Reliability—Fault-tolerance H.3.4 [In-
formation Storage and Retrieval]: Systems and SoftwareBistributed systemdH.4.3 [nformation Storage
and Retrieval]: Communications Applications-Electronic mail

General Terms: Algorithms,Performance,Management,Reliability

Additional Key Words and Phrases: Distributed Systems, E-mail, Cluster, Group membership
protocol, Replication, Load balancing

1. INTRODUCTION

The growth of the Internet has led to the need for highly ditaland highly available

services. This paper describes the Porcupine scalableaiermail service. Porcupine
achieves scalability by clustering many small machinessjPénabling them to work to-

gether in an efficient manner. In this section, we descrilséesy requirements for Porcu-
pine and relate the rationale for choosing a mail applicedi® our target.

1.1 System Requirements

Porcupine defines scalability in terms of three essentistiesy aspects: manageability,
availability, and performance. Requirements for eaclofall

(1) Manageability requirements. Although a system may be physically large, it should
be easy to manage. In particular, the system raeltconfigurewith respect to load
and data distribution argklf-healwith respect to failure and recovery. A system man-
ager can simply add more machines or disks to improve thnouiggmd replace them

This work is supported by DARPA Grant F30602-97-2-0226 apdibtional Science Foundation Grant # EIA-
9870740.

An earlier version of this article appeared at the 17th ACMiBgsium on Operating Systems Principles (SOSP),
Kiawah Island Resort, SC, Dec., 1999.

Authors’ address: MBOX 352350, Department of Computeri8send Engineering, University of Washington,
Seattle, WA 98195; emaiyasushi,bershad,leyy@cs.washington.edu.

The Porcupine project web page ishtt p: / / por cupi ne. cs. washi ngt on. edu.

2 . Y. Saito, et al

when they break. Over time, a system’s nodes will perfornifidrihg capacities, but
these differences should be masked (and managed) by theensyst

(2) Availability requirements. With so many nodes, it is likely that some will be down
at any given time. Despite component failures, the systamldideliver good service
to all of its users at all times. In practice, the failure of one oremodes may prevent
some users from accessing some of their mail. However, vixee gty avoid failure
modes in which whole groups of users find themselves withoytraail service for
even a short period.

(3) Performancerequirements. Porcupine’s single-node performance should be compet-
itive with other single-node systems; its aggregate peréorce should scale linearly
with the number of nodes in the system. For Porcupine, wetargystem that scales
to hundreds of machines, which is sufficient to service a fi#fiob mail messages per
day with today’s commodity PC hardware and system area mk$wo

Porcupine meets these requirements uniquely. The keyiplénthat permeates the
design of Porcupine ifunctional homogeneity That is, any node can execute part or
all of any transaction, e.g., for the delivery or retrievahmail. Based on this principle,
Porcupine uses three techniques to meet our scalabilitig g&@rst, every transaction is
dynamically scheduletb ensure that work is uniformly distributed across all rede
the cluster. Second, the systemtomatically reconfigureshenever nodes are added or
removed even transiently. Third, system and user data éoenaticallyreplicatedacross
a number of nodes to ensure availability.

Figure 1 shows the relationships among
our goals and key features or techniques
used in the system. For example, dy-
namic scheduling and automatic recon-
figuration make the system manageable, A , o _
since changes to the size or the qualityReplication Recg;%’;j‘;%on Scheduling | Techniaues
of machines, user population, and work-
load are handled automatically. Simi-
larly, automatic reconfiguration and repli-
cation improve availability by making
email messages, user profiles, and Othgig' 1. The primary goal of Porcupine is scalability de-

auxiliary data structures survive failures fined in terms of manageability, availability, and perfor-
y * mance requirements. In turn, these requirements are met

.TOdaYv Porcupine runs on a cluster Ofhrough combinations of the three key techniques shown
thirty PCs connected by a high-speed netbove.

work, although we show that it is designed

to scale well beyond that. Performance is linear with resgethie number of nodes in the
cluster. The system adapts automatically to changes inlaaiknode capacity, and node
availability. Data is available despite the presence ddifas.

Functional Homogeneity

Principle
“any node can perform any task”

Goals

Availability Manageability Performance

1.2 Rationale for a Mail Application

Although Porcupine is a mail system, its underlying servied architecture are appropri-
ate for other systems in which data is frequently writtengmoald performance, availability,
and manageability at high volume are demanded. For exatdplnet news, community
bulletin boards, and large-scale calendar services areé gandidates for deployment us-
ing Porcupine. Indeed, we have configured Porcupine to axtaeh server and a Usenet

Porcupine: A Highly Scalable, Cluster-based Mail Service . 3

news node. In this paper, however, we focus on the system’asia large scale electronic
mail server.

We chose a mail application for several reasons. First isl:n&ge-scale commer-
cial services now handle more than ten million messagesgerAhticipating continued
growth, our goal with Porcupine is to handle billions of naegss per day on a PC-based
cluster. Second, email presents a more challenging apiplichan that served by conven-
tional web servers, which have been shown to be quite sealabparticular, the workload
for electronic mail iswrite intensiveand most of the Web scaling techniques, such as state-
less transformation [Fox et al. 1997] and caching [Chankioohet al. 1996; Pai et al.
1998], become useless for write-intensive workloads. Iineonsistency requirements
for mail, compared to those for a distributed file or datalsstem, are weak enough to
encourage the use of replication techniques that are bfitfeet and highly available.

1.3 Organization of the Paper

The remainder of this paper describes Porcupine’s archiegdmplementation, and per-
formance. Section 2 presents an overview of the systemfgtacture and compares our
architecture with alternatives. Section 3 describes havsfstem adapts to changes in
configuration automatically, while Section 4 presents Bpirte’s approach to availability.
In Section 5 we describe the system’s scalable approachdegfained load balancing.
Section 6 evaluates the performance of the Porcupine gpeain our 30-node cluster.
Section 7 discusses some of the system’s scalability ltraita and areas for future work.
In Section 8, we discuss related work, and we draw conclgsio8ection 9.

2. SYSTEM ARCHITECTURE OVERVIEW

Porcupine is a cluster—based, Internet mail service thmtats the SMTP protocol [Postel
1982] for sending and receiving messages across the Ihté&fsers retrieve their messages
using any mail user agent that supports either the POP or |M#&fval protocols [Myers
and Rose 1996; Crispin 1996].

A key aspect of Porcupine is ifsinctional homogeneityany node can perform any
function. This greatly simplifies system configuration: gystem’s capacity grows and
shrinks with the number and aggregate power of the nodesyittohow they are logically
configured. Consequently, there is no need for a system @stnaitor to make specific
service or data placement decisions. This attribute is &eélya system’s manageability.

Functional homogeneity ensures that a service is alwaykbla but it offers no guar-
antees about the data that the service may be manaBigjicated statserves this pur-
pose. There are two kinds of replicated state that Porcupimg manage: hard state and
soft state. Hard stateconsists of information that cannot be lost and thereforstrbe
maintained in stable storage. For example, an email messatja user’s password are
hard state. Porcupine replicates hard state on multiplesitwlincrease availability and to
survive failures.Soft stateconsists of information that, if lost, can be reconstrudtech
existing hard state. For example, the list of nodes contginiail for a particular user is
soft state, because it can be reconstructed by a distrilaliskdscan. Most soft state is
maintained on only one node at a given instant, and is reeanst from hard state after
failure. The exception is when directories that name andt®other state are themselves
soft state. Such directories are replicated on every nothegmove performance.

This approach minimizes persistent store updates, metsdifis and consistency man-
agement overhead. The disadvantage is that soft state redyteée reconstructed from

4 . Y. Saito, et al

distributed persistent hard state after a failure. Ourgieseeks to ensure that these re-
construction costs are low and can scale with the size of yeem. In Section 6, we
demonstrate the validity of this design by showing that nstauction has nominal over-
head.

The following subsections describe Porcupine’s data &tras and their management.

2.1 Key Data Structures

Porcupine consists of a collection of data structures aret afdinternal operations pro-
vided by managers running on every node. The key data staegscfound in Porcupine
are:

Mailbox fragment The collection of mail messages stored for a given user agxen
node is called anailbox fragmentthe fragment is also the unit of mail replication. A Por-
cupine mailbox is therefore a logical entity consisting sfragle user’'s mailbox fragments
distributed and replicated across a number of nodes. There single mailbox structure
containing all of a user’s mail. A mailbox fragment is haratst

Mail map. This list describes the nodes containing mailbox fragmfarta given user.
The mail map is soft state. For the sake of brevity, we preteatieach user has only one
mailbox throughout this paper; in fact, Porcupine suppontstiple mailboxes per user,
and the mail map actually maps a paiset mailbox to a set of nodes.

User profile databaseThis database describes Porcupine’s client populatien, it
contains user names, passwords, etc. It is persistentgebanfrequently for a given
user, and is partitioned and replicated across nodes. Eigtdfile database is hard state.

User profile soft state Porcupine separates the storage and the management of user
profile, which is distributed dynamically to improve penfaance. Each Porcupine node
uniquely stores a soft-state copy of a subset of the profilebdae entries. Accesses and
updates to a profile database entry begin at the node holdengdft-state copy of that
entry. This data structure is soft state.

User map The user map is a table that maps the hash value of each usetmamode
currently responsible for managing that user’s profile stdte and mail map. The user
map is soft state and is replicated on each node.

Cluster membership list Each node maintains its own view of the set of nodes currently
functioning as part of the Porcupine cluster. Most of theetimll nodes perceive the same
membership, although a node’s arrival or departure mayecsligrt-term inconsistencies
as the system establishes the new membership. During nepadtition, inconsistencies
may last for a long time. Various system data and services) as the user map and
load balancer, automatically respond to changes in théscloembership list. The cluster
membership list is soft state and is replicated on each node.

2.2 Data Structure Managers

The preceding data structures are distributed and ma@dain each nodéy several es-
sential managers shown in Figure 2. Tuser managemanages soft state including user
profile soft state and mail maps. By spreading the respditgifiir servicing accesses
to the user profile database across all nodes in the systeger laser populations can be
supported simply by adding more machines.

Two managers, thmailbox manageand theuser database managamnaintain persis-
tent storage and enable remote access to mailbox fragnmahtsser profiles.

Porcupine: A Highly Scalable, Cluster-based Mail Service . 5

Network
sessions

1.4

SMTP POP IMAP Front-end
proxy proxy proxy modules
Pick nodes Find Retrieve 1 : Update : Retrieve
to store&read user email 3+ email + user profile
message manager message @ : message : &mail map
Load User map i :
balancer i :
Upd;,:jet ~~__— Update HH : Middle-tier
candiaate N HH .
set Membership[Yoy RPC i: : modules
manager | node failure |manager: :

; R T | User
: X icati manager
! Maintain ™ Replication 9
+ replica manager 0 O
+ consistency
: g User profile B
: ackend
Update Update Mail map soft state PR
X 4
IR =il
Mailbox I°° User DB
manager manager

Fig. 2. Each node in Porcupine runs the same set of modulemshahis picture. A solid arrow shows that a
module calls another module within the node, and a dottemhashows that a module calls another module in a
remote node using the RPC module.

The replication manageron each node ensures the consistency of replicated objects
stored in that node’s local persistent storage.

Themembership managen each node maintains that node’s view of the overall atuste
state. It tracks which nodes are up or down and the contentiseofiser map. It also
participates in a membership protocol to track that state|dad balanceron each node
maintains the load and disk usage of other nodes and picksegieset of nodes to store or
read messages. TIRPC managesupports remote inter-module communication.

On top of these managers, each node rudslavery proxyto handle incoming SMTP
requests ancktrieval proxieso handle POP and IMAP requests.

The Porcupine architecture leads to a rich distributiomfidfrimation in which mail stor-
age is decoupled from user management. For example, Figivevd a sample Porcupine
configuration consisting of two nodes and three users. Fopliity, messages are not
shown as replicated. The user manager on nbdeaintains Alice’s and Bob’s soft state,
which consists of their user profile database entries andrtel maps. Similarly, the user
manager on nod8 maintains Chuck’s soft state.

6 . Y. Saito, et al

“Alice” “Bob” “Chuck”

e [B N M
Ale[a] | [alele]al user map
Alice:* | {B} Chuck:* | {A} User profile -
Bob:* | {A,B} soft state Mail map
Chuck’s | | Bob’s Alice’s Bob’s Mailbox
mbox mbox mbox mbox fragments
fragment | | fragment(1 fragment| | fragment(2
S User profile
W database
L NodeA J{ NodeB)

Fig. 3. This picture shows how a two-node cluster might itiste email messages. The user map (shown as four-
entry wide in the picture, but 256-entry wide in the implettagion) is replicated on each node. For example, a
node learns that Bob is managed by nejdecause the hash value of the string “Bob” is 3, and the entmyber
three in the user map id. To read Bob's messages, the mail client consults the useagea onA to obtain
Bob’s profile (password is shown &s’f and mail map { A, B}) and contacts each node in the mail map to read
Bob's messages.

2.3 A Mail Transaction in Progress
In failure-free operation, mail delivery and retrieval kars follows.

2.3.1 Mail Delivery. Figure 4 shows the flow of control during mail delivery. An
external mail transfer agent (MTA) delivers a message toea hested on a Porcupine
cluster by discovering the IP address of any Porcupinealuside using the Internet’'s
Domain Name Service [Brisco 1995] (step 1). Because anytifumcan execute on any
node, there is no need for special front-end request ro[@&so Systems 1999; Foundry
Networks 1999], although nothing in the system prevents tise.

To initiate mail delivery, the MTA uses SMTP to connect to thesignated Porcupine
node, which acts as a delivery proxy (step 2). The proxy'sigaio store the message on
disk. To do this, it applies the hash function on the reciggemame, looks up the user
map, and learns the name of the recipient’s user manager 33telt then retrieves the
mail map from the user manager (steps 4 and 5) and asks thé&bancing service to
choose the best node from that list. If the list is empty ocldices are poor (for example,
overloaded or out of disk space), the proxy is free to selegtadher node (step 6). The
proxy then forwards the message to the chosen node’s maitiamager for storage (step
7). The storing node ensures that its participation is reftein the user’'s mail map (step
8). If the message is to be replicated (based on informatitima user’s profile), the proxy
selects multiple nodes on which to store the message.

2.3.2 Mail Retrieval. An external mail user agent (MUA) retrieves messages for a
user whose mail is stored on a Porcupine cluster using ditleePOP or IMAP transfer
protocols. The MUA contacts any node in the cluster to itatthe retrieval. The contacted
node, acting as a proxy, authenticates the request thrdneghser manager for the client

Protocol User :> Load :> Message
handling lookup Balancing store

8.Add C
to Bob’s
fragment
list

. . mail to
selection.

3. Who manages 6. Pick the best node to
Bob? [A. store new msg [C.

Fig. 4. This picture shows how an external mail transfer afjdifA) delivers a message to Bob. The MTA picks
B, through DNS-RR, as the SMTP session partner (step 1 an& 2ptains Bob’s mailbox fragment from A
(steps 3 through 5) and determines that C is the best nodertotee message (step 6). C updates Bob'’s mailbox
fragment after storing the message (steps 7 and 8).

and discovers the mail map. It then contacts the mailbox gemet each node storing the
user’s mail to request mail digest information, which iureis to the MUA. Then, for each
message requested, the proxy fetches the message fromptitopaate node or nodes. If
the MUA deletes a message, the proxy forwards the deletignest to the appropriate
node or nodes. When the last message for a user has been teirwouea node, that node
removes itself from the user’s mail map.

2.4 Advantages and Tradeoffs

By decoupling the delivery and retrieval agents from theagje services and user man-
ager in this way, the system can balance mail delivery tagksmically; any node can
store mail for any user, and no single node is permanentfyoresble for a user’'s mail
or soft profile information. A user’'s mail can be replicatadan arbitrary set of nodes,
independent of the replication factor for other users. I§arunanager goes down, another
will take over for that manager’s users. Another advantadkat the system becomes ex-
tremely fault tolerant by always being able to deliver orieste mail for a user, even when
nodes storing the user’s existing mail are unavailable. firta¢ advantage is that the sys-
tem is able to react to configuration without human interiemtNewly added nodes will
automatically receive their share of mail-session andagmanagement tasks. Crashed
or retired node will be excluded from the membership list amal maps automatically,
leaving no residual information on other nodes.

The system architecture reveals a key tension that mustdressed in the implemen-
tation. Specifically, while a user’s mail may be distributatoss a large number of ma-
chines, doing so complicates both delivery and retrieval.d@livery, each time a user’s
mail is stored on a node not already containing mail for tssruthe user’'s mail map (a
potentially remote data structure) must be updated. Orevelr aggregate load increases
somewhat with the number of nodes storing the retrieving'siseail. Consequently, it
is beneficial to limit the spread of a user’s mail, wideningritmarily to deal with load
imbalances and failure. In this way, the system behaves [garfdrms) like a statically
partitioned system when there are no failures and load ikhatdnced, but like a dynami-

8 . Y. Saito, et al

cally partitioned system otherwise. Section 5 discussesrddeoff in more detail.

2.5 Alternative Approaches

Existing large-scale mail systems assign users and thiaiistiically to specific machines
[Christenson et al. 1997; Deroest 1996]. A front-end traffianager directs an exter-
nal client’'s request to the appropriate node. We believe ghah statically distributed,
write-oriented services scale poorly. In particular, asuker base grows, so does service
demand, which can be met only by adding more machines. Unfately, each new ma-
chine must be configured to handle a subset of the users rirggthat users and their
data migrate from older machines. As more machines are adidedikelihood that at
least one of them is inoperable grows, diminishing avadilgtfior users with data on the
inoperable machines. In addition, users whose accountsrastower machines tend to
receive worse service than those on faster machines. fiaaltatically distributed system
is susceptible to overload when traffic is distributed noifarmly across the user base.
To date, systems relying on static distribution have word@dwo reasons. First, ser-
vice organizations have been willing to substantially ceenmit computing capacity to
mitigate short-term load imbalances. Second, organizsti@ave been willing to employ
people to reconfigure the system manually in order to baléoae over the long term.
Because the degree of overcapacity determines wheretehortgives way to long-term,
static systems have been costly in terms of hardware, peopleoth. For small static
systems, these costs have not been substantial; for exatdapibling the size of a small
but manageable system may yield a system that is also snththanageable. However,
once the number of machines becomes large (i.e., on the of@eiew dozen), disparate
(i.e., fast/slow machines, fast/slow disks, large/smalks), and continually increasing,
this gross overcapacity becomes unacceptably expengigenirs of hardware and people.

An alternative approach is to adopt a typical Web serveritercture: use a distributed
file system to store all hard state and run off-the-sheliigmfié on a large number of state-
less, front-end nodes that serve clients [Fox et al. 199i7ePal. 1998]. This approach
has been successful in services that deliver mostly reddetata, such as Web servers
and search engines, because the front-end nodes can tak&aig load off the file sys-
tem by utilizing file caches. Write-intensive services sastemail, however, exhibit very
low access locality that makes caching nearly useless, aing this approach in email
requires the file system itself to be highly scalable undenging workload and system
configuration. Such file systems do exist (e.g., XFS [Andesta@l. 1995] and Frangipani
[Thekkath et al. 1997]), but they are still in an early resbatage due to their sheer com-
plexity. Moreover, even if they were available now, theirmageability and availability
would not match Porcupine’s because the file systems offegrie single-copy semantics
and sacrifice availability along the way. For example, tredgrate only a limited number
of node failures, beyond which the entire system stops, la@yggtop functioning when the
network is partitioned. Porcupine, on the other hand, &éer any number of node fail-
ures and continues to serve users after network partitiorelaying the data consistency
guarantees.

Another approach is to build an email system on top of a ditlsised operating sys-
tem that supports membership agreement, distributedrigckind resource fail-over (e.g.,
[Kronenberg et al. 1986; Vogels et al. 1998; Sun Microsysté809; IBM 1998]). While
this solution simplifies the architecture of the softwaréends to cost more than previous
solutions because these systems run only on proprietadyaae. They also have limited

Porcupine: A Highly Scalable, Cluster-based Mail Service . 9

scalability, only up to tens of nodes. More importantly, ffranary means of fault tol-
erance for such systems is shared disks, which staticallg tiode to specific data items
and create the same manageability and availability problemsent in the first approach,
albeit to a lesser degree.

Finally, the most obvious solution is
to use a large monolithic server with re-
liable storage (e.g., RAID [Chen et al. o I\S/Ionolithic * Porcupine

!) . . erver

1994]). While this approach is the sim-

plest in terms of architecture and admin-

istration, it is rarely employed by Inter-

net services for two main reasons. First,

a large server machine is far more expen- _

sive than a set of small machines with the o Static
partitioning

same aggregate performance. Moreover,

we can scale a single server only up to a —

certain limit, beyond which we must scrap ﬁ:%rsf?rmance&avanabnny

the machine and buy a faster model. No-

tice, however, that the prObIem of making:ig. 5. A schematic view of how different architectures

a single node fast and available is orthogarade off cost, performance, availability and manageabil-

nal to the problem of making a cluster fastty. Porcupine is an architecture that is available, man-

and available. Porcupine solves only thégeable, and chea_lp at the same time, whereas.qther solu-

latter problem, and it is perfectly reason_tlons need to sacrifice either cost or manageability.

able to build a Porcupine cluster using large-scale servdes for those applications in

which a single node cannot handle the entire workload.

Figure 5 summarizes the cost and manageability trade-afthé&se four solutions. Por-
cupine seeks to provide a system structure that performisasét scales, adjusts auto-
matically to changes in configuration and load, and is easyanage. Our vision is that
a single system administrator can be responsible for thaweae that supports the mail
requirements of one hundred million users processing embithessages per day. When
the system begins to run out of capacity, that administregarimprove performance for
all users simply by adding machines or even disks to the sydtastly, the administrator
can, without inconveniencing users, attend to the faildimachines, replacing them with
the same urgency with which one replaces light bulbs.

e Cluster-based
operating system

e Distributed
file system

Manageability

3. SELF MANAGEMENT

Porcupine must deal automatically with diverse changed,dting node failure, node re-
covery, node addition, and network failure. In additioraiehe can come in bursts, creating
long periods of instability, imbalance and unavailabilityis a goal of Porcupine to man-
age change automatically in order to provide good servies euring periods of system
flux. The following sections describe the Porcupine sewsvitmt detect and respond to
configuration changes.

3.1 Membership Services

Porcupine’s cluster membership service provides the basichanism for tolerating

changes. It maintains the current membership set, detedis failures and recoveries,
notifies other services of changes in the system’s memlpeshd distributes new system
state. We assume a symmetric and transitive network in ptstatk, so that nodes even-

10 . Y. Saito, et al

tually converge on a consistent membership set providechtihaew failure occurs for a
sufficiently long period (i.e., a few seconds).

The cluster membership service uses a variant of the ThreedRdembership Protocol
(TRM) [Christian and Schmuck 1995] to detect membershimgea. In TRM, the first
round begins when any node detects a change in the configueatd becomes the coordi-
nator. The coordinator broadcasts a “new group” messagghegwith its Lamport clock
[Lamport 1978], which acts as a proposed epoch ID to idemtiparticular membership
incarnation uniquely. If two or more nodes attempt to becanceordinator at the same
time, the one proposing the largest epoch ID wins.

In the second round, all nodes that receive the “new groupssiange reply to the co-
ordinator with the proposed epoch ID. After a timeout peritbeé coordinator defines the
new membership to be those nodes from which it received &.répthe third round, the
coordinator broadcasts the new membership and epoch IDriodgs.

Once membership has been established, the coordinatodfdfly broadcasts probe
packets over the network. Probing facilitates the mergimgadtitions; when a coordinator
receives a probe packet from a node not in its current merhipelist, it initiates the
TRM protocol. A newly booted node acts as the coordinatoafgroup in which it is the
only member. Its probe packets are sufficient to notify atherthe network that it has
recovered.

There are several ways in which one node may discover thedailf another. The first
is through a timeout that occurs normally during part of aotsroperation. In addition,
nodes within a membership set periodically “ping” their tigighest neighbor in IP address
order, with the largest IP address pinging the smalleshdfing is not responded to after
several attempts, the pinging node becomes the coordmadanitiates the TRM protocol.

3.2 User Map

The purpose of the user map is to distribute managementmsility evenly across live

nodes in the cluster. Whenever membership services detmmfeguration change, the
system must reassign that management responsibilityeTdrer, like the membership list,
the user map is replicated across all nodes and is recomgutéty each membership
change as a side effect of the TRM protocol.

After the second round, the coordinator computes a new uagtmremoving the failed
nodes from the current map and uniformly redistributingilatde nodes across the user
map’s hash buckets (the user map has many buckets, so a mocalyyis assigned to
more than one bucket). The coordinator minimizes changéseteser map to simplify
reconstruction of other soft state, described in the necticre

Each entry in the user map is associated with an epoch ID tioséswhen the bucket
management responsibility is first assigned to a node. Ifirttgphase of the TRM, each
node piggybacks on the reply packet the index and the ased@poch IDs of all the user
map entries the node manages. For each bucket with a chasgigdraent, the coordinator
assigns the current epoch ID to the entry. On the other hand ducket whose assignment
remains unchanged, the coordinator reuses the epoch Ibeetby the participant node.
The epoch IDs in the user map are used by nodes to determimé whiries in the user
map have changed.

Figure 6 shows an example of a user map reconfiguration. netkhmple, nod€
crashes. A new membership is computed on nddéut the packet containing the new
membership fails to reach nod® Next,C recovers, and3 receives a new membership

Join: 2:A Join:3:A

. N D D —
Alele|a .
A|B[B[C|i Newgroup: alB|B|A|i Newgroup: “Talale
oA PO O T PO 3A Teieaid
1:8(1:8/1:8[1:B P PP P P —
Accept,

A [0,1:B] \ A N
NEIEEE AlB|B|C NEE
1:8|1:B|1:B|1:8] { 1:B|1:8|1:8|1:8] P P P
AlB|B|C clcic|c AlB|B|C
1:8|1:B|1:B|L:By 1:C|1:C|1:C|1:C] 1:8|1:8|1:8/1:¢]

\
C C. C

CcrashesA AandBreply Abroadcasts the CrecoversA A, B, andC Abroadcasts Nodes finally

detects the with the new membership detects the reply with the the new agree on the

crash and epoch IDs of and the user map,recovery and epoch IDs of themembership membership

starts TRM. the buckets butB misses the starts TRM. buckets they and the user and the user
they manage. packet. manage. map. map.

Fig. 6. Example of membership reconfiguration. Arrows shoessages exchanged among the nodes. Upper
boxes in each user map show the assignments of buckets ts, oaHower boxes show the epoch IDs of buckets.
In this example, the node C crashes and then recovers. TieeBhtalls to receive the membership renewal after
C'’s crash. Shaded area in user maps show the entries that remignize as changed.

and a new user map that are identical to the old oneBpexcept that the epoch ID for
the bucket managed ly is renewed. Without epoch IDs in the user maBswould be
unable to detect that assignment for the last bucket of themaap has changed.

3.3 Soft State Reconstruction

Once the user map has been reconstructed, it is necessaggdostruct the soft state
at user managers with new user responsibilities. Spedyfidals soft state is the user
profile soft state and the mail map for each user. Essenteaibry node pushes soft state
corresponding to any of its hard state to new user managggemsible for that soft state.

Reconstruction is a two-step process, completely didgtdhubut unsynchronized. The
first step occurs immediately after the third round of merabigrreconfiguration. Here,
each node compares the previous and current user maps tifyidery buckets having new
assignments. A node considers a bucket assignment newhtittiet’s previous epoch ID
does not match the current epoch ID. Recall that the user ssgrites nodes with hash
buckets, so the relevant soft state belonging on a hodetisthi@sponding to those users
who hash into the buckets assigned to the node.

Each node proceeds independently to the second step. Kerg,rede identifying a
new bucket assignment sends the new manager of the bucksbtirsgate corresponding
to the hard state for that bucket maintained on the sendidg.nBirst, the node locates
any mailbox fragments belonging to users in the newly mag&geket and requests that
the new manager include this node in those users’ mail magsordl, the node scans its
portion of the stored user profile database and sends to thena@ager all pertinent user
profiles. As the user database is replicated, only the @plith the largest IP address
among those functioning does the transfer. The hard statedson every node is “buck-

12 . Y. Saito, et al

eted” into directories so that it can be quickly reviewed antlected on each change to
the corresponding bucket in the user map.

The cost of rebuilding soft state is intended to be constanthpde in the long term,
regardless of cluster size for the following reason. Fist, cost of reconfiguration per
node after a failure is roughly proportional to the total foenof mailboxes to be dis-
covered on the node, because the disk scan is by far the mustgixe operation in the
entire reconfiguration process. Second, the number of meatbto be discovered is de-
termined by the number of reassignments to the user mapmasgthat mailboxes are
evenly distributed in each hash bucket. Third, the numbersef map reassignments per
single node crash or recovery is inversely proportionaltister size, because each node
managed / cluster-sizeof the user map. Consequently, the cost of reconfiguration pe
node per failure isnversely proportionato the cluster size. Finally, because the frequency
of reconfiguration increases linearly with cluster sizes(@msing independent failures), the
two factors cancel each other out, and the reconfiguratienpear node over time remains
about the same regardless of the cluster size.

3.4 Effects of Configuration Changes on Mail Sessions

When a node fails, all SMTP, POP, and IMAP sessions hostech@maode abort—an
unavoidable result given the difficulty of TCP session €aier. Among them, the abortion
of the SMTP sessions is transparent to the senders and ipergs except for delay and
possible duplicate message delivery, because the remo#tes vElry delivery later. For
the aborted POP and IMAP sessions, the users must recoortbet tluster. An SMTP
session that is hosted on another node and is about to stesages on the failed node re-
selects another node for storage until it succeeds. Theisdtie failure is masked from the
remote server (and the sender) and the recipient of mail. R BAMAP session hosted
on another node may report an error when it tries to read aagesm the failed node, but
the session itself continues running and is able to retrieessages stored on other nodes.

The combination of the mail-map update mechanism (Secti@re®d the automatic re-
configuration mechanism makes each user’'s mail-map censisith respect to mailbox
fragments locations without introducing the complexitgofutions based on atomic trans-
actions [Gray and Reuter 1993]. We argue that sessionsrihaff@cted by node failures
keep mail maps consistent by considering four differetaifaiscenarios.

(1) A node fails just after a message is stored in a new maillagment on its disk, but
before the corresponding mail map is updated. This caseesausproblem because
this copy of the message becomes non-retrievable afterattie failure. The replica-
tion service (Section 4) ensures that another copy of theagesis still available.

(2) A node fails just after the last message in a mailbox fraigton its disk is deleted, but
before the corresponding mail map is updated. Each nodedieaily scans the mail
maps it manages and removes all “dangling” links to nodesmtie membership.
The links will be restored when the failed nodes rejoin thestegr.

(3) A node stores a message in a new mailbox fragment on kshulis the corresponding
user manager node fails before the mail map is updated. Thsage will be discov-
ered by the disk scan algorithm that runs after membershgnfeguration and will be
added to the mail map on a new user manager node.

(4) A node deletes the last message in a mailbox fragmensatisik, but the correspond-
ing user manager node fails before the mail map is updated.s@iime argument as

Porcupine: A Highly Scalable, Cluster-based Mail Service . 13

above is applied: a new user manager will receive the regaltlizk scan that excludes
the deleted mailbox.

3.5 Node Addition

Porcupine’s automatic reconfiguration procedure makeasy ¢o add a new node to the
system. A system administrator simply installs the Poncegioftware on the node. When
the software boots, it is noticed by the membership protandladded to the cluster. Other
nodes see the configuration change and upload soft statettentoew node. To make

the host accessible outside of Porcupine, the administratty need to update border
naming and routing services. Occasionally, a backgroundcgerebalances replicated
email messages and user database entries across the ntideslirstet.

3.6 Summary

Porcupine’s dynamic reconfiguration protocols ensurettieainail service is always avail-
able for any given user and allow the reconstruction andibigton of soft state with
constant overhead. Client activities are affected minlyniay a failure; after the ensu-
ing reconfiguration process, the soft state is restorecctiyrregardless of ongoing client
activities. The next section discusses the maintenancardfdiate.

4. REPLICATION AND AVAILABILITY

This section describes object replication support in Pgiret As in previous systems
(e.g., [Fox et al. 1997]), Porcupine defines semantics ttmés application requirements.
This permits a careful balance between behavior and pediocm

Porcupine replicates the user database and mailbox fragreeansure their availabil-
ity. Our replication service provides the same guarantedsbehavior as the Internet’s
electronic-mail protocols. For example, Internet emailyraarive out of order, on occa-
sion more than once, and may sometimes reappear after beletgdl. These anomalies
are artifacts of the non-transactional nature of the Irtesrmail protocols. Porcupine
never loses electronic mail unless all nodes on which th¢maaibeen replicated are irre-
trievably lost.

4.1 Replication Properties

The general unit of replication in Porcupine is thigiect which is simply a named byte
array that corresponds to a single mail message or the podfiesingle user. A detailed
view of Porcupine’s replication strategy includes these fiigh-level properties:

Update anywhere An update can be initiated at any replica. This improveslaldity,
since updates need not await the revival of a primary. Thetegjy also eliminates the
requirement that failure detection be precise, since theeel not be agreement on which
is the primary node.

Eventual consistencyDuring periods of failure, replicas may become inconsisten
short periods of time, but conflicts are eventually resol&d recognize that single-copy
consistency [Gray and Reuter 1993] is too strong a requinéfioe many Internet-based
services, and that replica inconsistencies are tolerabieng as they are resolved eventu-
ally. This strategy improves availability, since accessay occur during reconciliation or
even during periods of network partitioning.

In the current implementation, the rebalancer must be rumuaidy.

14 . Y. Saito, et al

Total update An update to an object totally overwrites that object. Siao®il mes-
sages are rarely modified, this is a reasonable restriciandreatly simplifies update
propagation and replica reconciliation, while also kegpimerheads low.

Lock free There are no distributed locks. This improves performameceavailability
and simplifies recovery.

Ordering by loosely synchronized clock3he nodes in the cluster have loosely syn-
chronized clocks [Mills 1992; 1994] that are used to orderafions on replicated objects.

The update-anywhere attribute, combined with the factahgtPorcupine node may act
as a delivery agent, means that incoming messages are negked (assuming at least
one node remains functional). If the delivery agent cragheig delivery, the initiat-
ing host (which exists outside of Porcupine) can reconreeahbther Porcupine node. If
the candidate mailbox manager fails during delivery, tHeveley agent will select another
candidate until it succeeds. Both of these behaviors hawesdme potential anomalous
outcome: if the failure occurs after the message has bedtewto stable storage but
before any acknowledgement has been delivered, the endnasereceive the same mes-
sage more than once. We believe that this is a reasonabketprgay for service that is
continually available.

The eventual-consistency attribute means that earlieat@gdo an object may “disap-
pear” after all replica inconsistencies are reconcileds Biehavior can be confusing, but
we believe that this is more tolerable than alternativedtilvack access to data when replica
contents are inconsistent. In practice, eventual comgigteor email means that a message
once deleted may temporarily reappear. This is visible dinigers attempt to retrieve their
mail during the temporary inconsistency, which is expeteddst at most a few seconds.

The lock-free attribute means that multiple mail-readiggrats, acting on behalf of the
same user at the same time, may see inconsistent data teitypadrmwever, POP and
IMAP protocols do not require a consistent outcome with mldtclients concurrently
accessing the same user’s mail.

The user profile database is replicated with the same mesthanised for mail mes-
sages. Because of this, it is possible for a client to peecaivinconsistency in its (repli-
cated) user database entry during node recovery. Opesatienglobally ordered by the
loosely synchronized clocks; therefore, a sequence oftapda the user profile database
will eventually converge to a consistent state. We assumiettie maximum clock skew
among nodes is less than the inter-arrival time of exteynaifiated, order-dependent op-
erations, such as Create-User and Change-Password. ticeradock skew is usually
on the order of tens of microseconds[Mills 1994], whereaeodependent operations are
separated by networking latencies of at least a few millinds. Wall clocks, not Lamport
clocks [Lamport 1978], are used to synchronize updatesausecwall clocks can order
events that are not logically related (e.g., an externahtagentacting two nodes in the
cluster serially).

We now describe the replication manager, email operatisingueplicas, and the details
of updating replicated objects.

4.2 Replication Manager

A replication manager running on each host exchanges messegong nodes to ensure
replication consistency. The manager is oblivious to thenftt of a replicated object and
does not define a specific policy regarding when and wher&eapare created. Thus, the

Porcupine: A Highly Scalable, Cluster-based Mail Service . 15

replication manager exports two interfaces: one for thatae and deletion of objects,
which is used by the higher level delivery and retrieval ageand another for interfacing
to the specific managers, which are responsible for maingion-disk data structures.
The replication manager does not coordinate object reagi$retrieval proxies are free to
pick any replica and read them directly.

4.3 Sending and Retrieving Replicated Mail

When a user’s mail is replicated, that user’s mail map refldut set of nodes on which
each fragment is replicated. For example, if Alice has tvagfinents, one replicated on
nodes4 and B and another replicated on nodBsandC, the mail map for Alice records
{{4, B},{B,C}}. To retrieve mail, the retrieval agent contacts the leaatiéd node for
each replicated mailbox fragment to obtain the completdbnaicontent for Alice.

To create a new replicated object (as would occur with thivelsi of a mail message),
an agent generates an object ID and the set of nodes on whiclbjict is to be replicated.
An object IDis simply an opague, unique string. For example, mail messhgve an
object ID of the form{type, username, messagélheretypeis the type of object (mail
message)sernamas the recipientand messagellx an unique mail identifier found in
the mail header.

4.4 Updating Objects

Given an object ID and an intended replica set, a deliveryetiiaval agent can initiate
an update request to the object by sending an update messagg teplica manager in
the set. A delivery agent’s update corresponds to the stafirm message. The retrieval
agent’s update corresponds to the deletion and modificafiarmessage.

The receiving replica acts as the update coordinator arhgiates updates to its peers.
The replication manager on every node maintains a persigbelate log, used to record up-
dates to objects that have not yet been accepted by all agpdiers maintaining that object.
Each entry in the update log is the tuglémestamp, objectID, target-nodes, remaining-
nodes:

—Timestampis the tuple{wallclock time, nodell), wherewallclock time is the time
at which the update was accepted at the coordinator nametdglD Timestamp
uniquely identifies and totally orders the update.

—Target-nodess the set of nodes that should receive the update.

—Remaining-nodess the set of peer nodes that have not yet acknowledged theteipd
Initially, remaining-nodess equal totarget-nodesand is pruned by the coordinator as
acknowledgments arrive.

The coordinating replication manager works through the &itgmpting to push updates
to all the nodes found in theemaining-nodedield of an entry. Once contact has been
made with a remaining node, the manager sends the replmatertts and the log entry to
the peer. Since updates to objects are total, multiple pgngpdates to the same object
on a peer are synchronized by discarding all but the one Wwé&mewest timestamp. If no
pending update exists, or if the update request is the ndarest object, the peer adds the
update to the log, modifies the replica, and sends an ackdgeteent to the coordinator.
Once the coordinator receives acknowledgements from gliceepeers, it notifies all the
participants of the update (including itself) of the contjgle of the update. Finally, the
participantsretire the completed update entry in their log (freeing that logcspafter

16 . Y. Saito, et al

waiting for a sufficiently long period to filter out updatesttarrive out of order. The wait
period we use, 3 minutes in our prototype, is set to the surhefriaximum clock skew
among nodes and maximum network-padKetime i.e., the time long enough for most
packets to reach the destination. This retirement mecimenia variant of the at-most-once
messaging algorithm using synchronized clocks [LiskoJ.et201].

If the coordinator fails before responding to the initigtiagent, the agent will select
another coordinator. For updates to a new object, as is tewth a new mail message,
the initiating agent will create another new object andaedenew, possibly overlapping,
set of replicas. This helps to ensure that the degree ottagjuin remains high even in the
presence of a failed coordinator. This design may deliveeasage to the user more than
once. This duplicate delivery problem, however, is alrefaidlyy common in the Internet
today; it may happen after a network transmission failurgimiply by a user pressing the
“Send” button twice. Message duplication due to node fesis far rarer than duplication
due to other causes.

The coordinators and participants force their update lodistt before applying the
update to ensure that the replicas remain consistent. Aptanigation, a replica receiving
an update message for which it is the only remaining node nettbrce its log before
applying the update. This is because the other replicaslaady up to date, so the sole
remaining node will never have to make them current for tigdate. In practice, this
means that only the coordinator forces its log for two-waplication.

Should the coordinator fail after responding to the initigttarget but before the update
is applied to all replicas, any remaining replica can bectiraeoordinator and bring others
up to date. Multiple replicas can become the coordinatoughsase, since replicas can
discard duplicate updates by comparing timestamps.

In the absence of node failures, the update log remainsvediasmall for two reasons.
First, the log never contains more than one update to the sehjaet. Second, updates are
propagated as quickly as they are logged and are deletedbassall replicas acknowl-
edge. Timely propagation also narrows the window duringcWiain inconsistency could
be perceived.

When a node fails for a long time, the update logs of other agdald grow indefinitely.
To prevent this, updates remain in the update log for at mestek. If a node is restored
after that time, it must reenter the Porcupine cluster aseav’mode, rather than as a
recovering one. A node renews itself by deleting all of itedhstate before rejoining the
system.

4.5 Summary

Porcupine’s replication scheme provides high availabilirough the use of consistency
semantics that are weaker than strict single-copy comsigtéut strong enough to service
Internet clients using non-transactional protocols. tsistencies, when they occur, are
short lived (the update propagation latency between fangtg hosts) and, by Internet
standards, unexceptional.

5. DYNAMIC LOAD BALANCING

Porcupine uses dynamic load balancing to distribute th&lwad across nodes in the clus-
ter in order to maximize throughput. As mentioned, Porcapihients select an initial
contact node either to deliver or to retrieve mail. That ashhode then uses the system’s
load-balancing services to select the “best” set of nodesduricing the connection.

Porcupine: A Highly Scalable, Cluster-based Mail Service . 17

In developing the system’s load balancer, we had severad$.g&ast, it must be fine-
grained, making good decisions at the granularity of messkeivery. Second, it must
support a heterogeneous cluster, since not all the noded atpiivalent power. Third, it
must be automatic and minimize the use of “magic constatfitse’sholds, or tuning param-
eters that needs to be manually adjusted as the system svBlwerth, with throughput as
the primary goal, it needs to resolve the tension betweahdod affinity. Specifically, in
order to best balance load, messages should be stored amoidés. However, it is less
expensive to store (and retrieve) a message on nodes thatlalcontain mail for the mes-
sage’s recipient. Sudifinity-based schedulingduces the amount of memory needed to
store mail maps, increases the sequentiality of disk aeseasd decreases the number of
inter-node RPCs required to read, write, or delete a message

In Porcupine, delivery and retrieval proxies make loackbaing decisions. There is
no centralized load-balancing node service; instead, radb keeps track of the load on
other nodes and makes decisions independently.

Load information is collected in the same ways we colle@rigss information (Section
3.1): (1) as a side-effect of RPC operations (i.e., each RIgQast or reply packet contains
the load information of the sender), and (2) through a viring in which load information
is aggregated in a message passed along the ring. The firstaghpgives a timely but
possibly narrow view of the system’s load. The second ampreasures that every node
eventually discovers the load from every other node.

The load on a node has two components: a boolean, which tedieshether or not the
disk is full, and an integer, which is the number of pendinmote procedure calls that
might require a disk access. A node with a full disk is alwagssidered “very loaded”
and is used only for operations that read or delete existiagsages. After some experi-
mentation, we found that it was best to exclude disklessatjpers from the load to keep it
from becoming stale too quickly. Because disk operatioasarslow, a hode with many
pending disk operations is likely to stay loaded for somestim

A delivery proxy that uses load information alone to selbetliest node(s) on which to
store a message will tend to distribute a user’'s mailboxssonmany nodes. As a result, this
broad distribution can actually reduce overall systemubhgput for the reasons mentioned
earlier. Consequently, we define for each usgpr@ad the spread is a soft upper bound on
the number of different nodes on which a given user’s maibghbe stored. The bound
is soft to permit the delivery agent to violate the spreadi# of the nodes storing a user’s
mail is not responding. When a mailbox consists of fewerrfragts than its spread limit,
the delivery proxy adds a random set of nodes on messagaldainake up a candidate
set. Adding a random set of nodes helps the system avoid d tieravior” in which a
herd of nodes all choose the same node that is idle at one miameimstantly overloading
the node the next moment [Mitzenmacher 1998].

As shown in Section 6, the use of a spread-limiting load ladahas a substantial effect
on system throughput even with a relatively narrow sprealde Benefit is that a given
user’s mail will be found on relatively few nodes, but thoseles can change entirely each
time the user retrieves and deletes mail from the server.

6. SYSTEM EVALUATION

This section presents measurements from the Porcupinatypetrunning synthetic work-
loads on a 30-node cluster. We characterize the systen&hdds as a function of its size
in terms of the three key requirements:

18 . Y. Saito, et al

Performance We show that the system performs well on a single node andstat
early with additional nodes. We also show that the systemeastarms a statically parti-
tioned configuration consisting of a cluster of standard $Mihd POP servers with fixed
user mapping.

Availability. We demonstrate that replication and reconfiguration hawectust.

Manageability We show that the system responds automatically and rapidhote
failure and recovery, while continuing to provide good penfance. We also show that
incremental hardware improvements can automaticallyitrassystem-wide performance
improvements. Lastly, we show that automatic dynamic laaldrxing efficiently handles
highly skewed workloads.

6.1 Platform and Workload

The Porcupine system runs on Linux-based PCs with all systawices on a node exe-
cuting as part of a multi-threaded process. For the measmsnn this paper, we ran on
a cluster of thirty nodes connected by 1Gb/second Etheurist.hAs would be expected
in any large cluster, our system contains several diffehantiware configurations: six
200MHz machines with 64MB of memory and 4GB SCSI disks, egfft MHz machines
with 128MB of memory and 4GB IDE disks, and sixteen 350 MHz hiaes with 128MB
of memory and 8GB IDE disks.
Some key attributes of the system’s implementation follow:

—The system runs on Linux 2.2.7 and uses the ext2 file systestdoage [Ts'o 1999].

—The system consists of fourteen major components writt€ht+. The total system size
is about forty-one thousand lines of code, yielding a 1MBoeable.

—A mailbox fragment is stored in two files, regardless of thnber of messages con-
tained within. One file contains the message bodies, andttier ocontains message
index information.

—The user map contains 256 buckets.

—The mailbox fragment files are grouped and stored in dirextocorresponding to
the hash of user names (e.g., if Ann’s hash value is 9, therfragment files are
spool / 9/ ann andspool / 9/ ann. i dx). This design allows discovery of mailbox
fragments belonging to a particular hash bucket — a critipakation during membership
reconfiguration — to be performed by a single directory scan.

—Most of a node’s memory is consumed by the soft user profdeestin the current
implementation, each user entry takes 76 bytes plus 44 pgtamailbox fragment. For
example, in a system with ten million users running on 30 spdbout 50 MB/node
would be devoted to user soft state.

We developed a synthetic workload to evaluate Porcupinausecusers at our site do not
receive enough email to drive the system into an overloadition. We did, however,
design the workload generator to model the traffic pattera$ave observed on our de-
partmental mail servers. Specifically, we model a mean ngessaze of 4.7KB, with a
fairly fat tail up to about 1MB. Mail delivery (SMTP) accougtior about 90% of the trans-
actions, with mail retrieval (POP) accounting for about 1@ach SMTP session sends a
message to a user chosen from a population according to aigtpbution witha, = 1.3,
unless otherwise noted in the text.

Porcupine: A Highly Scalable, Cluster-based Mail Service . 19

- 800
c
(=}
§ 600
(%]
& 400 =-Porcupine no replication
© -s-Porcupine with
o 200 — replication, NVRAM
g -%-Porcupine with replication

0 : : : -o-Sendmail+popd

0 10 20 30
Cluster size

Fig. 7. Throughput scales with the number of hosts. Thislysipws how Porcupine and the sendmail-based
system scale with respect to cluster size.

For purposes of comparison, we also measure a tightly caefigconventional mail
system in which users and services are statically par&ti@ctross the nodes in the cluster.
In this configuration, we run SMTP/POP redirector nodeseafribnt end. At the back end,
we run modified versions of the widely used Sendmail-8.9a ids-popd-0.23 servers.
The front-end nodes accept SMTP and POP requests and reutddiback-end nodes by
way of a hash on the user name. To keep the front ends from beganbottleneck, we
determined empirically that we need to run one front end Yerefifteen back ends. The
tables and graphs that follow include the front ends in ouncof the system size. Based
on a priori knowledge of the workload, we defined the hash function ttriise users
perfectly across the back-end nodes. To further optimieetimfiguration, we disabled all
security checks, including user authentication, cliemhdim name lookup, and system log
auditing.

For both Porcupine and the conventional system, we definedrgopulation with size
equal to 160,000 times the number of nodes in the clusterkouta5 million users for
the 30-node configuration). Nevertheless, since the ds¢aisadistributed in Porcupine,
and no authentication is performed for the conventionafqlan, the size of the user base
is nearly irrelevant to the measurements. Each POP sessliecissa user according to
the same Zipf distribution, collects and then deletes aksages awaiting the user. In
the Porcupine configuration, the generator initiates a eotion with a Porcupine node
selected at random from all the nodes. In the conventionafigiaration, the generator
selects a node at random from the front-end nodes. By dethalload generator attempts
to saturate the cluster by probing for the maximum throughipareasing the number of
outstanding requests until at least 10% of them fail to ceteplithin two seconds. At
that point, the generator reduces the request rate and essunobing.

We demonstrate performance by showing the maximum numbees$ages the system
receives per second. Only message deliveries are countledugh message retrievals
occur as part of the workload. Thus, this figure really refl¢se number of messages the
cluster can receive, write, read, and delete per second.efirbe margin is smaller than
5%, with 95% confidence interval for all values presentedhanfollowing sections.

20 . Y. Saito, et al

Resource Noreplication | With replication
CPU utilization | 15% 12%
Disk utilization | 75% 75%

Network send 2.5Mb/second | 1.7Mb/second
Network receive | 2.6Mb/second | 1.7Mb/second

Table . Resource consumption on a single node with one disk.

6.2 Scalability and Performance

Figure 7 shows the performance of the system as a functiotusfer size. The graph
shows four different configurations: without message ogpidon, with message replica-
tion, with message replication using NVRAM for the logs, dindlly for the conventional
configuration of sendmail+popd. Although neither repksathe Porcupine no-replication
case outperforms and outscales conventional sendmaildiffieeence is primarily due to
the conventional system’s use of temporary files, excegsveess forking, and the use of
lock-files. With some effort, we believe the conventionatsyn could be made to scale
as well as Porcupine without replication. However, the ayst would not be function-
ally identical, because Porcupine allows users to readminmg messages even when some
nodes storing the user’s existing messages are down.

For replication, the performance of Porcupine scales tigaehen each incoming mes-
sage is replicated on two nodes. There is a substantial slewdelative to the non-
replicated case, because replication increases the nurhdgrchronous disk writes three-
fold: once for each replica and once to update the coordisdtiy. Even worse, in this
hardware configuration the log and the mailbox fragmentsesttee same disk on each
node.

One way to improve the performance of replication is to use-valatile RAM for the
log. Since updates usually complete propagation and retine the log quickly, most of
the writes to NVRAM never need go to disk and can execute atongspeeds. Although
our machines do not have NVRAM installed, we can simulate RWRsimply by keeping
the log in standard memory. As shown in Figure 7, NVRAM immsthroughput; how-
ever, throughputis still about half that of the non-repkchcase, because the system must
do twice as many disk operations per message.

Table | shows the CPU, disk, and network load incurred by glsiB50Mhz Porcupine
node running at peak throughput. For this configurationtdab& indicates that the disk is
the primary impediment to single-node performance.

To demonstrate this, we made measurements on clusters métarad two nodes with
increased I/O capacity. A single 300MHz node with one IDEkdiad two SCSI disks
delivered a throughput of 105 messages/second, as oppmabdut 23 messages/second
with only the IDE disk. We then configured a two node clustachewith one IDE disk and
two SCSI disks. The machines were each able to handle 38 ge=sgsacond (48 assuming
NVRAM). These results (normalized to single-node throughpre summarized in Figure
8.

Lastly, we measured a cluster in which disks were assumed iofinitely fast. In this
case the system does not store messages on disk but onlgsebeir digests in main
memory. Figure 9 shows that the simulated system withoutlisie bottleneck achieves
a six-fold improvement over the measured system. At thisitpthe CPU becomes the
bottleneck. Thus Porcupine with replication performs canagively better than on the real

Porcupine: A Highly Scalable, Cluster-based Mail Service . 21

150

©

c

o

3 _

2 100

0

(]

S

@ 50 7

2 [With one disk/node

0 [l With three disks/node
No Replication Replication
Replication with NVRAM
Fig. 8. Summary of single-node throughput in a variety offipmations.
T 5000
o
g 4000 —
£
o 3000
>
c 2000 —
2
L 1000 7 ~-No replication
0 : : : -»\\/ith replication
0 10 20 30
Cluster size

Fig. 9. Throughput of the system configured with infinitelgtfdisks.

system. The high performance observed in 2- and 4- nodescfuistdue to the shortcutting
of inter-node RPCs into function calls that happens oftesniall clusters.

With balanced nodes, the network clearly becomes the bettle In the non-replicated
case, each message travels the network four times ((1)nbttés delivery agent (2) to
mailbox manager (3) to retrieval agent (4) to Internet). Atawverage message size of
4.7KB, a 1Gb/second network can then handle about 6500 ges'sacond. With a single
“disk loaded” node able to handle 105 messages/secondhlso68 nodes will saturate
the network as they process 562 million messages/day. Wisages replicated on two
nodes, the same network can handle about 20% fewer messeydse(message must
be copied one additional time to the replica), which is alE200 messages/second, or
about 450 million messages/day. Using the throughput nusnbeasured with the faster
disks, this level of performance can be achieved with 108 KWMRhodes, or about 137
nodes without NVRAM. More messages can be handled only bgasing the aggregate
network bandwidth. We address this issue further in Sedtion

22 . Y. Saito, et al

-
e ~

800 7 o

1 7 <& \

1 7 +)

1 1

v 750 ¢ I

\] * '

1 i]

\ i]

“700 1 g/

(c)
1000 400
= -
o 800 _| <=D4
2 600 . D2
g 200 oot
2 400 a4
é 200 100 0 :gi
* SM
0 0 T T T i =
00 025 05 10 00 025 05 10
Skew Skew
@ (b)

Fig. 10. (a) Non-replicated and (b) replicated throughjputs: 30-node system with various degrees of workload
skew. Graph (c) shows a close-up view of the non-replicaiesiighputs under a uniform workload.

6.3 Load Balancing

The previous section demonstrated Porcupine’s perforsasguming a uniform workload
distribution and homogeneous node performance. In padtiough, workloads are not
uniformly distributed and the speeds of CPUs and disks omrsaiffer. This can create
substantial management challenges for system admimistratien they must reconfigure
the system manually to adapt to the load and configuratiomlianize.

This section shows how Porcupine automatically handle&iad skew and heteroge-
neous cluster configuration.

6.3.1 Adapting to Workload SkewFigure 10 shows the impact of Porcupine’s dy-
namic spread-limiting, load-balancing strategy on thiqug as a function of workload
skew for our 30-node configuration (all with a single slowkdlisBoth the non-replicated
and replicated cases are shown. Skew along the x-axis geffexinherent degree of bal-
ance in the incoming workload. When the skew equals zeripiesds are chosen so that
the hash distributes uniformly across all buckets. Whensitev is one, the recipients
are chosen so that they all hash into a single user map butkegsponding to a highly
non-balanced workload.

The graphs compare random, static, and dynamic load balgpaiicies. The random
policy, labeled R on the graph, simply selects a host at nantipstore each message
received; it has the effect of smoothing out any non-unifgrim the distribution. The
static spread policy, shown by the lines labeled S1, S2, dd&ects a node based on
a hash of the user name spread over 1, 2 or 4 nodes, respeciiie dynamic spread

Porcupine: A Highly Scalable, Cluster-based Mail Service . 23

policy — the one used in Porcupine — selects from those nddesdy storing mailbox
fragments for the recipient. It is shown as D1, D2 and D4 orgtlagh. Again, the spread
value (1, 2, 4) controls the maximum number of nodes (in theeabe of failure) that
store a single user’s mail. On message receipt, if the sizleeofurrent mail map for the
recipient is smaller than the maximum spread, Porcupirmeases the spread by choosing
an additional node selected randomly from the cluster.

Static spread manages affinity well but can lead to a nombathload when activity
is concentrated on just a few nodes. Indeed, a static sprfeaneo(S1) corresponds to
our sendmail+popd configuration in which users are stdyigartitioned to different ma-
chines. This effect is shown as well on the graph for the cotiweal sendmail+popd
configuration (SM on Figure 10). In contrast, the dynamieaprpolicy continually moni-
tors load and adjusts the distribution of mail over the aldé machines, even when spread
is one. In this case, a new mailbox manager is chosen for eeasértime his/her mailbox
is emptied, allowing the system to repair affinity-driverbafances as necessary.

The graphs show that random and dynamic policies are insent workload skew,
whereas static policies do poorly unless the workload islgvdistributed. Random per-
forms worse than dynamic because of its inability to baldoad and its tendency to spread
a user’s mail across many machines.

Among the static policies, those with larger spread sizefopa better under a skewed
workload, since they can utilize a larger number of machfoemail storage. Under uni-
form workload, however, the smaller spread sizes perfottitebsince they respect affinity.
The key exception is the difference between spread=1 aeadpR. At spread=1, the sys-
tem is unable to balance load. At spread=2, load is balaneddtaoughput improves.
Widening the spread beyond two improves balance slightiynbt substantially. The rea-
son for this has been demonstrated previously [Eager e®&6]land is as follows: in any
system where the likelihood that a host is overloaded then selecting the least loaded
from a spread of hosts will yield a placement decision on a loaded host witibpbility
p®. Thus, the chance of making a good decision (avoiding anlaaged host) improves
exponentially with the spread. In a nearly perfectly-bathsystemp is small, so a small
s yields good choices.

The effect of the loss of affinity with larger spread sizesdspronounced in the Linux
ext? file system because it creates or deletes files withoutsgnous directory modifica-
tion [Ts’o 1999]. On other operating systems, load balaggialicies with larger spread
sizes will be penalized more by increased frequency of thrg@perations.

6.3.2 Performance under Uniform Workloadrigure 10 (c) shows the system through-
put under uniform workload. It is interesting to see thatd@pine’s load balancing service
can improve system performance even when the workload ferami D4, D2, S4 and
S2 all perform well; the difference among them is statidycemsignificant. S1, which
emulates a statically partitioned system, performs abaat®®% worse than the rest be-
cause of the lack of load balancing. Under uniform worklahd,load balancing service
improves the performance mainly by avoiding nodes that adergoing periodic buffer
flush activities bdf | ush) that stall all other disk 1/O operations for a few secondsand
D1 both perform about 15 to 20% worse, but for different remsdr performs worse be-
cause it lacks load balancing, and because it ignores mes$fgjty. D1 performs worse
because it lacks load balancing, and because it tends tadex few nodes that happen to
host hyper-active users. On the other hand, D2 and D4 hostr¥agtive users on multiple

Messages/second

24 . Y. Saito, et al

1000 500 T
900 450 —
800 — g].x, 400 — %:E D4
7 7 B12-3, %:ig D2
700 = - - 350 Hs4
| i - - - S2
600 T T T 300 T T T ER
1 2 3 1 2 3
Number of nodes with fast disks Number of nodes with fast disks

@) (b)

Fig. 11. Performance improvement by the Porcupine loadnbailg mechanism, without replication (a) and
with replication (b). X axis is the number of nodes with fastkd. The bottom of each bar each bar shows the
performance on the baseline system with a particular lofthbsng mechanism, and the height of the bar shows
the relative improvement over the baseline system.

nodes, and the load balancer is able to split the workloadatdiain to keep the load on
these nodes low.

6.3.3 Adapting to Heterogeneous Configuratiomss mentioned in the previous sec-
tion, the easiest way to improve throughput in our configareis to increase the system’s
disk I/O capacity. This can be done by adding more machinby adding more or faster
disks to a few machines. In a statically partitioned systiéis,necessary to upgrade the
disks on all machines to ensure a balanced performance wement. In contrast, because
of Porcupine’s functional homogeneity and automatic loaldibcing, we can improve the
system’soverall throughput for all users simply by improving the throughpuata few
machines. The system will automatically find and exploitribes resources.

Figure 11 shows the absolute performance improvement o3@eode configuration
when adding two fast SCSI disks to each of one, two, and thf¢eeoc300Mhz nodes,
with and without replication. The improvement for Porcugpgihows that the dynamic load
balancing mechanism can fully utilize the added capacigtetda spread of four slightly
outperforms a spread of two, because the former policy ierikely to include the faster
nodes in the spread. When a few nodes are many times fastethhaest, as is the case
with our setting, the spread size needs to be increased. éutltler hand, as described in
Section 5, larger spread sizes tend to reduce the systenerdfic Thus, spread size is one
parameter that needs to be revisited as the system becomeeterogeneous.

In contrast, the statically partitioned and random messkigtabution policies demon-
strate little improvement with the additional disks. Trgsbiecause their assignment im-
proves performance for only a subset of the users.

6.4 Failure Recovery

As described previously, Porcupine automatically recaméig whenever nodes fail or
restart. Figures 12 and 13 depict an annotated timeline efitethat occur during the
failure and recovery of 1, 3, and 6 nodes in a 30-node syste¢houtiand with replication.

Porcupine: A Highly Scalable, Cluster-based Mail Service . 25

Nodes New membership Nodes New membership

fail determined recover determined

700 v v
=) s P
= D P
S 600 ----no failure
9 one failure
@ 500 —-three failures
[@)]
©
@ 400
= . o . .

300 T 4 4 I 4 meline

o 0, <oy Sop % %0, 60y ‘0p SopS€CONS)
Fig. 12. Reconfiguration timeline without replication.

Nodes New membership Nodes New membership

fail determined recover determined

300 v v
° s P
S P . .
S 250 Tl TNV N Nem byt ¥ T ,"\.'_'},;._/_' ----no failure
9 ‘ 1\,4/\/‘/\/,\ N one failure
= ! = N — i
® 200 o 8 three failures
(@]
@
@ 150
2 . .

100 N | Timeline

I RN
o 4oy <0p Sop “0p 500 50y)00 Sop (seconds)
Fig. 13. Reconfiguration timeline with replication.

Both figures show the same behavior. Nodes fail and througimops as two things oc-
cur. First, the system goes through its reconfigurationqualt increasing its load. Next,
during the reconfiguration, SMTP and POP sessions thatiatbk failed node abort. Af-
ter ten seconds, the system determines the new membersHifhraughput increases as
the remaining nodes take over for the failed ones. The faitetkes recover 300 seconds
later and rejoin the cluster, at which time throughput statrise. For the non-replicated
case, throughput increases back to the pre-failure lewabstlimmediately. With replica-
tion, throughput rises slowly as the failed nodes reconefide concurrently serving new
requests.

Figure 14 shows the timing of events that take place durirgjraegration of one node
(IN39) to a 29-node cluster. Overall, fourteen seconds are spartcbnfigure the mem-
bership and to recover the soft state. The first ten secordspant in the membership
protocol. Ongoing client sessions are not blocked duriiglkriod because the compu-
tational and the networking overheads of the membershifppobis minimal. The next
four seconds are spent to recover the soft state. Again,ioggbent sessions on existing
nodes are not affected during this period because the stdtrgtcovery affects nodes other

26 . Y. Saito, et al

ah A

LR A
©) 6 ®) @) Njzg

Os 10s 14s

(1) N3p recovers. Na (5) — User profile disk (7) — Mbox fragment (9) === Mail map up-

starts TRM. scan. 6ms/node. scan. 20ms on existing dates onVsg. 7ms/RPC.
(2) Nodes reply taVs. (6) === User profile up- nodes. (10) Soft state recon-
(3) N2 waits timeout. dates onNV3g. 7Tms/RPC. (8) — Mbox fragment struction completes.
(4) N2 computes the scan. 3300ms oiVgg. Replica reconciliation
new user map (4ms) and begins.

broadcasts the new mem-

bership.

Fig. 14. Time breakdown of failure recovery procedure. Timeline is not to scale.

than N3 only in a limited way — 6ms to scan the user profile and 20ms &m snailbox
fragments. On the other hanliz, needs to scan its entire email spool directories to dis-
cover mailboxes and fill other nodes’ mail maps (step 8). blitawh, N3¢ needs to receive
its assigned portions of the user profile database and mailfroen other nodes (steps 6
and 9). However, notice that the cost of step 8 is orders ofniadge larger than that of
all the other steps combined and depends only on the nod<dpacity and not on the
number of nodes in the cluster. Thus, this analysis dematestthat Porcupine’s failure
recovery scales with the cluster size.

7. LIMITATIONS AND FUTURE WORK

Porcupine’s architecture and implementation have beegmksd to run well in very large
clusters. There are, however, some aspects of its desigharsvironment in which it is
deployed that may need to be rethought as the system groasger lconfigurations.

First, Porcupine’s communication patterns are flat, witbrgwnode as likely to talk to
every other node. A 1Gb/second heavily switched networkilshbe able to serve about
6500 messages/second (or 560 million messages/day) witbplication. With replica-
tion, the network can handle 5200 messages/second, or 4&thmiessages/day. Beyond
that, faster networks or more network-topology-aware Ibathncing strategies will be
required to continue scaling.

Our membership protocol may also require adjustments asyitem grows. Presently,
the membership protocol has the coordinator receiving aeladgment packets from all
participants in a very short period of time. Although papi#mnts currently insert a random-
ized delay before responding to smooth out packet burstseateceiver, we still need to
evaluate whether this works well at very large scale. In ek, we are experimenting
with a hierarchical membership protocol that eliminatés pinoblem. In time, we may use
this to replace Porcupine’s current protocol.

Porcupine: A Highly Scalable, Cluster-based Mail Service . 27

Our strategy for reconstructing user profile soft state nisay aeed to be revisited for
systems in which a single user manager manages millionsen$ sany users, few ma-
chines). Rather than transferring the user profile sofestelbulk, as we do now, we could
modify the system to fetch profile entries on use and cachme.ti&is would reduce node
recovery time (possibly at the expense of making user losklgwer, however).

8. RELATED WORK

The prototypical distributed mail service is Grapevinei{@eder et al. 1984], a wide-area
service intended to support about ten thousand users. Gnapasers are statically as-
signed to (user-visible) registries. The system scalenititr the addition of new registries
having sufficient power to handle their populations. Newelgss, Grapevine’s adminis-
trators are often challenged to balance users across nmedrse In contrast, Porcupine
implements a flat name space managed by a single cluster amohatically balances
load. Grapevine provided a replicated user database basegtimistic replication, but it
did not replicate mail messages. Porcupine uses optinmegiccation for both mail and
the user database.

As described earlier, contemporary email cluster systeemogt many storage nodes
and partition the user population statically among thetheeiusing a distributed file sys-
tem [Christenson et al. 1997] or protocol redirectors [[@std 996]. As we demonstrate
in this paper, this static approach is difficult to manage scale and has limited fault
tolerance.

Numerous fault-tolerant, clustered-computing produetgehbeen described in the past
(e.g., [Kronenberg et al. 1986; Vogels et al. 1998; IBM 1998n Microsystems 1999]).
These clusters are often designed specifically for datefadsmver, have limited scalabil-
ity, and require proprietary hardware or software. Unlikeste systems, Porcupine’s goal
is to scale to hundreds or thousands of nodes using stanéfatteeshelf hardware and
software.

Fox et al. [Fox et al. 1997] describe an infrastructure foitdaug scalable network
services based on cluster computing. They introduce a datarstics called BASE (Basi-
cally Available, Soft-state, Eventual consistency) tHtgns advantages for web-search and
document-filtering applications. Our work shares many efrtiyoals: building scalable
Internet services with a semantics weaker than traditidatdbases. As in Fox’s work,
we observe that ACID semantics [Gray and Reuter 1993] magdosttong for our target
applications and define a data model that is equal to the ramsdctional model used by
the system'’s clients. However, unlike BASE, our semantiggsrt write-intensive appli-
cations requiring persistent data. Our services are asdolilited and replicated uniformly
across all nodes for greater scalability, rather thancstyi partitioned by function.

A large body of work exists on the general topic of load sh@rbut this work has been
targeted mainly at systems with long-running, CPU-bouskidaFor example, Eager et al.
[Eager et al. 1986] show that effective load sharing can beraplished with simple adap-
tive algorithms that use random probes to determine loafDahlin 1999; Mitzenmacher
1998], the authors propose a class of load distributionrélgus using a random spread of
nodes and a selection from the spread using cached loadnafimn. Their results show
that a spread of two is optimal for a wide variety of situatidma homogeneous cluster. In
the context of clusters and the Web, several commercialymtscautomatically distribute
requests to cluster nodes, typically using a form of roustur or load-based dispatching
[Cisco Systems 1999; Foundry Networks 1999; Resonate,988;1Platform Computing

28 . Y. Saito, et al

1999]. In [Pai et al. 1998], the authors describe a “locadityare request distribution”

mechanism for cluster-based Web services. A front-end aodéyzes the request con-
tent and attempts to direct requests so as to optimize thefuagfer cache in back-end
nodes, while also balancing load. Porcupine uses loadrirdtion, in part, to distribute

incoming mail traffic to cluster nodes. However, unlike po&s load-balancing studies
that assumed complete independence of incoming tasks,sedéalance the write traffic,

taking message affinity into consideration.

Transparent automatic reconfiguration has been studidtkindntext of disks and net-
works. AutoRAID [Wilkes et al. 1995] is a disk array that mew#ata among disks au-
tomatically in response to failures and usage pattern @®mngutonet [Rodeheffer and
Schroeder 1991] is a local area networking system that aatioatly reconfigures in re-
sponse to router failures.

Porcupine uses replicated user maps to partition the usssigeanent task among nodes.
This technique, called hash routing, has attracted widsatin recently, e.g., for web
serving [Pai et al. 1998; Valloppillil and Ross 1998; Kargéal. 1997] and for operating
system function distribution [Anderson et al. 1995; Fealegl. 1995; Snaman and Thiel
1987]. Porcupine is the first system that combines the groamiership protocol with
hash routing to let each node determine the exact change imatsh map.

The replication mechanism used in Porcupine can be viewad/adation of optimistic
replication schemes, in which timestamped updates areepushpeer nodes to support
multi-master replication [Agrawal et al. 1997; Wuu and Bstein 1984]. Porcupine’s total
object update property allows it to use a single timestammpbject, instead of timestamp
matrices, to order updates. In addition, since updatesiarepotent, Porcupine can retire
updates more aggressively. These differences make Pagsigipproach to replication
simpler and more efficient at scale.

Several file systems have scalability and fault toleran@dsgthat are similar to Porcu-
pine’s [Anderson et al. 1995; Birrell et al. 1993; Lee and Riketh 1996; Liskov et al.
1991; Thekkath et al. 1997]. Unlike these systems, Poreupges the semantics of the
various data structures it maintains to exploit their splggioperties in order to increase
performance or decrease complexity.

9. CONCLUSIONS

We have described the architecture, implementation, anfdpeance of the Porcupine
scalable mail server. We have shown that Porcupine meelsés primary goals:

Manageability Porcupine automatically adapts to changes in configuratimhwork-
load. Porcupine masks heterogeneity, providing for sessndystem growth over time
using latest-technology components.

Availability. Porcupine continues to deliver service to its clients, enehe presence of
failures. System software detects and recovers autorfiaticam failures and integrates
recovering nodes.

Performance Porcupine’s single-node performance is competitive wittensystems,
and its throughput scales linearly with the number of nod@sr experiments show that
the system can find and exploit added resources for its benefit

Porcupine achieves these goals by combining three keytacttial techniques based
on the principle of functional homogeneity: automatic mefaguration, dynamic transac-

Porcupine: A Highly Scalable, Cluster-based Mail Service . 29

tion scheduling, and replication. In the future, we hopednstruct, deploy and evaluate
configurations larger and more powerful than the ones dsestiin this paper.

ACKNOWLEDGEMENTS

We thank Eric Hoffman, Bertil Folliot, David Becker, and ettmembers of the Porcupine
project for the valuable discussions and comments on theupore design. We also thank
the anonymous reviewers for helping us improve the paper.

REFERENCES

AGRAWAL, D., ABBADI, A. E.,AND STEIKE, R. C. 1997. Epidemic algorithms in replicated database$6th
ACM Symp. on Princ. of Database SysteASM, Tucson, AZ, 161-172.

ANDERSON, T., DAHLIN, M., NEEFE, J., RTTERSON, D., ROSELLI, D., AND WANG, R. 1995. Serverless
network file systems. 165th Symposium on Operating Systems Principgh&M, Copper Mountain, CO.

BIRRELL, A. D., HISGEN, A., JERIAN, C., MANN, T.,AND SWART, G. 1993. The Echo distributed file system.
Tech. Rep. 111, Compag Systems Research Center. September.

Brisco, T. P. 1995. RFC1794: DNS support for load balancing. Hitmniv.cis.ohio-state.edu/htbin/rfc/rfc1794-
.html.

CHANKHUNTHOD, A., DANZIG, P., NEERDAELS, C., SCHWARTZ, M., AND WORRELL, K. 1996. A hierarchi-
cal internet object cache. Winter USENIX Technical Conference

CHEN, P. M., LEE, E. K., GIBSON, G. A., KATZ, R. H., AND PATTERSON, D. A. 1994. RAID: High-
performance, reliable secondary stora§€M Computing Surveys 28,(June), 145-185.

CHRISTENSON N., BOSSERMAN T., AND BECKEMEYER, D. 1997. A highly scalable electronic mail service
using open systems. Bymposium on Internet Technologies and Systef8ENIX, Monterey, CA.

CHRISTIAN, F.AND SCHMUCK, F. 1995. Agreeing on processor group membership in asynobs distributed
systems. Tech. Rep. CSE95-428, UC San Diego.

CiscoSYSTEMS. 1999. Local director. http://www.cisco.com/warp/pablis1/lodir/index.html.

CRISPIN, M. 1996. RFC2060: Internet message access protocol vedsiev 1. http://www.cis.ohio-state-
.edu/htbin/rfc/rfc2060.html.

DAHLIN, M. 1999. Interpreting stale load information. Tie 19th International Conference on Distributed
Computing Systems (ICDC$EEE, Austin, TX.

DEROEST J. 1996. Clusters help allocate computing resources. ://atgpwv.washington.edu/techome/-
windows/issuel8/clusters.html.

EAGER, D. L.,LAZOWSKA, E. D.,AND ZAHORJAN, J. 1986. Adaptive load sharing in homogeneous distributed
systemslEEE Trans. on Software Engineering B(May), 662—675.

FEELEY, M. M., MORGAN, W. E., RGHIN, F. H., KARLIN, A. R., LEVY, H. M., AND THEKKATH, C. A.
1995. Implementing global memory management in a workstatiuster. In15th Symposium on Operating
Systems PrincipleACM, Copper Mountain, CO, 130-146.

FOUNDRY NETWORKS. 1999. Serverlron Switch. http://www.foundrynet.cormvsgironfspec.html.

Fox, A., GRIBBLE, S. D., GHAWATHE, Y., BREWER E. A.,AND GAUTHIER, P. 1997. Cluster-based scalable
network services. 1A6th Symposium on Operating Systems Principd&M, St. Malo, France, 78-91.

GRAY, J.AND REUTER, A. 1993. Transaction Processing: Concepts and Technigqiésrgan-Kaufmann.

IBM. 1998. High Availability Cluster Multi-Processing for ALX Available at http://www.rs6000.ibm-
.com/doclink/en_.US/adoc lib/aixgen/hacmpindex.html.

KARGER, D., LEHMAN, E., LEIGHTON, T., PANIGRAHY, R., LEVINE, M., AND LEWIN, D. 1997. Consistent
hashing and random trees: distributed caching protocolsefeving hot spots on the World Wide Web. In
Symposium on Theory of Computidd"M, El Paso, TX, 654-663.

KRONENBERG N. P., LEVY, H. M., AND STRECKER, W. D. 1986. VAXclusters: A closely-coupled distributed
system.ACM Trans. on Computer Systems12130-146.

LAMPORT, L. 1978. Time, clocks, and the ordering of events in a disted system Communications of the
ACM 21,7 (July), 558-565.

LEE, E. K.AND THEKKATH, C. 1996. Petal: Distributed virtual disks. Tth International Conf. on Architectural
Support for Prog. Lang. and Operating Syste®&M, Cambridge, MA, 84-92.

30 . Y. Saito, et al

Liskov, B., GHEMAWAT, S., GRUBER, R., OHNSON, P., SHRIRA, L., AND WILLIAMS , M. 1991. Replication
in the Harp file system. 163th Symposium on Operating Systems Principh&M, Pacific Grove, CA, 226—
238.

Liskov, B., SHRIRA, L., AND WROCLAWSKI, J. 1991. Efficient at-most-once messages based on syizéaon
clocks. ACM Trans. on Computer System29125-142.

MiLLs, D. L. 1992. RFC1305: Network time protocol (version 3). ptfftvww.cis.ohio-state-
.edu/htbin/rfc/rfc1305.html.

MiLLs, D. L. 1994. Improved algorithms for synchronizing computetwork clocks. INSIGCOMM ACM,
London, UK, 317-327.

MITZENMACHER, M. 1998. How useful is old information? Tech. Rep. 98-002npaq Systems Research
Center. Feb.

MYERS, J. G.AND ROSE, M. T. 1996. RFC1939: Post office protocol version 3. httypwiv.cis.ohio-state-
.edu/htbin/rfc/rfc1939.html.

Pal, V. S., ARON, M., BANGA, G., SYENDSEN, M., DRUSCHEL, P., ZWAENEPOEL, W., AND NAHUM, E.
1998. Locality-aware request distribution in clusterdzhsietwork servers. I8th International Conf. on
Architectural Support for Prog. Lang. and Operating SysteACM, San Jose, CA, 206-216.

PLATFORM COMPUTING. 1999. LSF. http://www.platform.com.

POSTEL, J. 1982. RFC821: Simple mail transfer protocol. http:/iwuais.ohio-state.edu/htbin/rfc/rfc821.html.

RESONATE, INC. 1998. Central Dispatch. http://www.resonate.com/peatelaentraldispatch/.

RODEHEFFER T. AND SCHROEDER M. D. 1991. Automatic reconfiguration in Autonet. 113th Symposium
on Operating Systems Principle&CM, Pacific Grove, CA, 183-187.

SCHROEDER M. D., BIRRELL, A. D., AND NEEDHAM, R. M. 1984. Experience with Grapevine: The growth
of a distributed systemACM Transactions on Computer System& Zebruary), 3—-23.

SNAMAN , W. E.AND THIEL, D. W. 1987. The VAX/VMS distributed lock managérigital Technical Journab.

SUN MICROSYSTEMS 1999. Sun Cluster ArchitectureAvailable at http://www.sun.com/clusters/wp-clusters
arch.pdf.

THEKKATH, C., MANN, T.,AND LEE, E. 1997. Frangipani: A scalable distributed file system16th Sympo-
sium on Operating Systems Principlé&CM, St. Malo, France, 224-237.

Ts' 0, T. 1999. Ext2 home page. http://web.mit.edu/tytso/winms/ext2.html.

VALLOPPILLIL, V. AND Ross K. W. 1998. Cache array routing protocol v1.0. Internetftdra
http://www.ircache.net/Cache/ICP/carp.txt.

VOGELS, W., DUMITRIU, D., BIRMAN, K., GAMACHE, R., MASSA, M., SHORT, R., VERT, J., BARRERA,
J.,AND GRAY, J. 1998. The design and architecture of the Microsoft efusérvice. In28th International
Symposium on Fault-Tolerant ComputinGEE, Munich, Germany, 422-431.

WILKES, J., GOLDING, R., STAELIN, C.,AND SULLIVAN, T. 1995. The HP AutoRAID hierarchical storage
system. Inl5th Symp. on Operating Systems Princip/&SM, Copper Mountain, CO, 96-108.

Wuu, G. T. J.AND BERNSTEIN, A. J. 1984. Efficient solutions to the replicated log andidiwary problems.
In Proceedings of the 3rd Symposium on Principles of DisteBu€omputing ACM, Vancouver, Canada,
233-242.

