Paxos

CSEP590SG- University of Washington
Steve Gribble (gribble@cs.washington.edu)

[This material is cobbled together from various papers by Butler
Lampson and Leslie Lamport.]

Context

« Start with a (known) set of leaders and agents

— leaders can be agents, or leaders might not be agents

« Goal of system is to pass a decree
— system proceeds through sequence of rounds until decree is passed

— any leader can choose to begin a sequence for a new decree

* and, multiple leaders can offer opinions on what value of decree is
— termination: majority of agents agree on the same outcome of decree
A round:

— leader “proposes” value, agents may “accept” value

— value is “chosen” as soon as majority of agents accept the same value
in a round

CSEP590SG, Winter 2004 ©2004, Steven D. Gribble

Comments on context

* Unlike BGP:

— decrees can be started at any time

* in BGP, problem is phrased so that consensus problem has
already begun

— byzantine failures are not tolerated
* all agents “believe” anything that any leader proposes

* the consensus problem is about conflicting proposals, not
untrustworthy participants

— [alternatively, about order of proposals: conflict is
disagreement on which goes next]

— no assumptions about reliability of network
* besides the fact that messages are never corrupted
* messages can be dropped, reordered, delayed, duplicated, etc.

CSEP590SG, Winter 2004 ©2004, Steven D. Gribble

“Correctness”’

 Paxos is a protocol that:

— guarantees correctness under all circumstances

* including # of simultaneous leaders, # and rate of leader/agent failure and
recovery, and bad network juju

— terminates under some circumstances
* if a single leader runs by itself in a round for long enough time to talk to
majority of agents twice

« “correct” := safety + liveness

— safety [a.k.a. agreement + integrity]
* only a single value that has been proposed may be chosen
* only a single value is chosen
* agent never learns that a value is chosen unless it has been
— liveness [a.k.a termination]:
* terminates under certain circumstances

CSEP590SG, Winter 2004 ©2004, Steven D. Gribble

Basic idea for single decree synod

Name rounds by (round #, leader name)
— thus, guarantee only a single leader per round
* leader names must be unique and ordered

— assume we are in round X
* around earlier than X may proceed/finish after X finishes
* around after X may “stomp all over” X
* need to worry about both cases

In each round:

— leader first “interrogates” agents to figure out what decisions have been made
in the past

— if hears back from a quorum of agents, leader then “proposes” a value for the
decree consistent with what has happened in past, else give up round

— if majority of agents see and accept proposal, the value is chosen and the
algorithm has “morally terminated”

CSEP590SG, Winter 2004 ©2004, Steven D. Gribble

Challenges faced by idea

Previous or future rounds may be temporally concurrent

- and hence agents may see proposals from many rounds at
same time, and worse, those proposals may conflict

Leader may fail
— and hence not send proposals to enough agents

A leader or agent may wake up after a long slumber
— and not know what is going on, or what happened in the past

- for example, a leader may wake up and not know that the
algorithm has terminated! (i.e., that a value was chosen)

Asynchronous system: failure and slumber indistinguishable

CSEP590SG, Winter 2004 ©2004, Steven D. Gribble

ldea: use correctness conditions to deduce
constraints on protocol

* imagine only a single leader ever exists, it interrogates,
then sends out its proposals, then dies.

— if a majority of agents hear proposal, the proposal must be chosen,
according to termination condition
-~ hence, an agent must accept first proposal that it hears
* because it can’t know if more proposals are coming, and it can’t know
whether or not other agents accept or not

- safety condition: only a single value is every chosen

— thus, if in round M a proposal V is chosen...
* then every higher-numbered proposal that is chosen has value V

* but: a leader cannot predict whether a proposal will be chosen or not- it
must assume that it might be chosen

— thus, every higher-numbered proposal must have value V.

CSEP590SG, Winter 2004 ©2004, Steven D. Gribble

What this implies about leaders

During the interrogation phase, a leader must find out
what proposals might have been chosen already
— if it is conceivable that a proposal might have been chosen in

the past...
* the leader must select the same value for its future proposals

— using agent state, figure out rounds that are dead. if all dead,
pick any value. of any non-dead, must pick that value.
Also, leader must prevent any “temporally concurrent”
proposals from previous rounds from being chosen
— since their value might conflict

— convention: later numbered rounds “squelch” earlier numbered
rounds

CSEP590SG, Winter 2004 ©2004, Steven D. Gribble

What this implies about agents

« If agent hears an interrogation in round M, it atomically:

— squelches any rounds earlier than M

* what this means in practice is accepting “no” for that round, where
“no” is a special value that says the agent believes the round
should fail

* majority of “no” votes means the round has failed
— returns its history [what it accepted] for rounds earlier than M-1
* Note that at this point, the history of all rounds earlier
than M is fixed for that agent

— no future rounds can change the outcome of these earlier
rounds, under any circumstances

— history reported is always complete - leader gets all or none

CSEP590SG, Winter 2004 ©2004, Steven D. Gribble

A nice side-effect of majority

« How does a leader know what past values might have been
chosen?

— ifaround is chosen, then a majority of agents accepted the value

— any two majority sets share at least one agent

— during interrogation, the leader self-imposes the requirement that it

hears back from a majority of agents
* if a value has been chosen in the past
— then, at least one agent
that the leader heard back from

is an agent that accepted the chosen value

[byzantine: need to hear back from majority of “good” agents, hence 3K+1,
not 2K+1]

How to reason about the past

« So, after interrogation:

— if leader doesn’t hear back from majority, round dies [no action
needed]

— if leader hears back from majority, then:

* if nobody in majority has accepted any proposals ever [everybody said “no”
for all rounds], leader can propose any value it wants

* if all earlier rounds are “dead”- provable that majority said no- leader can
propose any value it wants

* else, not provable that some earlier round was dead- leader must assume
the value in that round was chosen by majority

— leader figures out value of the highest numbered proposal that
somebody has accepted in a non-dead round, and proposes that
value

CSEP590SG, Winter 2004 ©2004, Steven D. Gribble

Why use highest numbered proposal?

« Any proposal accepted by an agent in a non-dead round is OK

- thus, as long as it doesn’t violate correctness, it is OK for the leader to use the
highest numbered proposal from set of non-dead rounds

» If the leader uses this, we can prove correctness
— using highest numbered proposal provides an “induction” across all rounds

— Assume a value is chosen in round M
» all “earlier” rounds are squelched
* and thus, all “later” rounds will have same proposal
— because no other value can ever be proposed
— If a value has been proposed but not chosen...
* concurrent proposals might be happening to different non-majority sets
* leaders might discover any (or none) of these values during interrogation

CSEP590SG, Winter 2004 ©2004, Steven D. Gribble

Another way of thinking about it..

Assume there are 5 agents, and 2 leaders L1,L2

Leader doesn’t know whether a value is chosen
— manifestly, else it wouldn’t be participating anymore

Assume leader L1 interrogates in round 3, and gets:
- round (1, L1): {1, -, -, no, 1}
- round (1, L2): {2, -, -, no, no}
- round (2, L1): {no, -, -, 1, 1}
- round (3,L1): {1,-,-, 1,1}

* what is correct outcome?

How about:

- round (1,L1): {1,- - - 1}

- round (1, L2): {2,-, -, -, no}
- round (2, L1): {no, -, -, -, 1}
- round (3,L1): {1,-, -, -, no}

FORCED to choose latest (possibly) non-dead round value

CSEP590SG, Winter 2004 ©2004, Steven D. Gribble

Another pop quiz...

agent: {a, b, c}

round 1: vote 7 {7, no, no}
round 2: vote 8 {8, no, no}
round 3: vote 9: {no, no, 9}

what are choices for leader in round 4, if:

all a,b,c report?
if a,b report?

if a,c report?

CSEP590SG, Winter 2004

©2004, Steven D. Gribble

More detail

* A leader will look back through the history from
interrogation, and:
— skip rounds that are “dead”

* rounds with no value reported at all

* rounds in which it can prove there is no majority, because it heard
from enough “no” votes

— once it hits a round that might not be dead
* it picks the value reported from that round to propose in the future

* because, it can’t tell whether or not a majority accepted the value,
so it must pessimistically assume that it did

— if all previous rounds are dead

* it picks any value that it likes

CSEP590SG, Winter 2004 ©2004, Steven D. Gribble

Another pop quiz...

agent: {a, b, c}

round 1: vote 7 {7, no, no}
round 2: vote 8 {8, no, no}
round 3: vote 9: {no, no, 9}

what are choices for leader in round 4, if:
all a,b,c report? anything - all rounds dead
if a,b report? must choose 8: r3 dead, can’t tell r2
if a,c report? must choose 9: can’t rell r3 dead

if b,c report? must choose 9: can’t tell r3 dead

CSEP590SG, Winter 2004 ©2004, Steven D. Gribble

It turns out that...

« If an agent wants, it can just report its latest accepted

value, and that’s good enough

— But this has implications. Consider the following two cases:

M no | no

1 no 1
M#1 | 3 | no | no| 3 | no
M+1 no 2 no | no | no
M+2 2 |no | no| 2 | no

1 1
(no) (no)
2 |(no) (no)
(no) | (no) | 2 | (no)

|

CSEP590SG, Winter 2004

1]

1T

©2004, Steven D. Gribble

Full algorithm

 Leader:
— pick a new round number greater than any other it has chosen

— interrogate all agents for their status. if not get majority of
agents responding, terminate round.

— if majority responds:
* pick value to preserve invariant that chosen is stable
* command (a majority) of agents to accept value
* If leader wants, it can then
-~ hear back from, or ask, agents to see if a majority did accept

— and if so, publish the outcome

CSEP590SG, Winter 2004 ©2004, Steven D. Gribble

Full Algorithm

 Agent:
— if hear a new interrogation for a new round:
* mark “no” for earlier rounds for which it hasn’t accepted a value
* report either
— full history of previous rounds
— or, latest round for which it accepted a value
— if hear a proposal for a round:
* if the round is marked “no” or already accepted, drop proposal

* otherwise, accept proposal

 If agent wants, can:

— broadcast or notify to leader once it accepts a proposal

CSEP590SG, Winter 2004 ©2004, Steven D. Gribble

Other optimizations

« Stateless leaders

— before, a leader needed keep state to pick a higher round
number. instead, can interrogate agents for their current
highest round number

 Multiple decrees

— if same leader across multiple decrees in common case, then
leader doesn’t need to query state except at very beginning

* implies a running leader knows when a leader change occurs, l.e.,
some new mechanism enforces a single leader and notifies
(old,new) when change occurs

CSEP590SG, Winter 2004 ©2004, Steven D. Gribble

