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Abstract: We explore the abstraction of failure transparency
in which the operating system provides the illusion of fail-
ure-free operation. To provide failure transparency, an oper-
ating system must recover applications after hardware,
operating system, and application failures, and must do so
without help from the programmer or unduly slowing fail-
ure-free performance. We describe two invariants that must
be upheld to provide failure transparency: one that ensures
sufficient application state is saved to guarantee the user can-
not discern failures, and another that ensures sufficient appli-
cation state is lost to allow recovery from failures affecting
application state. We find that several real applications get
failure transparency in the presence of simple stop failures
with overhead of 0-12%. Less encouragingly, we find that
applications violate one invariant in the course of upholding
the other for more than 90% of application faults and 3-15%
of operating system faults, rendering transparent recovery
impossible for these cases.

1. Introduction
One of the most important jobs of the operating system

is to conceal the complexities and inadequacies of the under-
lying machine. Towards this end, modern operating systems
provide a variety of abstractions. To conceal machines’ lim-
ited memory, for example, operating systems provide the
abstraction of practically boundless virtual memory. Simi-
larly, operating systems give the abstraction of multithread-
ing for those applications that might benefit from more
processors than are present in hardware.

Failures by computer system components, be they
hardware, software, or the application, are a shortcoming of
modern systems that has not been abstracted away. Instead,
computer programmers and users routinely have to deal with
the effects of failures, even on machines running state-of-
the-art operating systems.

With this paper we explore the abstraction of failure
transparency in which the operating system generates the
illusion of failure-free operation. To provide this illusion, the
operating system must handle all hardware, software, and
application failures to keep them from affecting what the
user sees. Furthermore, the operating system must do so
without help from the programmer and without unduly slow-
ing down failure-free operation.

Fault-tolerance research has established many of the
components of failure transparency, such as programmer-
transparent recovery [4, 11, 25, 28], and recovery for general
applications [4, 14]. Some researchers have even discussed
handling application failures [13, 17, 31].

However, significant questions surrounding failure
transparency remain. The focus of this paper is on delving
into several of these unanswered questions. First, we will
explore the question “how does one guarantee failure trans-
parency in general?” The answer to this question comes in
the form of two invariants. The first invariant is a reformula-
tion of existing recovery theory, governing when an applica-
tion must save its work to ensure that the user does not
discern failures. In contrast, the second invariant governs
how much work an application must lose to avoid forcing the
same failure during recovery.

The Save-work invariant can require applications to
commit their state frequently to stable storage. The question
therefore arises “how expensive is it for general applications
to uphold the Save-work invariant?” In answering this ques-
tion we find, to our surprise, that even complex, general
applications are able to efficiently uphold Save-work.

Given that the Save-work invariant forces applications
to preserve work and the Lose-work invariant forces applica-
tions to throw work away, we conclude by investigating the
question, “how often do these invariants conflict, making
failure transparency impossible?” The unfortunate answer is
that the invariants conflict all too often.

2. Guaranteeing Failure Transparency
We first delve into the question: how does one guaran-

tee failure transparency in general? Our exploration begins
with a synthesis of existing recovery theory that culminates
in the Save-work invariant. In Section 2.4, we then extend
recovery theory to point out a parameterization of the space
of recovery protocols, as well as the relationship between
protocols at different points in the space. Finally, we develop
a new theory and second invariant for ensuring the possibil-
ity of recovery from failures that affect application state.

2.1. Primitives for general recovery
In attempting to provide failure transparency, the goal

is to recover applications using only general techniques that
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require no help from the application. There are several
recovery primitives available to us in this domain: commit
events, rollback of a process, and reexecution from a prior
state.

A process can execute commit events to aid recovery
after a failure. By executing a commit event, a process pre-
serves its state at the time of the commit so that it can later
restore that state and continue execution. Although how
commit events are implemented is not important to our dis-
cussion, executing a commit event might involve writing out
a full-process checkpoint to stable storage, ending a transac-
tion, or sending a state-update message to a backup process.

When a failure occurs, the application undergoes roll-
back of its failed processes; each failed process is returned to
its last committed state. From that state, the recovering pro-
cess begins reexecution, possibly recomputing work lost in
the failure.

Providing generic recovery requires that applications
tolerate forced rollback and reexecution. As a result, all
application operations must be either undoable or redoable.

Most application operations that simply modify process
state are easily undone. However, some events, such as mes-
sage sends, are hard to undo. Undoing a send can involve the
added challenge of rolling back the recipient’s state. Other
events can be impossible to undo. For example, we cannot
undo the effects on the user resulting from visible output.
However, systems providing failure transparency ensure that
these user-visible events will never be undone.

Similarly, since simple state changes by the application
are idempotent, most application events can be safely
redone. However, events like message sends and receives are
more difficult to redo. For message send events to be redo-
able, the application must either tolerate or filter duplicate
messages. For receive events to be redoable, messages must
be saved at either the sender or receiver so they can be re-
delivered after a failure. Luckily, these reexecution require-
ments are very similar to the demands made of systems that
transmit messages on unreliable channels (e.g. UDP). Such
systems must already work correctly even with lost or dupli-
cated messages. For many recovery systems, an application
or protocol layer’s natural filtering and retransmission mech-
anisms will be enough to support the needs of reexecution
recovery. For others, messages may have to be held in a
recovery buffer of some kind so they can be re-delivered
should a receive event be redone.

2.2. Computation and failure model
We will informally present a recovery theory that will

let us relate the challenge of guaranteeing failure transpar-
ency to the precise events executed by an application. For a
more formal version of the theory, please see [22].

We begin by constructing a model of computing. One
or more processes working together on a task is called a
computation. We model each process as a finite state

machine. That is, each process has state and computes by
transitioning from state to state according to the inputs it
receives. Each state transition executed by a process is an
event. An event is the i’th event executed by process p.
Events can correspond in real programs to simple changes of
application state, sending and receiving messages, and so on.
We call events that have an effect on the user visible events
(these events have traditionally been called “output events”
[11]). Under our model, computation proceeds asynchro-
nously, that is, without known bounds on message delivery
time or the relative speeds of processes.

As needed, we will order events in our asynchronous
computations with Lamport’s happens-before relation [19].
We may also need to discuss the causal relationship between
events. For example, we may need to ask, “did event e in
some way cause event ?” We will use happens-before as
an approximation of causality. We will however distinguish
between happens-before’s use as an ordering constraint and
its use as an approximation of causality by using the expres-
sion causally precedes in this latter role. That is, we say
event e causally precedes event if and only if e happens-
before  and we intend to convey that e causes event .

We will consider failures of two forms. A stop failure is
one in which execution of one or more processes in the com-
putation simply ceases. Stop failures do occur in real sys-
tems—the loss of power, the frying of a processor, or the
abrupt halting of the operating system all appear to the
recovery system as stop failures. Since stop failures instanta-
neously stop the execution of the application and do not cor-
rupt application state, recovering from them is relatively
easy.

Harder to handle are propagation failures. We define a
propagation failure to be one in which a bug somewhere in
the system causes the application to enter a state it would not
enter in a failure-free execution. A propagation failure can
begin with a bug in hardware, the operating system, or the
application. Bugs in the application are always propagation
failures, but bugs in hardware and the operating system are
propagation failures only once they affect application state.

Recovering from propagation failures is hard because a
process can execute for some time after the failure is trig-
gered. During that time the process can propagate buggy data
into larger portions of its state, to other processes, or onto
stable storage.

We can imagine bugs that do not cause crashes, but that
simply cause incorrect visible output by the application.
However, our focus with this work is on recovering from
failures. Therefore, we will assume that applications will
detect faults and fail before generating incorrect output.

2.3. Failure transparency for stop failures
We start by examining how to ensure failure transpar-

ency in the presence of stop failures. We must first fix a pre-
cise notion of “correct” recovery from failures. We could
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establish almost any standard: recovering the exact pre-fail-
ure state, losing less than 10 seconds of work, and so on.
However, given that our end goal is to mask failures from the
user, we will define correct recovery in terms of the applica-
tion output seen by the user.

Given a computation in which processes have failed,
recovered, and continued execution:

Definition: Consistent Recovery
Recovery is consistent if and only if there exists a com-
plete, failure-free execution of the computation that
would result in a sequence of visible events equivalent
to the sequence of visible events actually output in the
failed and recovered run.

Thus for an application’s recovery to be consistent, the
sum total of the application’s visible output before and after
a failure must be equivalent to the output from some failure-
free execution of the application.

It is possible that many different modes of consistent
recovery could be allowed depending on how one defines
“equivalent”. For our purposes, we will call a sequence of
visible events V output by a recovered computation equiva-
lent to sequence output by a failure-free run if the only
events in V that differ from are repeats of earlier events
from V.

We use equivalence in which duplicate visible events
are allowed because guaranteeing no duplication is very hard
(exactly once delivery problem). Furthermore, allowing
duplicates provides some flexibility in how one attains con-
sistent recovery. More importantly, users can probably over-
look duplicated visible events. See [22] for a more detailed
discussion of equivalence.

Our definition of consistent recovery places two con-
straints on recovering applications. First, computations must
always execute visible events that extend a legal, failure-free
sequence of visible events, even in the presence of failures.
We will call this the visible constraint. Second, computations
must always be able to execute to completion. This latter
constraint follows from the fact that consistent recovery is
defined in terms of complete sequences of visible events. If a
failure prevents an application from running to completion,
its sequence can never be complete. For reasons that will
become clear later, we will call this second constraint on
recovery the no-orphan constraint.

Although consistent recovery and failure transparency
are closely related, they are not the same thing. Providing
failure transparency amounts to guaranteeing consistent
recovery without any help from the application, and without
slowing the application’s execution appreciably.

Our next task is to examine how to guarantee applica-
tions get consistent recovery. One particular class of events
poses the greatest challenge: non-deterministic events. In a
state-machine, a non-deterministic event is a transition from
a state that has multiple possible next states. For example, in

Figure 1, events and are both non-deterministic. In
real systems, non-deterministic events correspond to actions
that can have different results before and after a failure, like
checking the time-of-day clock, taking a signal, reading user
input, or receiving a message.

Non-deterministic events are intimately related to con-
sistent recovery. To see how, again consider the application
shown in Figure 1. Imagine that the application executes
non-deterministic event , then the visible event “heads”,
then fails. Then during recovery imagine that the application
rolls back and this time executes followed by the visible
event “tails”. Although this application can correctly output
either heads or tails, in no correct execution does it output
both heads and tails. Therefore, recovery in this example is
not consistent and our sample application’s non-determinis-
tic events are the culprits.

As discussed in Section 2.1, applications can execute
commit events to aid later rollback. We would like to use
commit events to guarantee consistent recovery, avoiding the
inconsistency non-deterministic events can cause. The fol-
lowing theorem provides the necessary and sufficient condi-
tion for doing exactly that under stop failures.

Save-work Theorem
A computation is guaranteed consistent recovery from
stop failures if and only if for each executed non-deter-
ministic event that causally precedes a visible or
commit event e, process p executes a commit event
such that happens-before (or atomic with) e, and

.

This theorem dictates when processes must commit in
order to ensure consistent recovery. At the heart of this theo-
rem is the Save-work invariant, which informally states
“each process has to commit all its non-deterministic events
that causally precede visible or commit events”. We can fur-
ther divide this invariant into separate rules, one that
enforces the visible constraint of consistent recovery, and
one that enforces the no-orphan constraint. If we follow the
rule “commit every non-deterministic event that causally
precedes a visible event”, we are assured that the applica-
tion’s visible output will always extend a legal sequence of
visible events. We’ll call this the Save-work-visible invari-
ant. If we follow the rule “commit every non-deterministic
event that causally precedes a commit event”, we are assured
that a finite number of stop failures cannot prevent the appli-
cation from executing to completion. We’ll call this the
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Figure 1: Coin-flip application. Depending on whether non-
deterministic event or gets executed, the application
executes one of two possible visible events.
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Save-work-orphan invariant. To better understand this latter
rule, consider the computation depicted in Figure 2.

A process is called an orphan if it has committed a
dependence on another process’s non-deterministic event
that has been lost and may not be reexecuted. For example,
Process A in Figure 2 is an orphan because it has committed
its dependence on Process B’s lost non-deterministic event.

An orphan can prevent an application from executing to
completion when it is upholding Save-work-visible. Con-
sider an orphan that has committed a dependence on a lost
non-deterministic event . If the orphan attempts to exe-
cute a visible event e, Save-work-visible requires that pro-
cess p commit . However, since process p has already
failed and aborted , it cannot commit it. Furthermore,
since the orphan cannot abort its dependence on , it can
never execute e and the computation will not be able to com-
plete.

The remedy for this scenario is to uphold Save-work-
orphan, which ensures that any non-deterministic event that
causally precedes a commit is committed.

We must make two assumptions for the Save-work
Theorem to be necessary. We ensure the necessity of Save-
work-visible by assuming that all non-deterministic events
can cause inconsistency. We ensure the necessity of Save-
work-orphan by assuming that all processes in the computa-
tion affect the computation’s visible output. For the details of
these assumptions as well as the proof of the Save-work The-
orem, please see [22].

2.4. Upholding Save-work
There are many ways an application can uphold the

Save-work invariant to ensure consistent recovery for stop
failures. For example, an application can execute a commit
event for every event executed by the application. Although
such a protocol will cause a very large number of commits, it
has the advantage of being trivial to implement: the protocol
does not need to figure out which events are non-determinis-
tic, or which events are visible. Even without knowing event
types, it correctly upholds the Save-work invariant.

Consider a protocol in which each process executes a
commit event immediately after each non-deterministic
event. In committing all non-deterministic events, this proto-

col will certainly commit those non-deterministic events that
causally precede visible or commit events. Therefore it
upholds Save-work and will guarantee consistent recovery.
We call this protocol Commit After Non-Deterministic, or
CAND.

We can also uphold Save-work without knowing about
the non-determinism in the computation. Under the Commit
Prior to Visible or Send protocol (CPVS), each process com-
mits just before doing a visible event or a send to another
process. When a process commits before each of its visible
events, it is assured that all its non-determinism that causally
precedes the visible event is committed. If each process also
commits before every send event, then it cannot pass a
dependence on an uncommitted non-deterministic event to
another process. Thus, CPVS also upholds Save-work.

The Commit Between Non-Deterministic and Visible
or Send (CBNDVS) protocol takes advantage of knowledge
of both non-determinism and visible and send events in order
to uphold Save-work. Under this protocol, each process
commits immediately before a visible or send event if the
process has executed a non-deterministic event since its last
commit.

Since commit events can involve writing lots of data to
stable storage, they can be slow. Therefore, minimizing the
number of commits executed can be important to failure-free
performance. There exist several general techniques for min-
imizing commits.

Logging is a general technique for reducing an applica-
tion’s non-determinism [12]. If an application writes the
result of a non-deterministic event to a persistent log, and
then uses that log record during recovery to ensure the event
executes with the same result, the event is effectively ren-
dered deterministic. Logging some of an application’s non-
determinism can significantly reduce commit frequency.
Logging all an application’s non-determinism lets the appli-
cation uphold Save-work without committing at all.

Tracking whether one process’s non-determinism caus-
ally precedes events on another process can be complex. In
fact, we can think of the CPVS protocol as pessimistically
committing before send events rather than track causality
between processes. However, applications can avoid com-
mitting before sends without tracking causality by employ-
ing a distributed commit, such as two-phase commit (2PC)—
all processes would commit whenever any process does a
visible event. Using two-phase commit can reduce commit
frequency if visible events are less frequent than sends.
Applications can further reduce commits by tracking causal-
ity between processes, involving in the coordinated commit
only those processes with relevant non-deterministic events.

Not only can each of these protocols be viewed as a dif-
ferent technique for upholding Save-work, but so can all
existing protocols from the recovery literature.

For example, pure message logging protocols make all
message receive events deterministic, allowing applications

ND

failure

Process A

Process B

Figure 2: A problematic distributed computation. We see two
processes’ timelines. The arrow between the processes represents a
message from B to A. Black boxes represents commits. The event
marked “ND” is a non-deterministic event. Process A is an orphan
after Process B’s failure as A has committed a dependence on B’s
lost non-deterministic event.
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whose only non-deterministic events are receives to uphold
Save-work without committing. The different message log-
ging protocols differ in how the logging is carried out. For
example, Sender-based Logging (SBL) protocols keep the
log record for the receive event in the volatile memory of the
sender [15], while Family-based Logging (FBL) keeps log
entries in the memory of downstream processes [2].

In the Manetho system, each process maintains log
records for all the non-deterministic events it depends on in
an antecedence graph. When a process wants to execute a
visible event, it upholds Save-work by writing the anteced-
ence graph to stable storage [11]. In the Optimistic Logging
protocol, processes write log records to stable storage asyn-
chronously [28]. When a process wants to do a visible event,
it upholds Save-work by first waiting for all relevant log
records to make it to disk.

The Targon/32 system attempts to handle more non-
determinism than these other logging protocols [4]. All
sources of non-determinism except signals are converted into
messages that are logged in the memory of a backup process
on another processor. Whenever a signal is delivered (an
event that remains non-deterministic), Targon/32 forces a
commit to uphold Save-work. The Hypervisor system logs
all sources of non-determinism using a virtual machine
under the operating system [5].

Under a Coordinated Checkpointing protocol, a pro-
cess executing a visible event essentially assumes that all
processes in the computation with which it has recently com-
municated have executed non-deterministic events that caus-
ally precede the visible event [18]. To uphold the Save-work
invariant, the process executing the visible event initiates an
agreement protocol to force all these other processes to com-
mit.

Each of these recovery protocols represents a different
technique for upholding Save-work. Each to varying degrees
trades off programmer effort and system complexity for
reduced commit frequency (and hopefully overhead).

Some protocols focus their effort to reduce commit fre-
quency on the challenge of identifying and reducing non-
determinism. Others endeavor to use knowledge of an appli-
cation’s visible events. Still others do some of each. Each
protocol can be seen as representing a point in a two-dimen-
sional space of protocols. One axis in the space represents
effort made to identify and possibly convert application non-
determinism. The other axis represents effort made to iden-
tify visible events and to commit as few non-visible events as
possible.

Such a protocol space is useful because it helps us
understand the relationships between historically disparate
protocols and to identify new ones. Figure 3 shows how the
protocols we have described in this section might appear in
such a protocol space.

A protocol falling at the origin of the space would
uphold Save-work by committing every event executed by

each process, exerting no effort to determine which events
are non-deterministic or visible. As protocols fall further out
the horizontal axis, they make sufficient effort to recognize
that some events are deterministic and therefore do not
require commits. At the point occupied by CAND, the proto-
col makes sufficient effort to distinguish all of the applica-
tion’s deterministic and non-deterministic events, executing
a commit only after non-deterministic ones. Beyond that
point, the protocols begin to employ logging, exerting effort
to convert more and more of the application’s non-determin-
istic events into deterministic ones. A protocol in that portion
of the space forces a commit only when the application exe-
cutes some unlogged non-determinism. At the point occu-
pied by Hypervisor, the protocol makes sufficient effort to
log all non-determinism, never forcing a commit.

For the vertical axis, we can think of the protocol at the
origin as committing all events rather than exert the effort
needed to determine which events are visible. Protocols fall-
ing further up the axis exert more effort to avoid committing
events that are not visible. At the point occupied by CPVS,
protocols commit only the true visible events and send
events—committing before sends takes less effort than track-
ing whether that send leads to a visible event on another pro-
cess. Protocols falling yet further up in the space (such as
Coordinated Checkpointing) are able to ask remote pro-
cesses to commit if needed. Under those protocols, applica-
tions are forced to commit before visible events only.

Some protocols fall in the middle of the space, apply-
ing techniques both for identifying and converting non-deter-
minism, as well as for tracking the causal relationship

igure 3: Protocol space. All consistent recovery protocols fall
omewhere in this space. Some protocols focus on dealing with
on-determinism, while others concern themselves with visible
vents. Some do a little of each.

Effort made to identify/convert non-deterministic events

E
ffo

rt
 m

ad
e 

to
 c

om
m

it 
on

ly
 v

is
ib

le
 e

ve
nt

s

SBL
FBL

Targon/32

Coordinated
Optimistic logging

CPVS

CAND

CBNDVS

Hypervisor

Manetho
checkpointing



6

between non-deterministic events and the visible events they
cause.

Although all protocols in the space are equivalent in
terms of upholding Save-work, they do differ in terms of
other design variables. As shown in Figure 4, we can map
trends in several important design variables onto the protocol
space.

The farther a protocol falls from the origin, the lower
its commit frequency is likely to be, and therefore, the better
its performance. However, this improved performance comes
at the expense of simplicity and reliability. Protocols close to
the origin are very simple to implement, and therefore are
more likely to be implemented correctly.

For protocols that fall on the vertical axis, the recovery
system needs only rollback failed processes and let them
continue normally. Protocols further to the right in the proto-
col space have longer recovery times because after rollback,
the recovery system must for some time constrain reexecu-
tion to follow the path taken before the failure.

The further a protocol falls from the horizontal axis, the
more non-determinism it safely leaves in the application. As
we will discuss in Section 2.6, the more non-determinism in
an application, the better the chance it will survive propaga-
tion failures.

2.5. Failure transparency for stop and propagation
failures
As mentioned in Section 2.2, failures can take two

forms: stop failures and propagation failures. Upholding the
Save-work invariant is enough to guarantee consistent recov-
ery only in the presence of stop failures. To illustrate this
observation, consider a protocol that commits all events a
process executes. This protocol clearly upholds Save-work.
However, if the process experiences a propagation failure

(which by definition involves executing buggy events), this
protocol is guaranteed to commit buggy state. As a result, the
process will fail again during recovery, and the application
will never be able to complete after the failure.

Thus, in order to guarantee consistent recovery in the
presence of propagation failures, an application must not
only commit to uphold Save-work, but when it commits it
must avoid preserving the conditions of its failure. In this
section we examine what exactly an application must do to
guarantee consistent recovery in the presence of propagation
failures.

As was the case in our discussion of consistent recov-
ery, non-deterministic events are central to the issue of
recovering from propagation failures. Imagine an application
that, as a result of non-deterministic event e, overruns a
buffer it is clearing and zeroes out a pointer down the stack
(see Figure 5). Later, it attempts to dereference the pointer
and crashes. Obviously if the application commits after zero-
ing the pointer, recovery is doomed. However, if the applica-
tion commits any time before zeroing the pointer and after e,
recovery will still be doomed if there are no other non-deter-
ministic events after e. In this case, the pointer is not cor-
rupted in the last committed state, but it is guaranteed to be
re-corrupted during recovery.

Note that had the application committed just before e
and not after, all could be well. During recovery, the applica-
tion would redo the non-deterministic event which could
execute with a different result and avoid this failure alto-
gether.

Thus non-determinism helps our prospects for recover-
ing from propagation failures by limiting the scope of what
is preserved by a commit.

But, not all non-determinism is created equal in this
regard. In building up the Save-work invariant, we conserva-
tively treated as non-deterministic any event that could con-
ceivably have a different result during recovery. However,
some non-deterministic events are likely to have the same
result before and after a failure, and the recovery system can-
not depend on these events to change after recovery. We will
called these events fixed non-deterministic events.

A common example of a fixed non-deterministic event
is user input. We cannot depend on the user to aid recovery
by entering different input values after a failure. Other exam-
ples of fixed non-deterministic events include non-determin-
istic events whose results are based on the fullness of the
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disk (such as the write system call), or that depend on the
number of slots left in the operating system’s open file table
(such as the open system call).

Non-deterministic events that are not fixed we will call
transient non-deterministic events. Scheduler decisions, sig-
nals, message ordering, the timing of user input, and system
calls like gettimeofday are all transient non-determinis-
tic events.

We need to incorporate into our computational model a
way to represent the eventual crash of a process during a
propagation failure. We will model a process’s crash as the
execution of a crash event. When a process executes a crash
event, it transitions into a state from which it cannot continue
execution. In the example in Figure 5, the crash event is the
dereferencing of the null pointer.

As mentioned above, an untimely commit during a
propagation failure can ensure that recovery fails. Let us
examine in more detail when a process should not commit.

Clearly a process should not commit while executing a
string of deterministic events that end in a crash event. Doing
so is guaranteed to either commit the buggy state that leads
to the crash, or to ensure that the faulty state is regenerated
during recovery. This case is shown in Figure 6A.

However, a process can safely commit before a tran-
sient non-deterministic event as long as at least one of the
possible results of that event does not lead to the execution of
a crash event (see Figure 6B).

How about committing before a fixed non-determinis-
tic event where one of the event’s possible results leads to a
crash? This case is shown in Figure 6C. If the application
commits before the fixed non-deterministic event, recovery
is possible only if the event executes with a result that leads
down the path not including the crash event. If the applica-
tion is unlucky and the fixed non-deterministic event sends
the application down the path towards the crash, the commit
will ensure recovery always fails. Since we cannot rely on

fixed non-deterministic events having results conducive to
recovery, we cannot commit before any fixed non-determin-
istic events that might lead to a crash.

We can infer that some paths through a portion of a
state machine are problematic for handling propagation fail-
ures—committing anywhere along the paths could prevent
recovery. We next present an algorithm for finding these
paths. For this discussion, we assume perfect knowledge of
each process’s crash events. We recognize that this is not
practical—if we knew all the crash events, we could likely
fix all the bugs! However, making this assumption will help
us to analyze when recovery is possible with the best possi-
ble knowledge.

Given a single process’s state machine and its crash
events:

Single-Process Dangerous
Paths Algorithm

• Color all crash events in the state machine.

• Color an event e if all events out of e’s end state are
colored.

• Color an event e if at least one event out of e’s end
state is colored and is a fixed non-deterministic event.

We call all the paths in the state machine colored by
this algorithm dangerous paths. A portion of a state machine
with its dangerous paths highlighted is shown in Figure 7.

We now present without proof a theorem which gov-
erns when recovery is possible in the presence of propaga-
tion failures.

Lose-work Theorem

Application-generic recovery from propagation failures
is guaranteed to be possible if and only if the applica-
tion executes no commit event on a dangerous path.

A:

B:

C:

crash event

�

fixed ND events

Figure 6: Three sample machines with crash events (events that
end states filled black). It is okay to commit in case B at the point
marked. Committing either A or C where marked could prevent
recovery.

crash eventfixed ND event

Figure 7: Portion of a state machine, its crash events, and
corresponding dangerous paths. Crash events are those that end in
states filled black. Fixed non-deterministic events are marked with
a slash. The shaded paths are dangerous.
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This theorem provides an invariant for ensuring the
possibility of recovery from propagation failures: processes
must not commit on dangerous paths. It is interesting to note
that the location of the initial bug that caused the crash is sur-
prisingly irrelevant. In the end, all that matters is the eventual
crash event (or events) that result from that bug and its loca-
tion relative to the application’s transient non-deterministic
events.

How about for multi-process applications? The chal-
lenge for distributed applications is in computing their dan-
gerous paths. Unlike the dangerous paths algorithm
presented above, computing dangerous paths for a distrib-
uted application cannot be done statically: whether one pro-
cess’s path is dangerous can depend on the paths taken by the
other processes in the computation and where they have
committed.

Given a process P that wants to determine its dangerous
paths (presumably so it can commit without violating Lose-
work):

Multi-Process Dangerous
Paths Algorithm

• Process P collects a snapshot of when each process in
the computation last committed.

• For each non-deterministic receive event that P has
executed, treat that receive as a transient non-deter-
ministic event if the sender’s last commit occurred
before the send, and the sender executed a transient
non-deterministic event between its last commit and
the send. All other receives P has executed are fixed
non-deterministic events.

• Run the single-process dangerous paths algorithm to
compute P’s dangerous paths.

2.6. Upholding Lose-work
The simplest way to uphold Lose-work is to ensure that

no process ever commits. Although this solution has the
advantage of requiring no application-specific knowledge to
implement, it also prohibits guaranteeing consistent recov-
ery.

Clearly, without perfect knowledge of the application’s
non-determinism and crash events it is impossible to guaran-
tee a committing application upholds Lose-work. Despite the
impossibility of directly upholding the invariant, we can use
the Lose-work Theorem to draw some conclusions about
recovering from propagation failures.

First, we observe that it is impossible to uphold both
Save-work and Lose-work for some applications. Consider
an application with a visible event on a dangerous path. The
dangerous path will extend back at least to the last non-deter-
ministic event. Upholding Save-work forces the application
to commit between the last non-deterministic event and the
visible event, which will violate Lose-work.

Second, some protocols designed to uphold Save-work
for stop failures guarantee that applications will not recover

from propagation failures. These protocols either commit or
convert all non-determinism, ensuring a commit after the
non-deterministic event that steers a process onto a danger-
ous path, thus violating Lose-work. CAND, Sender-based
logging, Targon/32, and Hypervisor are all examples of pro-
tocols that prevent applications from surviving propagation
failures. Indeed, any protocol that falls on the horizontal axis
of the Save-work protocol space (see Figure 3) will prevent
upholding Lose-work. The farther a protocol falls from the
horizontal axis, the more it focuses its attention on handling
visible events and the more non-determinism it leaves safely
uncommitted, thus decreasing the chances of violating Lose-
work (see Figure 4).

Although directly upholding Lose-work is impossible,
some applications with mostly “non-repeatable” bugs (so
called “Heisenbugs” [13]) may be able to commit with a low
probability of violating the invariant. There are also a num-
ber of ways applications can deliberately endeavor to mini-
mize the chance that one of their commits causes them to
violate Lose-work.

First, applications should try to crash as soon as possi-
ble after their bugs get triggered. Doing so shortens danger-
ous paths and thus lowers the probability of the application
committing while executing on one. In order to move crashes
sooner, processes can try to catch erroneous state by per-
forming consistency checks. For example, a process could
traverse its data structures looking for corruption, it could
compute a checksum over some data, or it could inspect
guard bands at the ends of its buffers and malloc’ed data.
Voting amongst independent replicas is a general but expen-
sive way to detect erroneous execution [27]. When a process
fails one of these checks, it simply terminates execution,
effectively crashing.

Although it is a good idea for processes to perform
these consistency checks frequently, performing them right
before committing is particularly important.

Applications may also be able to reduce the likelihood
they will violate Lose-work by not committing all their state.
Applications may have knowledge of which data absolutely
must be preserved, and which data can be recomputed from
an earlier (hopefully bug-free) state. Should a bug corrupt
state that is not written to stable storage during commit,
recomputing that state after a failure leaves open the possi-
bility of not retriggering the bug.

Applications can also try to commit as infrequently as
possible. When upholding Save-work, applications should
do so with a protocol that commits less often and that leaves
as much non-determinism as possible. Some applications
may be able to add non-determinism to their execution, or
they may be able to choose a non-deterministic algorithm
over a deterministic one.

The application or the operating system may also able
to make some fixed non-deterministic events into transient
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ones by increasing disk space or other application resource
limits after a failure.

In Section 4 we will measure how often several appli-
cations violate Lose-work in the process of upholding Save-
work.

3. Cost of Upholding Save-work
In Section 2.3, we presented the Save-work invariant,

which applications can uphold to guarantee consistent recov-
ery in the presence of stop failures. However, we have not
talked about the performance penalty applications incur to
uphold it. As mentioned above, executing commits can be
expensive. It may be the case for real applications that adher-
ing to Save-work may be prohibitively expensive. In this sec-
tion we measure the performance penalty incurred for
several real applications upholding Save-work.

For this experiment we have selected four real applica-
tions: nvi, magic, xpilot and TreadMarks. nvi is a public
domain version of the well known Unix text editor vi. magic
is a VLSI CAD tool. xpilot is a distributed, multi-user game.
Finally, TreadMarks is a distributed shared memory system.
Within TreadMarks’s shared memory environment we run an
N-body simulation called Barnes-Hut.

Of these applications, all but TreadMarks are interac-
tive. We chose mainly interactive applications for several
reasons. First, interactive applications are important recipi-
ents of failure transparency (when these applications fail
there is always an annoyed user nearby). Second, interactive
applications have been little studied in recovery literature.
Finally, interactive applications can be hard to recover: they
have copious system state, non-determinism, and visible out-
put, all of which requiring an able recovery system.

TreadMarks and xpilot are both distributed applica-
tions, while the others are single-process.

To recover these applications we run them on top of
Discount Checking, a system designed to provide failure
transparency efficiently using lightweight, full-process
checkpoints [24]. Discount Checking is built on top of reli-
able memory provided by the Rio File Cache [9], and light-
weight transactions provided by the Vista transaction library
[23].

In order to preserve the full user-level state of a pro-
cess, Discount Checking maps the process’s entire address
space into a segment of reliable memory managed by Vista.
Vista traps updates to the process’s address space using
copy-on-write, and logs the before-images of updated
regions to its persistent undo log. To capture the application
state in the register file (which cannot be mapped into persis-
tent memory), Discount Checking copies the register file into
a persistent buffer at commit time. Thus, taking a checkpoint
amounts to copying the register file, atomically discarding
the undo log, and resetting page protections.

Although the steps outlined so far will allow Discount
Checking to checkpoint and recover user-level state, Dis-

count Checking must also preserve and recover the applica-
tion’s kernel state. To capture system state, the library
implements a form of copy-on-write for kernel data: it traps
system calls, copies their parameter values into persistent
buffers, and then uses those parameter values to directly
reconstruct relevant kernel state during recovery. For more
on the inner workings of Discount Checking, please see [24].

As mentioned in Section 2.4, there exist a large variety
of protocols for upholding Save-work. In order to get a sense
of which work best for our suite of applications, we imple-
mented seven different protocols within Discount Checking.
Our core protocols are CAND, CPVS, and CBNDVS, which
we described in Section 2.4. Recall that CAND upholds
Save-work by committing immediately after every non-
deterministic event. CPVS commits just before all visible
and send events. CBNDVS commits before a visible or send
event if the process has executed a non-deterministic event
since its last commit. We also added to Discount Checking
the ability to log non-deterministic user input and message
receive events to render them deterministic, as well as the
ability to use two-phase commit so one process can safely
pass a dependency on an uncommitted non-deterministic
event to another process. Adding these techniques to our
core protocols yielded an additional four protocols: CAND-
LOG, CBNDVS-LOG, CPV-2PC, and CBNDV-2PC. For
example, CAND-LOG executes a commit immediately after
any non-deterministic event that has not been logged. CPV-
2PC commits all processes whenever any process executes a
visible, but does not need to commit before a process does a
send.

In order to implement these protocols, Discount Check-
ing needs to get notification of an application’s non-deter-
ministic, visible, and send events. To learn of an
application’s non-deterministic events, Discount Checking
intercepts a process’s signals and non-deterministic system
calls such as gettimeofday, bind, select, read,
recvmsg, recv, and recvfrom. To learn of a process’s
visible and send events, Discount Checking intercepts calls
to write, send, sendto, and sendmsg.

In addition to measuring the performance of our appli-
cations on Discount Checking on Rio, we wanted to get a
sense of how our applications performed using a disk-based
recovery system. We created a modified version of Discount
Checking called DC-disk that wrote out a redo log synchro-
nously to disk at checkpoint time. Although we did not add
the code needed to let DC-disk truncate its redo log, or even
properly recover applications, its overhead should be repre-
sentative of what a lightweight disk-based recovery system
can do.

We ran our experiments on 400 MHz Pentium II com-
puters each with 128 MB of memory (100 MHz SDRAM).
Each machine runs FreeBSD 2.2.7 with Rio and is connected
to a 100 Mb/s switched Ethernet. Rio was turned off when
using DC-disk. Each computer has a single IBM Ultrastar
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DCAS-34330W ultra-wide SCSI disk. All points represent
the average of five runs. The standard deviation for each data
point was less than 1% of the mean for Discount Checking,
and less than 4% of the mean for DC-disk. The distributed
workloads (TreadMarks and xpilot) were both run on four
computers. We simulate fast interactive rates by delaying
100 ms between each keystroke in nvi and by delaying 1 sec-
ond between each mouse-generated command in magic.

We present the result of our runs in Figure 8. For each
application we show the protocol space developed in Section
2.4. In each application’s protocol space we plot the protocol
used for each data point, and the number of checkpoints
taken during the complete run of the application when run-
ning on that protocol. For each protocol’s data point we also
show the percent expansion in execution time that protocol
caused compared to an unrecoverable version of the applica-
tion, first for Discount Checking, then for DC-disk.

Because xpilot is a real-time, continuous program we
report its performance as the frame rate it can sustain rather
than runtime overhead. Higher frame rates indicate better
interactivity, with full speed being 15 frames-per-second.
xpilot’s number of checkpoints is given as the largest check-
pointing frequency (in checkpoints per second) amongst its
processes.

We can make a number of interesting observations
based on these results. As expected, commit frequency gen-
erally decreases, and performance increases, with radial dis-
tance from the origin. The sole exception to this rule is
xpilot, where having all processes commit whenever any one
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Figure 8: Performance of several protocols for four applications.
Each application has its own protocol space. At each point in each
space, we list the protocol at that point, the number of checkpoints
in the complete run of the application, and the runtime overhead for
Discount Checking, and for DC-disk. For xpilot we list the
protocol, number of checkpoints per second, followed by
sustainable frame rate for Discount Checking and DC-disk. Full
speed for xpilot is 15 frames per second.
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of them wants to execute a visible event (as is done in proto-
cols using two-phase commit) results in a net increase in
commit frequency.

Despite the fact that several of these applications gener-
ate many commits, there is at least one protocol for each
application with very low overhead for Discount Checking.
We conclude that the cost of upholding Save-work using
Discount Checking on these applications is low.

For all the interactive applications, the overhead of
using DC-disk is not prohibitive. We see overhead of 12%
and 27% for nvi and magic respectively. xpilot is able to sus-
tain a usable 9 frames per second. On the other hand, no pro-
tocol for DC-disk was able to keep up with TreadMarks.
From our experiments, we conclude that Save-work can be
upheld with a disk-based recovery system for many interac-
tive applications with reasonably low overhead.

We observe that the protocols that perform best for
each application are the ones that exploit the infrequent class
of events for that application in deciding when to commit.
For example, TreadMarks has very few visible events,
despite having copious non-deterministic and send events.
For it, the 2PC protocols which let it commit only for the
rare visible events are the big win.

While overhead is low for many applications, we can
conceive of applications for which Save-work incurs a large
performance overhead. These applications would have copi-
ous visible and non-deterministic events—that is, no rare
class of events—and they would be compute bound rather
than user bound. Applications that might fall into this cate-
gory include interactive scientific or engineering simulation,
online transaction processing, and medical visualization.

4. Measuring Conflict between the Save-work
and Lose-work Invariants

Guaranteeing consistent recovery in the presence of
stop and propagation failures requires upholding both the
Save-work and Lose-work invariants. Unfortunately, some
failure scenarios make it impossible to uphold both invari-
ants simultaneously.

For example, consider the failure timeline shown in
Figure 9. In this timeline, the application executes a transient
non-deterministic event that causes it to execute down a code
path containing a bug. The application eventually executes
the buggy code (shown as “fault activation”), then correctly
executes a visible event. After this visible event, the program
crashes. Section 2.5’s coloring algorithm shows that the
entire execution path from the transient non-deterministic
event to the crash forms a dangerous path, along which the
Lose-work invariant prohibits a commit. Unfortunately, the
Save-work invariant specifically requires a commit between
the transient non-deterministic event and the visible event.
For this application, both invariants cannot be upheld simul-
taneously.

Some applications may have bugs that prevent uphold-
ing Lose-work even without committing to uphold Save-
work. For example, many applications contain repeatable
bugs (so called, “Bohrbugs”[13]). With these faults it is pos-
sible to execute from the initial state of the program to the
bug without ever executing a transient non-deterministic
event. In other words, the dangerous path resulting from the
bug extends all the way back to the initial state of the pro-
gram. And since the initial state of any application is always
committed, applications with Bohrbugs inherently violate
Lose-work.

In this section, we endeavor to examine how often in
practice faults cause a fundamental conflict between the
Save-work and Lose-work invariants. Our focus is on soft-
ware faults (both in the application and operating system),
which field studies and everyday experience teach is the
dominant cause of failures today [13].

4.1. Application faults
We would like to measure how often upholding Save-

work forces an application to commit on a dangerous path,
like the application depicted in Figure 9. We divide this
problem into three subproblems. First, how often does an
application bug create a dangerous path beginning at the start
state of the application? As described above, this scenario
arises from Bohrbugs in the application. Second, given an
application fault that does depend on a transient non-deter-
ministic event (a Heisenbug), how often is the application
forced to commit between the transient non-deterministic
event at the beginning of the dangerous path and the fault
activation? Third, how often is the application forced to
commit between the fault activation and the crash? We
examine this third question first using a fault-injection study.

Our strategy is to force crashes of real applications,
recover the applications, and measure after the fact whether
any of their commits to uphold Save-work occurred between
fault activation and the crash. We induce faults in the appli-
cation by running a version of the application with changes
in the source code to simulate a variety of programming
errors. These errors include actions like overwriting random
data in the stack or heap, changing the destination variable,
neglecting to initialize a variable, deleting a branch, deleting
a random line of source code, and off-by-one errors in condi-
tions like >= and <. See [6] for more information on our fault
model. We only consider runs where the program crashes.

igure 9: Failure timeline in which the Save-work invariant and the
ose-work invariant conflict. The shaded portion is the dangerous
ath.

transient
crashnon-deterministic

event

visiblefault
activation event



12

Checkpointing and recovery for the applications is pro-
vided by Discount Checking using the CPVS protocol.
CPVS is the best protocol possible for not violating Lose-
work for non-distributed applications. For our experiments,
we use two applications: the Unix text editor nvi, and post-
gres, a large, publicly available relational database. These
two applications differ greatly in their code size and amount
of data they touch while executing.

We detect a run in which the application commits
between fault activation and the crash by instrumenting Dis-
count Checking to log each fault activation and commit
event. If the program commits after activating the fault, it has
violated the Lose-work invariant. We also conduct an end-to-
end check of this criteria by suppressing the fault activation
during recovery, recovering the process, and trying to com-
plete the run. As expected, we found that runs recovered
from crashes if and only if they did not commit after fault
activation.

We collected data from approximately 50 crashes for
each fault type. Table 1 shows the fraction of crashes that
violated the Lose-work invariant by committing after fault
activation. For both nvi and postgres, approximately 35% of
faults caused the process to commit along this portion of the
dangerous path. While not included in the table, 7-9% of the
runs did not crash but resulted in incorrect program output.

We next turn our attention to question one, namely, for
what fraction of bugs does the dangerous path extend back to
the initial state of the program? That is, of the bugs users
encounter, what portion are deterministic (Bohrbugs), and
what portion depend on a transient non-deterministic event
(Heisenbugs)? Although it is difficult to measure this frac-
tion directly, several prior studies have attempted to shed
light on this issue.

Chandra and Chen showed that for Apache, GNOME,
and MySQL, three large, publicly available software pack-
ages, only 5-15% of the bugs in the developer’s bug log were
Heisenbugs (for shipping versions of the applications) [7].
The remaining bugs were Bohrbugs. Most of these determin-
istic bugs resulted from untested boundary conditions (e.g.
an older version of Apache crashed when the URL was too
long). Several other researchers have found a similarly low
occurrence (5-29%) of application bugs that depend on tran-
sient non-deterministic events like timing [20, 29, 30]. Note
that these results conflict with the conventional wisdom that
mature code is populated mainly by Heisenbugs—it has been
held that the easier-to-find Bohrbugs will be captured more
often during development [13, 17]. It appears that for non-
mission-critical applications, the current software culture
tolerates a surprising number of deterministic bugs.

We have yet to tackle the second question, which asks
how often an application is forced to commit on the danger-
ous path between the transient non-deterministic event and
fault activation (see Figure 9). Unfortunately, we are unable
to measure this frequency using our fault-injection technique
because no realistic model exists for placing injected bugs
relative to an application’s transient non-deterministic
events. However, as we will see, the case for generic recov-
ery from application failures is already sufficiently discour-
aging, even optimistically assuming no commits on this
portion of the dangerous path.

We would like to compose these separate experimental
results in order to illuminate the overarching question of this
section. Our fault-injection study shows that nvi and postgres
violate Lose-work in at least 35% of crashes from non-deter-
ministic faults. If we assume the same distribution of deter-
ministic and non-deterministic bugs in nvi and postgres as
found in Apache, GNOME, and MySQL by Chandra and
Chen, these non-deterministic faults make up only 5-15% of
crashes. Therefore, Lose-work is upheld in at most 65% of
15%, or 10% of application crashes. Lose-work and Save-
work appear to conflict in the remaining 90% of failures by
these applications. While extrapolating other applications’
fault distributions to nvi and postgres is somewhat question-
able, as is generalizing to all applications from the measure-
ment of two, these preliminary results raise serious questions
about the feasibility of generic recovery from propagation
failures.

4.2. Operating systems faults
Although failures due to application faults appear to

frequently violate Lose-work, we can hope for better news
for faults in the operating system. In contrast to application
faults, not all operating system faults cause propagation fail-
ures: some crash the system before they affect application
state. Commits at any time by the application are okay in the
presence of these stop failures. Thus if failures by the operat-

Fault Type
nvi

Lose-work
violations

postgres
Lose-work
violations

Stack bit flip 0% 35%

Heap bit flip 83% 92%

Destination reg 18% 0%

Initialization 4% 6%

Delete branch 81% 86%

Delete instruction 51% 13%

Off by one 24% 0%

Average 37% 33%

Table 1: Fraction of application faults in nvi and postgres that
violate Lose-work by committing after the fault is activated. For
each fault type we list the percent of crashes by that fault that
commit after the fault is activated. Over all fault types, nvi and
postgres commit after the fault activation for 37% and 33% of all
crashes respectively.
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ing system usually manifest as stop failures, we would rarely
observe system failures causing Lose-work violations.

We wanted to measure the fraction of operating system
failures for which applications are able to successfully
recover. This fraction will include cases where the operating
system experienced a stop failure, as well as cases in which
the system failure was a propagation failure and the applica-
tion did not violate Lose-work.

In order to perform this measurement, we again use a
fault-injection study. This time we inject faults into the run-
ning kernel rather than into the application [9].

We again ran nvi and postgres with Discount Checking
upholding Save-work using CPVS. For each run, we started
the application and injected a particular type of fault into the
kernel. We discarded runs in which neither the system nor
the application crashed. If either the operating system or the
application crashed, we rebooted the system and attempted
to recover the application. We repeated this process until
each fault type had induced approximately 50 crashes. The
results of this experiment are shown in Table 2.

Of the 350 operating system crashes we induced for
each application, we found that nvi failed to properly recover
in 15% of crashes. postgres did better, only failing to recover
3% of the time. These numbers are encouraging: application-
generic recovery is likely to work for operating systems fail-
ures, despite the challenge of upholding Lose-work.

If we assume that all propagation failures will violate
Lose-work with the probabilities in Table 1 (regardless of
whether the propagation failure began in the operating sys-
tem or application), we can infer how often system failures
manifest as propagation failures in our experiments. Com-
bining our application crash results with our operating sys-
tem crash results implies that for nvi, 41% of system failures
were propagation failures. For postgres, 10% of system fail-
ures manifest as propagation failures. We hypothesize that
the proportion of propagation failures differs for the two

applications because of the different rate at which they com-
municate with the operating system: the non-interactive ver-
sion of nvi used in our crash tests executes almost 10 times as
many system calls per second as postgres executes.

5. Related Work
Many fault-tolerant systems are constructed using

transactions to aid recovery. Transactions simplify recovery
by grouping separate operations into atomic units, reducing
the number of states from which an application must recover
after a crash. However, the programmer must still bear the
responsibility for building recoverability into his or her
applications, a task that is difficult even with transactions.
We have focused on higher-level application-generic tech-
niques that absolve programmers from adding recovery abil-
ities to their software. However, we use transactions to
implement our abstraction.

A number of researchers have endeavored to build sys-
tems that provide some flavor of failure transparency for stop
failures [3, 4, 5, 11, 14, 21, 25, 26]. Our work extends their
work by analyzing propagation failures as well.

The theory of distributed recovery has been studied at
length [10]. Prior work has established that committed states
in distributed systems must form a consistent cut to prevent
orphan processes [8], that recoverable systems must preserve
a consistent cut before visible events [28], and that non-
determinism bounds the states preserved by commits [11,
16]. Our Save-work invariant is equivalent to the confluence
of these prior results.

The Save-work invariant contributes to recovery theory
by expressing the established rules for recovery in a single,
elemental invariant. Viewing consistent recovery through the
lens of Save-work, we exposed the protocol space and the
relationships between the disparate protocols on it, as well as
several new protocols.

To the best of our knowledge, no prior work has pro-
posed an invariant for surviving propagation failures that
relates all relevant events in a process, nor has any prior
work attempted to evaluate the fraction of propagation fail-
ures for which consistent recovery is not possible.

CAND, CPVS, and CBNDVS all bear a resemblance to
simple communication-induced checkpointing protocols
(CIC) [1]. However there are some important differences.
First, all CIC protocols assume no knowledge of application
non-determinism. As a result, they are forced to roll back
any process that has received a message from an aborted
sender. Commits under these protocols serve primarily to
limit rollback distance, and to prevent the domino effect. In
contrast, our protocols all to varying degrees make use of
knowledge of application non-determinism. Rather than
abort the receivers of lost messages, they allow senders to
deterministically regenerate the messages. Under our proto-
cols, only failed processes are forced to roll back.

Fault Type
nvi

failed
recoveries

postgres
failed

recoveries

Stack bit flip 12% 10%

Heap bit flip 8% 6%

Destination reg 10% 0%

Initialization 16% 0%

Delete branch 26% 4%

Delete instruction 12% 4%

Off by one 22% 0%

Average 15% 3%

Table 2: Percent of OS faults in which nvi and postgres failed to
recover. We list the percentage of crashes that led to failures during
recovery for each fault type and over all failures.
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Recovery systems often depend on the assumption that
applications will not commit faulty state—a so called “fail-
stop assumption” [27]. Our examination of propagation fail-
ures amounts to a fine parsing of the traditional fail-stop
assumption in which we consider a single commit’s ability to
preserve not just past execution, but all future execution up
to the next non-deterministic event. Making a fail-stop
assumption in the presence of propagation failures is the
same as assuming that applications can safely commit at any
time without violating the Lose-work invariant.

6. Conclusion
The lure of operating systems that conceal failures is

quite powerful. After all, what user or programmer wants to
be burdened with the complexities of dealing with failures?
Ideally, we could handle all those complexities once and for
all in the operating system.

Our goal with this paper has been to explore the subject
of failure transparency, looking at what it takes to provide it
and exposing the circumstances where providing it is not
possible. We find that providing failure transparency in gen-
eral involves upholding two invariants, a Save-work invariant
which constrains when an application must preserve its work
before a failure, and a Lose-work invariant which constrains
how much work the application has to throw away after a
failure.

For stop failures, which do not require upholding Lose-
work, the picture is quite rosy. We show that Save-work can
be efficiently upheld for a variety of real applications. Using
a transparent recovery system based on reliable memory, we
find overheads of only 0-12% for our suite of real applica-
tions. We also find that disk-based recovery makes a credible
go of it, with interactive applications experiencing only mod-
erate overhead.

Unfortunately, the picture is somewhat bleaker for sur-
viving propagation failures. Guaranteeing that an application
can recover from a propagation failure requires upholding
our Lose-work invariant, and Save-work and Lose-work can
directly conflict for some fault scenarios. In our measure-
ments of application faults in nvi and postgres, upholding
Save-work causes them to violate Lose-work for at least 35%
of crashes. Even worse, studies have suggested that 85-95%
of application bugs today cause crashes that violate the Lose-
work invariant by extending the dangerous path to the initial
state.

We conclude that providing failure transparency for
stop failures alone is feasible, but that recovering from prop-
agation failures requires help from the application. Applica-
tions can help by performing better error detection, masking
errors through N-version programming, reducing commit
frequency by allowing the loss of some visible events, or
reducing the comprehensiveness of the state saved by the
recovery system. Our results point to interesting future work.
Since pure application-generic recovery is not always possi-

ble, what is the proper balance between generic recovery ser-
vices provided by the operating system and application-
specific aids to recovery provided by the programmer?
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8. Software Availability
The Rio version of the FreeBSD 2.2.7 kernel, as well as

Vista and Discount Checking are all available for download
at http://www.eecs.umich.edu/Rio.
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