
CSE P 590 SG Assignment #2a Sample Solution

Andy Collins

CSETP—The CSE Time Protocol using TCP

Questions

1. Measure the latency between your test machine and tioga. What is a reasonable absolute minimum
RTT to assume? Note that the CSETP server on tioga adds a minimum 20ms one-way delay (each
way) to each message. This is in addition to the minimum network delay. You can either measure the
total delay by observing the CSETP messages, or you can use ping to measure the network delay and
add the 20ms.

Using this value, and knowing that the ρ for the master server is no worse than 0.01, what is the best
precision we can hope to achieve in synchronizing the clock (meaning for a single experiment)?

Answer The min RTT depends, of course, on the path being measured. Within our building, it is
so small that it is pointless to use ping to measure it (and equally pointless to use Java timing to
measure it). So for myself, I did the calculations assuming zero additional delay beyond the 40ms.
From an engineering point of view, this is the best solution unless the true latency is so large that you
can’t reasonably make the syncronization spec. Hopefully in this case the latencies will be both large
enough to measure and real enough to make the measurements and the assumption that one-way delay
equals half-RTT true.

For 20ms min one-way delay, and assuming the client clock drifts as badly as the server clock, we can
use equation 11 from Cristian’s paper to get:

emin = 3 · ρ · min = 3 · 0.01 · 20ms = 600µs

This is surprisingly small, but correct. The point is that this is the absolute best syncronization
possible, and we will in fact achieve rapport with probability approaching zero if we try this.

2. Devise a maximum allowable RTT and a minimum resynchronization period (respectively the largest
RTT query/response that can be used to synchronize the clock and the time between resynchroniza-
tions) that will ensure that your clock tracks tioga’s CSETP time with no more than a 200ms error,
based on the observed typical delays and the known ρ. About what fraction of synchronization attempts
do you expect will succeed?

Recall from [Cri89] that this is a fundamental tradeoff: the smaller the max RTT, the more accurate
the synchronization but the more likely we will fail to synchronize and have to try again. But the more
accurate the synchronization, the longer we can let the clock run before we have to resynchronize.

Answer I chose to set the per-episode accuracy at 150ms, under the theory that I’d rather have this
be relatively loose, and therefore have a high likelihood of successful rapport, than have a particularly
long period between rapports. From this, we derive the max RTT as

2U = 2(1 − 2ρ)(150ms− 20) = 255ms

1



again assuming all clocks are as bad as ρ = 0.01, and no additional min delay beyond the 20ms. I then
figured the max time between rapports (simplified) by asking how long a clock drifting at ρ = 0.01
would take to move from a 150ms error to 200ms error:

T =
(200ms− 150ms)

2ρ
= 2500ms

This is based on a simple worst-case assumption: that the rapport error is maximal and in the direction
of drift, and that the total effective drift is 2ρ because the two clocks are moving in opposite directions
(i.e. my clock is 150ms later than authoritative time, and my clock is running fast and authoritative
time is running slow). In principle, we should account for the part of this that is taken up with rapport,
but I didn’t bother because I knew that this would be small (my min RTT is large enough that multiple
attempts are rare) and because the both-bad-clocks assumption means that I’ve really got a factor of
two slop to play with.

Firming up the probability of successful rapport means looking at the delays seen inside the protocol.
I used the test engine to do so with a nearby client, and got the following 20 values, all in milliseconds:

113 119 199 139 129 159 99 109 159 219
289 129 329 89 129 79 99 19 129 219

So from this small sample, 2 out of 20 attempts would have failed. If we take P = 0.9 as the probability
of success, then we might choose to fix k = 5 to achieve 99.999% probability of success. We don’t need
to wait between retries, because this delay is already independent one request to the next. So we could
apply equation 16 to get that the max rapport spacing is

T =
1 − ρ

ρ
200ms− 5 · 500ms = 17.3sec

where 500ms is a made-up number for the maximum RTT. This, of course, would only be allowable if
we achieved a rapport accuracy close to the best possible (600µs, from question 1). Applying equation
17, we get the min rapport spacing, assuming U = 128ms, of

T =
1 − ρ

ρ
(200ms + 20ms− 128ms)− 5 · 500ms = 6.6sec

Both of these are, of course, based on Cristian’s assumption that ρ · RTT is negligible, which is only
barely reasonable for us, although I said you could use it.

Code

The code for my solution and authoritative server in one, written in Java, is posted separately on the course
web page. The solution itself is in one file, broken into several classes. The description and roadmap is in
the comments at the top. My solution uses the OffsetClock provided with the assignment.

References

[Cri89] Flaviu Cristian. A Probabilistic Approach to Distributed Clock Synchronization. In Proceedings of
the 9th International Conference on Distributed Computing Systems (ICDCS), pages 288–296, June
1989.

2


