
CSE P 590 SG Assignment #1 Sample Solution

Andy Collins

DNS Spelunking

I run Linux on my desktop machine, so there will be some bias towards that. However, it seems that the
Windows version of the dig tool is pretty much comparable.

As is always the case with DNS, we have to start with our local resolver to get anywhere. On Unix systems,
you can look in /etc/resolv.conf to see what your configured local resolver is (along with backups and
some policy related to that). Or of course you can just run dig without specifying a server, and you’ll use
the local resolver by default.

To avoid any strangeness resulting from my local resolver, however, I started off by finding a top-level
domain server, using

dig foo

which got me the server

a.root-servers.net

and thereafter I always pointed dig at that server using dig @a.root-servers.net ...

1. What is the complete list of authoritative name servers for the following domains? Can you offer any
guesses as to why these domains have set up their nameservers as they have?

(a) .com

(b) .edu

(c) .ca

(d) .cs.washington.edu

(e) .yahoo.com

Answer The following list of .com servers is the result of the command

dig @a.root-servers.net com

;; AUTHORITY SECTION:

com. 172800 IN NS A.GTLD-SERVERS.NET.

com. 172800 IN NS G.GTLD-SERVERS.NET.

com. 172800 IN NS H.GTLD-SERVERS.NET.

com. 172800 IN NS C.GTLD-SERVERS.NET.

com. 172800 IN NS I.GTLD-SERVERS.NET.

com. 172800 IN NS B.GTLD-SERVERS.NET.

com. 172800 IN NS D.GTLD-SERVERS.NET.

com. 172800 IN NS L.GTLD-SERVERS.NET.

com. 172800 IN NS F.GTLD-SERVERS.NET.

com. 172800 IN NS J.GTLD-SERVERS.NET.

com. 172800 IN NS K.GTLD-SERVERS.NET.

com. 172800 IN NS E.GTLD-SERVERS.NET.

com. 172800 IN NS M.GTLD-SERVERS.NET.

1



Hereafter I will only list the names of the servers, and the command used to discover them, omitting
all the other information returned by dig (which typically includes the address mappings for the
nameservers, so you won’t have to bother the top-level server again).

(a) .com (dig @a.root-servers.net com) — [a-m].gtld-servers.net

(b) .edu (dig @a.root-servers.net edu) — [a-g,l-m]3.nstld.com

(c) .ca (dig @a.root-servers.net ca)

• clouso.risq.qc.ca

• relay.cdnnet.ca

• merle.cira.ca

• ns1cira.ca

• ca0[2,6].cira.ca

(d) .cs.washington.edu is a little more intersting. a.root-servers.net was only willing to point
me as far as the edu domain. l3.nstld.com pointed me to three servers for .washington.edu:

• hanna.cac.washington.edu

• marge.cac.washington.edu

• ns.nts.umn.edu

and then hanna.cac.washington.edu pointed me at the same three servers, plus three more:

• trout.cs.washington.edu

• june.cs.washington.edu

• lumpy.cs.washington.edu

and all six are authoritative for .cs.washington.edu. Since we know that UW is all one campus,
it’s not that surprising that the authority is spread out this way, but it isn’t what you expect.
Applying local knowledge, it’s clear that the cs.washington.edu domain exists because we like
to have .cs hostnames, not because we need to be autonomous within the UW. Also, it’s not
clear from this what lumpy, trout, and june actually do. No outside queries are likely to come
to them, because they will stop at the washington.edu nameservers when those servers return
the full mapping. It’s not immediately obvious whether these machines are also the local name-
servers supporting client queries from within CSE (the IP addresses don’t match the servers in
/etc/resolv.conf, but the IP addrs could easily be multiple interfaces in the same machines).

Finally note that the nameservers for the washington.edu domain are geographically split,
with a backup at umn.edu (the University of Minnesota). Further investigation shows that
hanna.cac.washington.edu (but not marge) is also a backup server for umn.edu.

(e) .yahoo.com (dig @a.gtld-servers.net yahoo.com) (same as before, have to go to the .com

server) — ns[1-5].yahoo.com.

Using traceroute, we can discover that these five servers are diverse both geographically and
ISP-wise:

name location ISP
ns1.yahoo.com San Jose, CA Level3
ns2.yahoo.com Santa Clara, CA Cable & Wireless
ns3.yahoo.com New York, NY Level3
ns4.yahoo.com Dallas, TX Cable & Wireless
ns5.yahoo.com Washington DC Cable & Wireless

all of which is clearly intended to protect against backhoes and other forms of network partition.

2. Which of the name servers that you discovered are willing to serve recursive queries?
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Answer Serving recursive queries for unrelated hosts is not really to be expected, and of this list only
clouso.risq.qc.ca allows it for unrelated hosts. I tested this by looking up www.cs.berkeley.edu.
Most servers pointed me to the root servers, although ns[1-4].yahoo.com were able to point me to
berkeley.edu and ns5.yahoo.com to edu, presumably because this was what they had cached at the
time, which indicates that they do perform some resolutions for some people.

In addition, I am able to use all six washington.edu nameservers recursively, but that is only because
I am inside the UW.

Curiously, in the two years since I last performed this experiment, merle.cira.ca has stopped accept-
ing recursive queries, and although ns2.uunet.ca still accepts them, it is no longer an authoritative
nameserver for the ca domain.

3. Which of the name servers that serve recursive queries (from 2) perform negative caching?

Answer All of the recursive nameservers support negative caching. Here is the output from looking
up asdf.berkeley.edu at clouso.risq.qc.ca, first non-recursively:

; <<>> DiG 9.2.2 <<>> +norecursive @clouso.risq.qc.ca asdf.berkeley.edu

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1913

;; flags: qr ra; QUERY: 1, ANSWER: 0, AUTHORITY: 9, ADDITIONAL: 9

where we get only pointed to the edu servers, and then recursively:

; <<>> DiG 9.2.2 <<>> @clouso.risq.qc.ca asdf.berkeley.edu

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 18775

;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0

where we get NXDOMAIN, and then again non-recursively:

; <<>> DiG 9.2.2 <<>> +norecursive @clouso.risq.qc.ca asdf.berkeley.edu

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 10900

;; flags: qr ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0

where we get NXDOMAIN again, because it’s in the cache

4. Try looking up non-existant .cs.washington.edu names using recursive lookup on the servers from 3.
Is there a perceptible performance difference for names that are in the negative cache, versus those
that are not? How significant do you think negative caching is for DNS performance?

Answer (Note that this is two-year-old data, so some of these servers no longer exist or no longer
support recursive queries)

Yes, there is a clear difference in performance, but it is generally within a factor of two (not surprising,
since the positive cache will make sure that the server gets to the authoritative site quickly to reject each
new name). To firm up the numbers above, I looked up aa[a-j].cs.washington.edu from each server
above, except those that are authoritative for cs.washington.edu and I used only ns1.inktomi.com

because the four seem so similar). With ten runs, I computed the mean and standard deviation for
the first and second lookup times:
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server first avg first s.d. second avg second s.d.
clouso.risq.qc.ca 141.4 ms 0.97 ms 70.9 ms 0.32 ms
ns2.uunet.ca 907.5 ms 1538 ms 95.7 ms 2.79 ms
merle.cira.ca 203.4 ms 58.3 ms 90.6 ms 3.31 ms
ns1.inktomi.com 44.6 ms 3.72 ms 21.6 ms 1.07 ms

The initial lookups all take substantially longer (and typically about twice as long, to be expected
since an ideal first query is two round-trips, to the server and back, and the second query is one), and
see much greater variance (ns2.uunet.ca saw two 3 second lookups, clearly due to loss.

5. Where does Andy’s e-mail get delivered? Look up all the available records for tioga.cs.washington.edu
(note that dig, by default, shows only the A records). What happens if one of the mailservers is down?

Answer The point here is that a proper mail agent, when presented with the address acollins@cs.washington.edu
will look up the MX record of cs.washington.edu, and go to that host, rather than to cs.washington.edu
itself, which may or may not even be a real machine (in this case it is an alias for june). Because I send
my email from tioga.cs.washington.edu, it is conceivable that some email programs might take my
address to be acollins@tioga.cs.washington.edu (although most should obey the headers). In fact
the point of MX records is to make sure that it makes no difference which host within CSE people try
to send my email to, because the MX records should all point to the same place.

So if I run dig @marge.cac.washington.edu cs.washington.edu any and look for MX records, I
get four:

cs.washington.edu. 86400 IN MX 40 june.cs.washington.edu.

cs.washington.edu. 86400 IN MX 10 mx2.cs.washington.edu.

cs.washington.edu. 86400 IN MX 20 mx1.cs.washington.edu.

cs.washington.edu. 86400 IN MX 30 trout.cs.washington.edu.

a little bit of additional research shows that the numbers 10–40 are priorities, with lower being higher
priority. Tiebreaking behavior is undefined, so it isn’t surprising that all the values are distinct. So
email should go to mx2, unless it isn’t available, in which case it will fall back to the others.

Curiously, howerver, tioga has a slightly different set of MX records:

tioga.cs.washington.edu. 86400 IN MX 10 june.cs.washington.edu.

tioga.cs.washington.edu. 86400 IN MX 20 trout.cs.washington.edu.

so email sent there will go to june first. Since all of this works fine, it suggests that the four mailservers
are capable of cooperating.

6. If you wanted to attack one of these name servers (meaning any that you found, not just those from
parts 2 and 3), what attacks are possible and what would their effects be? To what extent do recursive
query and/or negative caching support affect vulnerability to these attacks? (It should go without
saying that you should not attempt to attack these servers in practice—you would likely get into
serious trouble, and we would disavow any knowledge of your mission.)

Answer There are many, many ways to attack nameservers. For starters, any attack that slows
down or takes out the nameserver host will also stop the DNS server on the host. Vulnerability to
these attacks depends on administration (likely good for the upper-level servers and not-so-good for
some of the lower-level ones), and architecture. At one point the top-level servers were intentionally
set up with architecture diversity, but I don’t know if this is still true. Any attempt to figure it out
by portscanning would likely be considered an attack in itself. In general, howerver, I will set aside
full-host attacks, and focus on attacks within the DNS protocol.
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DNS servers are, of course, subject to buffer overrun attacks, because they accept queries with data.
This would be especially true for TCP connections, which can supply unlimited data, but even UDP
allows very large datagrams, relative to the typical size of a domain name. This again is a general
software security issue, rather than anything specific to the DNS protocol.

Zone transfer attacks: unless otherwise configured, anybody can connect and download a copy of any
DNS server’s database through a zone transfer. This can leak data that might be valuable, but it also
ties up a chunk of server resources, and disproportionately on the server end.

Reverse-lookup attacks: DNS defines a parallel tree to look up names given IP numbers. Authority for
the leaves of this tree belong to the owners of the IP numbers, who can pretend that their IP numbers
map to any name they want, even if a forward lookup wouldn’t get the same IP number. This can
break any security scheme based on trusting certain hosts by name. Note that even doing a forward
lookup after the reverse lookup won’t help, for two reasons. For starters, there are legitimate reasons
that a machine may have multiple IP numbers, and we might not expect that DNS would tell us all
of them. But even worse, when responding to the inverse lookup, the attacker can supply additional
records that will go into the cache and make the forward lookup succeed, without ever asking the
authoritative server.

Spoofing requests: because requests are typically UDP datagrams, it is easy to spoof the source address.
This can make basic DoS attacks easier to make untraceable.

For recursive servers, it also means that a server cannot tell if the domain being looked up belongs
to the attacker, and therefore might try to return bogus data when the victim tries to continue the
lookup. We could try to maximize the victim’s use of resources by taking a long time to respond,
stretching out the sequence of steps we make the victim follow, and/or returning abnormally large
amounts of data to try to thrash the cache.

For servers that support recursive queries, there are even more potential attacks. For starters, the
DoS potential is greater, because you can make the server consume more computational and network
resources. In addition, you can attack the negative cache, by sending many invalid requests to thrash
it. On it’s own, I don’t think this would be terribly effective, because the cached lookups are not that
much slower than the uncached lookups. There are, however, some secondary effects that such an
attack might have:

• If the negative cache shares memory with the positive cache, then we could thrash the regular
caching behavior, which would be far more serious.

• If the server is heavily loaded, then it is possible that doubling the amount of time spent per
connection could overwhelm connection state.

• It is possible that the additional compute work (that might have been saved were the negative
cache working) could overwhelm the server, but recall that most of the time is spent in message
delays, not computation.

As is always the case, other sorts of attacks may still be possible, and if I see any good ones I’ll post
them too.

7. Research (using your favorite method—mine is Google) how many .com registrations happen per day.

Recall that we saw that a huge source of traffic to TLD servers is answering queries for bogus domain
names. Let us consider a design where all DNS resolvers store the complete list of NS records for all
second-level domain names (e.g. yahoo.com), and can therefore resolve all valid names and recognize
all invalid names without contacting a TLD server (they would, of course, still need to talk to the
second-level nameservers). To simplify the problem, we will consider only the .com domain (We can
either imagine that we do the same thing for other top-level domains, or that we fall back on “normal”
DNS for non-.com names; in either case we have much less data about the other top-level domains, so
we won’t worry about them.)

Assuming that all second-level .com NS records have a two-day TTL (meaning that our new DNS must
similarly ensure changes in second-level names are reflected within a two-day window), characterize
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the circumstances in which it would be cheaper (in terms of total network packets) to maintain and
use this complete list of second-level names rather than interrogating the .com TLD server(s) directly.

Answer The basic architecture we are proposing is one where the top-level domain servers maintain
an authoritative list of all second-level domains (as they do now), and serves out the entire list, on
demand, to any resolver who wants it. We still (I think) want a client-driven system like this, rather
than one where the servers know the resolvers and push out the data eagerly.

To avoid sending the entire database, most of which does not change very often, we would use diff-
coding. The servers would maintain both the current database, and at least two days worth of change
logs, detailing individual updates or groups of updates. Resolvers would only request the complete
(timestamped) database once, and thereafter would request, at no more than a two-day interval, the
list of updates. To make a request, a resolver would supply the timestamp of its most recent update,
and would get back all updates after that time. If the server’s update log doesn’t go back that far,
then the client would have to re-request the entire database, but we will assume that doesn’t happen.
Note that, if resolvers are to be able to change which server they talk to, then we will need some of
the synchronization algorithms we have seen, to make sure that nothing slips through the cracks.

An update consists of the domain name and the new server for the domain (and the IP address of that
server, otherwise we won’t have saved the top-level server from getting hit). According to Mockapetris
and Dunlap, labels in the DNS hierarchy are limited to 63 characters, so we can easily fit what we
need from an NS record in 75 bytes (domain name, omitting the .com, plus IP address for nameserver
plus a few bytes to spare), so we could fit 20 mappings in a 1500-byte packet.

If we assume about 45,000 updates per day (near the top end of the range of values people found),
then, every two days, each resolver must download 4,500 packets of updates and apply them to the
local database. We assume that the local storage and computation are negligible. So basically, an
individual resolver would be better off using this scheme if it gets more than 2,250 requests per day
for second-level domains which wouldn’t be cached in the current DNS.

Whether or not that is reasonable depends on three factors:

• The popularity of domain names. This will almost certainly be a heavy-tailed distribution, so it’s
likely that 10–50 percent of total requests will be for unpopular domains, which wouldn’t be in
the cache.

• The number of clients a resolver serves. Typically there is about a resolver per subnet, so this
could be anywhere from 10–1000 clients.

• The rate at which clients request domain lookups. For web-browser clients, this is the number
of distinct sites they visit. We will approximate this as the rate at which humans jump to new
places.

If we take 10–50 percent as the range of unpopularity, and 10–1000 as the range of population size,
then we get a range of 4.5–2,250 super-requests/day/client, or 0–1.6 requests/min/client, so this is not
out-of-whack, although a resolver with a small number of clients would probably prefer the current
system.

Also note that this is calcuated in packets rather than bytes. Our packets are all mostly full, while typ-
ical DNS packets are mostly empty. Therefore, were we to repeat this analysis using bytes transferred
as the metric, we would likely come up with a required request rate 10–20 times greater than we did,
which would mean that most smaller resolvers probably would not benefit.
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