CSE P 590 SG Assignment #1

Due January 20, 2004

This assignment is due in class (before class begins) on Tuesday, January 20, 2004. You may bring it to
class, or turn it in beforehand to the TA (electronic submissions may be emailed, or you can put it in my
hand or my mailbox). Please do not turn in a late assignment.

For some of these problems, you will need to research, measure, or guesstimate various relevant design
or system parameters. Always document assumptions or choices you make as appropriate, and cite your
sources. If you need clarification of any question, ask. If you suffer an insight and want to take one of the
questions in a new direction, feel free to run with it (though you might want to check that you've also got
the basics down).

This is an individual assignment. You may discuss the questions and any broad ideas with your classmates,
but you must do the work yourself and turn in your own work. For those questions that involve researching
system parameters (e.g. 7), it is okay to share tips on where to find the necessary information, but do the
research yourself, rather than sharing the actual numbers you discover, and be sure to cite any tips you do
use. If you have any questions about these policies, feel free to ask either the professor or the TA.

There are seven parts to this assignment. Don’t forget to turn the page over.

DNS Spelunking

Using existing DNS tools (such as dig on UNIX) to perform direct measurements, answer the following
questions, and briefly explain how you ascertained your answers:

1. What is the complete list of authoritative name servers for the following domains? Can you offer any
guesses as to why these domains have set up their nameservers as they have?

(a) .com
(b) .edu
(¢) .ca
(d) .cs.washington.edu

(e) .yahoo.com
2. Which of the name servers that you discovered are willing to serve recursive queries?
3. Which of the name servers that serve recursive queries (from 2) perform negative caching?

4. Try looking up non-existant .cs.washington.edu names using recursive lookup on the servers from 3.
Is there a perceptible performance difference for names that are in the negative cache, versus those
that are not? How significant do you think negative caching is for DNS performance?

5. Where does Andy’s e-mail get delivered? Look up all the available records for tioga.cs.washington.edu
(note that dig, by default, shows only the A records). What happens if one of the mailservers is down?



6. If you wanted to attack one of these name servers (meaning any that you found, not just those from
parts 2 and 3), what attacks are possible and what would their effects be? To what extent do recursive
query and/or negative caching support affect vulnerability to these attacks? (It should go without
saying that you should not attempt to attack these servers in practice—you would likely get into
serious trouble, and we would disavow any knowledge of your mission.)

7. Research (using your favorite method—mine is Google) how many . com registrations happen per day.

Recall that we saw that a huge source of traffic to TLD servers is answering queries for bogus domain
names. Let us consider a design where all DNS resolvers store the complete list of NS records for all
second-level domain names (e.g. yahoo.com), and can therefore resolve all valid names and recognize
all invalid names without contacting a TLD server (they would, of course, still need to talk to the
second-level nameservers). To simplify the problem, we will consider only the .com domain (We can
either imagine that we do the same thing for other top-level domains, or that we fall back on “normal”
DNS for non-. com names; in either case we have much less data about the other top-level domains, so
we won’t worry about them.)

Assuming that all second-level . com NS records have a two-day TTL (meaning that our new DNS must
similarly ensure changes in second-level names are reflected within a two-day window), characterize
the circumstances in which it would be cheaper (in terms of total network packets) to maintain and
use this complete list of second-level names rather than interrogating the .com TLD server(s) directly.

In order to answer this, you will likely need to fill out the definition of the algorithm somewhat, to
define exactly what data is sent, by and to whom, and when. Is it possible to avoid transmitting the
entire set of second-level NS records to all resolvers every two days? Don’t go overboard in specification
here; we aren’t going to implement this system, we only want to figure out when it might be better.



