
1

1

Open Source Software

Ed Lazowska
IT & Public Policy
Autumn 2004

The process, the outcome
The heat, the light

2

The case for open source software

❚ �Why Open Source Software / Free
Software (OSS/FS)? Look at the Numbers!�
❙ David A. Wheeler
❙ Revised as of September 30 2004
❙ http://www.dwheeler.com/oss_fs_why.html

 (Not the focus of this lecture, but an
excellent source of information)

3

The open source software process

❚ �Two Case Studies of Open Source Software
Development: Apache and Mozilla�
❙ Audris Mockus, Roy T. Fielding, James D. Herbsleb
❙ ACM Transactions on Software Engineering and

Methodology 11,3
❙ http://www-

2.cs.cmu.edu/~jdh/collaboratory/research_papers
/TOSEM-draft.pdf

4

Apache

❚ Process
❙ Roles and responsibilties

❘ �Apache Group� of core developers, elected by current
members, can commit code to CVS; group votes on
inclusion of major changes

❙ Identifying work to be done
❘ Issues are raised on bboards or BUGDB and discussed by

the AG
❙ Assigning and performing work

❘ Once a problem or enhancement finds favor with the AG, a
volunteer is found to work on it

5

❙ Prerelease testing
❘ The developer tests � a �unit test� or �feature test,� not

a �regression test�
❙ Inspections

❘ Core developers review all changes but not mandated
❙ Managing releases

❘ Some core developer becomes the �release manager,�
driving issues to conclusion prior to a release

6

❚ Size of community
❙ 400 individuals contributed code

❘ 182 contributed to 695 fixes
❘ 249 contributed 6,092 enhancements

❙ 3,060 people submitted 3,975 problem reports
❘ Only 591 reports led to code changes

2

7

❚ Distribution of work: new functionality

8

❚ Distribution of work: fixes

9

❚ Who reports problems?
❙ 3,975 distinct problem reports from 3,060 people

❘ Top 15 reporters submitted only 5%
❘ 2,600 submitted 1
❘ 306 submitted 2
❘ 85 submitted 3
❘ Max was 12 submittals

10

❚ Code ownership
❙ Broad-based contributions
❙ Of 42 .c files with more than 30 changes:

❘ 40 had at least 2 developers making more than 10% of
the changes

❘ 20 had at least 4 developers making more than 10% of
the changes

11

❚ Defect density

Note: �Postfeature test� is �Postrelease� for Apache

12

❚ Time to resolve issues

3

13

Mozilla

❚ Process � many contrasts to Apache (Mozilla
is hybrid)
❙ Roles and responsibilties

❘ Netscape �open-sourced� Communicator; project guided
by the mozilla.org staff of 12, few of whom are active
coders; there are some full-time professional developers,
e.g., from Sun

❙ Identifying work to be done
❘ There is a �roadmap� document (plus bug reporting)

❙ Assigning and performing work
❘ Very loose approach to assigning/performing work

14

❙ Prerelease testing
❘ mozilla.org performs a daily build

❙ Inspections
❘ Two levels of formal code inspection for each change

❙ Managing releases
❘ Continuous build process leads towards releases

15

❚ Size of community
❙ Much larger code base, so much larger change rate

and much larger participating community, but
�ratios� are roughly similar (e.g., % of reports that
stimulated action)

❚ Distribution of work
❙ Somewhat more uniform � more like commercial

offerings than Apache
❚ Code Ownership

❙ Code ownership is enforced � someone �owns� each
module

16

❚ Time to resolve issues

Apache Mozilla

17

Hypotheses

1. There will be a core of developers who
control the code base and create >=80% of
new functionality. If coordination is ad hoc,
this group will be <=15 people.

2. If size of project requires a core >15, there
will need to be explicit development
processes, code ownership, required
inspections

3. A group larger by an order of magnitude will
repair defects, and a group larger by another
order of magnitude will report bugs 18

4. Projects with a strong core but a small
community will add features but fail because
of failure to find and fix bugs.

5. Defect density post-feature-test will be
lower than commercial code

6. Developers will be users
7. Rapid response to customer problems

❚ Not the case for Mozilla!

4

19

Contrast to the proprietary code
development process

❚ Frequency of releases
❚ Frequency of patches
❚ Standards for release
❚ Testing procedures
❚ Ease of prototyping

20

Final comment on OSS Process

❚ �A Second Look at the Cathedral and the
Bazaar�
❙ Nikolai Bezroukov
❙ First Monday, 1999
❙ http://www.firstmonday.dk/issues/issue4_12/bez

roukov/

❙ [more on The Cathedral and the Bazaar later]

21

❙ �There are advantages in using mixed models other
than the pure centralized (Cathedral) or
completely decentralized (Bazaar) extremes. It�s
hardly surprising that in reality a mixed model
dominates or that there�s a place for highly
centralized development in the Linux world.�

❙ Linus Torvalds: �Open source may sound
democratic, but it isn�t. At the LinuxWorld Expo
on Wednesday, leaders of some of the best-known
open source development efforts said they
function as dictators.�

22

Open source software and
reliability/security: Opinion

❚ The $64,000 (,000? ,000,000?) question:
How does the reliability/security of open
source code compare to that of proprietary
code?
❙ Argument for superiority:

❘ Linus Torvalds [attributed, in The Cathedral and the
Bazaar]: �Given enough eyeballs, all bugs are shallow.�

❘ The Cathedral and the Bazaar
� Eric Raymond
� O�Reilly, 1/15/02 (revised edition)
� http://www.catb.org/~esr/writings/cathedral-bazaar/

23

❙ Counter-argument:
❘ Gene Spafford: �The open-source movement is largely

devoid of systematic efforts to guarantee security. The
fact that code can be examined for flaws does not mean
it will be examined by anyone competent.�

❙ Funnier counter-argument:
❘ Albert Einstein [quoted in �A Second Look at the

Cathedral and the Bazaar�]: �Only two things are
infinite, the universe and human stupidity, and I'm not
sure about the former.�

24

❙ Middle ground:
❘ Linus Torvalds: �People think just because it is open-

source, the result is going to be automatically better.
Not true. You have to lead it in the right directions to
succeed. Open source is not the answer to world hunger.�

❘ Gene Spafford: �Careful analysis leads to the conclusion
that security is unrelated to whether the software is
proprietary or open source � The truth is that neither
the open-source nor the proprietary paradigms offer any
kind of silver bullet for security and quality.�

5

25

❙ �Whether Linux or Windows, No Software Is
Secure�

❘ Eugene H. Spafford and David L. Wilson
❘ Chronicle of Higher Education, 9/24/04
❘ http://www.cs.washington.edu/education/courses/csep59

0tu/04au/readings/insecure.htm
❙ A few (approximate) quotes

❘ Claims and counterclaims � miss the main point: Today's
computer systems, whether open source or proprietary,
are inherently insecure because of inconsistent and
haphazard design, lack of interest in ensuring high
quality, and a marked indifference on the part of
developers to the growing complexity of systems.

26

❘ Careful analysis leads to the conclusion that security is
unrelated to whether the software is proprietary or open
source.

❘ The open-source movement is largely devoid of
systematic efforts to guarantee security. The fact that
code can be examined for flaws does not mean it will be
examined by anyone competent.

❘ The literature contains reports of serious security flaws
in open-source products, often after years of use.
Several occurred in the parts of the software intended
to make it secure, which presumably underwent more
careful coding and examination. That strongly suggests
that either the many people who supposedly look at the
code are not able to recognize the problems, or they
aren't really looking. Experience indicates that both are
true.

27

❘ The truth is that neither the open-source nor the
proprietary paradigms offer any kind of silver bullet for
security and quality.

❘ Until we focus on applying sound security technology, on
appropriately training the people who produce the
programs, and on paying more attention to the quality of
software than to its number of features and purchase
price, we will continue to experience problems with
security.

28

❙ �Open Source Security: Still a Myth�
❘ John Viega (co-author of Secure Programming Cookbook

for C and C++)
❘ O�Reilly, 9/16/04
❘ http://www.onlamp.com/pub/a/security/2004/09/16/ope

n_source_security_myths.html
❙ A few (approximate) quotes:

❘ Most people look for the low-hanging fruit:
straightforward instances of common problems such as
buffer overflows, format string problems, and SQL
injection. Less sexy risks tend to get ignored.

29

❘ Just looking for the common problems can be incredibly
difficult and time consuming. For instance, even though
buffer overflows are a well-understood, straightforward
problem, in plenty of instances they�ve remained in heavily
audited code for years.

❘ The commercial world has better analysis tools available.
(Clearly, �eyeballs aren�t enough�!)

❘ Customer pressure is starting to have a big impact on
development processes. For example, for the past two
years Microsoft has made a dramatic effort toward
improving software security throughout the organization.

❘ Open source can prevail, but needs:
� Process
� Security awareness across the board
� Independent, third-party auditing 30

❙ Ken Thompson, 1999, in Computer:
❘ �I view Linux as something that�s not Microsoft - a

backlash against Microsoft, no more and no less � I�ve
looked at the source and there are pieces that are good
and pieces that are not. A whole bunch of random people
have contributed to this source, and the quality varies
drastically.�

6

31

❙ �Is it harmful to discuss security vulnerabilities?�
❘ Matt Blaze
❘ http://www.crypto.com/hobbs.html

❙ General thrust: �security through obscurity� is
nonsense

❘ You can�t rely on keeping the code secret
❘ It makes no sense to suppress discussion of security

flaws
❙ �The debate over the open discussion of security

vulnerabilities long predates the Internet and
computers.�

32

❙ A.C. Hobbs, Locks and Safes: The Construction of
Locks, 1853: �A commercial, and in some respects
a social doubt has been started within the last
year or two, whether or not it is right to discuss
so openly the security or insecurity of locks. Many
well-meaning persons suppose that the discussion
respecting the means for baffling the supposed
safety of locks offers a premium for dishonesty,
by showing others how to be dishonest. This is a
fallacy. Rogues are very keen in their profession,
and know already much more than we can teach
them respecting their several kinds of roguery.�

33

Open source software and
reliability/security: Fuzz testing

❚ �Fuzz Revisited: A Re-examination of the
Reliability of UNIX Utilities and Services�
❙ Barton P. Miller, et al., 1995
❙ ftp://ftp.cs.wisc.edu/paradyn/technical_papers/f

uzz-revisited.pdf

34

❚ Methodology
❙ Subjected 80 UNIX utilities to random input

streams
❙ Ditto for network services
❙ Ditto for X-window applications
❙ Utilities from 7 commercial UNIX systems, and 2

OSS systems

35

❚ Findings
❙ Failure rate on tests is 18-23%

❘ �Failure� = crashing or hanging
❙ Failure rate of utilities on commercial versions of

UNIX (from Sun, IBM, SGI, DEC, and NeXT) is
15-43%

❙ Linux: 9%
❙ GNU: 6%
❙ >50% of X-window aps crashed on random input;

>25% crashed on random but legal X-event
streams

36

❚ Sources of crashes/hangs
❙ Pointers/arrays
❙ Dangerous input functions
❙ Signed characters
❙ End-of-file

7

37

❚ �An Empirical Study of the Robustness of
Windows NT Applications Using Random
Testing�
❙ Forrester and Miller, 2000
❙ ftp://ftp.cs.wisc.edu/paradyn/technical_papers/f

uzz-nt.pdf

38

❚ Methodology
❙ Subjected 33 NT 4 (and 14 NT 5) application

programs utilities to random input using
SendMessage, PostMessage, keybd_event, and
mouse_event

39

❚ Findings
❙ 21% of aps crashed and 24% hung when presented

with random valid keyboard and mouse events
❙ 100% failed when presented with completely

random Win32 messages

8

43

❚ Sources of crashes/hangs
❙ Only had source code for 2 applications, so

analysis limited
❙ Common careless programming idiom: Receiving a

Win32 message and unsafely using a pointer or
handle contained in the message

44

Open source software and
reliability/security: Secunia

❚ An incredible wealth of data!
❙ http://secunia.com/

48

Open source software and
reliability/security: Browsers

❚ Recent ISS SecurityFocus posting, covered
on Slashdot 10/19/04
❙ �Web browsers � a mini-farce�
❙ Michal Zalewski
❙ http://www.securityfocus.com/archive/1/378632/

2004-10-15/2004-10-21/0

9

❚ Methodology
❙ Tool generates �tiny, razor-sharp shards of

malformed HTML� � only basic HTML
❙ Ran against IE, Mozilla/Nescape/Firefox, Opera,

Lynx, Links
❚ Results

❙ �All browsers but Microsoft Internet Explorer
kept crashing on a regular basis due to NULL
pointer references, memory corruption, buffer
overflows, sometimes memory exhaustion�

50

❚ Examples
❙ Mozilla: Memory corruption / overflow causes null

pointer access
❙ Mozilla: Bogus pointer access
❙ Opera: Referenced un-initialized memory
❙ Links: Big table consumes all memory then over-

writes what it managed to allocate
❙ Lynx: Loops forever trying to render broken

HTML

51

❚ Conclusion
❙ �Only MSIE appears to be able to consistently

handle malformed input well, suggesting this is the
only program that underwent rudimentary security
QA testing with a similar fuzz utility.�

❙ �This is of course not to say MSIE is more secure;
it does have a number of problems, mostly related
to its security architecture and various features
absent in other browsers. But the quality of core
code appears to be far better than of its "secure"
competitors.�

52

OSS Summary

❚ A small core group of developers control the
code base and create most of the new
functionality

❚ A group larger by an order of magnitude
repairs defects, and a group larger by
another order of magnitude reports bugs

❚ Many hybrid models exist
❚ �Open source may sound democratic, but it

isn�t.� [Linus Torvalds]

53

❚ �Claims and counterclaims � miss the main
point: Today's computer systems, whether
open source or proprietary, are inherently
insecure.� [Gene Spafford]

❚ �Careful analysis leads to the conclusion that
security is unrelated to whether the
software is proprietary or open source � The
truth is that neither the open-source nor the
proprietary paradigms offer any kind of
silver bullet for security and quality.� [Gene
Spafford]

