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Propositional Calculus

Throughout our treatment of formal logic it is important to distinguish between syntax
and semantics. Syntax is concerned with the structure of strings of symbols (e.g. formulas
and formal proofs) without regard to their meaning. Semantics is concerned with their
meaning.

Syntax

Formulas are certain strings of symbols as specified below. In this chapter we use formula
to mean propositional formula. Later the meaning of formula will be extended to first-order
formula.



(Propositional) formulas are built from atoms Py, Py, Ps, ..., the unary connective —, the
binary connectives A,V, and parentheses (,). (The symbols =, A and V are read “not”,
“and” and “or”, respectively.) We use P, @, R, ... to stand for atoms. Formulas are defined
recursively as follows:

Definition of Propositional Formula

1

Any atom P is a formula.

)

2) If A is a formula so is - A.

3) If A, B are formulas, so is (A A B).
)

4) If A, B are formulas, so is (AV B).

All (propositional) formulas are constructed from atoms using rules 2) - 4).

Examples of formulas: P, (P V Q), (=(P A Q) A (=P V —Q)).

We will use D (“implies”) and < (“is equivalent to”) as abbreviations as follows:
(A D B) stands for (-AV B)

(A ¢ B) stands for ((AD B)A (B D A))

Unique Readability Theorem: (The grammar for generating formulas is unambiguous)
Suppose A, B, A’, B' are formulas, c and ¢’ are binary connectives, and (AcB) =5, (A'dB’).
Then A =;,, A', B =5, B’ and ¢ =4, ¢

Here we write A =;,,, A" instead of A = A’ to emphasize that A and A’ are equal as strings
of symbols (syntactic identity, rather than semantic identity). Note that =, is a symbol
of the “metalanguage” rather than the formal “object language”.

Proof Assign weights 0 to —
1 to each binary connective A,V
1 to(
-1 to)
—1 to each atom P.

Def’n The Weight of A is the sum of the weights of the symbols in A.



Lemma The weight of any formula is —1, but the weight of any proper initial segment is
> 0. (Hence no proper initial segment of a formula is a formula.)

Proof Structural induction on length of A. By structural induction we mean induction
on the length of A, following the definition of propositional formula given above. The
base case of the induction is the case in which A is an atom P. The lemma is obvious in
this case. The induction step has one case for each of the three ways of constructing new
formulas from simpler formulas, using —, A, V. For example, in the case of A, the task is
to prove the lemma for (A A B), assuming (by the induction hypothesis) that the lemma
holds for both A and B. We leave this as an exercise.

The Unique Readability Theorem follows from the Lemma.

In practice we will omit some of the parentheses in a formula when it does not cause
ambiguity. We use the convention associativity to the right for A and V. For example,

(Al V A2 V Ag \% A4) stands for (Al V (A2 V (Ag \% A4)))

Semantics
Def’n A truth assignment is a map 7 : {atoms} — {7, F'}.

(Here {7, F'} represents { true, false }). A truth assignment 7 can be extended to assign
either T or F' to every formula, as follows:

1) (RA) =Tiff AT=F
2) (ANB) =Tt A"=Tand g7 =T
) (Avp)y =TitA " =Tor 7 =T

Def’n 7 satisfies A ifl A”™ = T'; 7 salisfies a set ® of formulas iff 7 satisfies A for all A € ®.

® is satisfiable iff some 7 satisfies ®; otherwise @ is unsatisfiable. Similarly for A.

IMPORTANT DEFINITION ¢ |= A (i.e. Ais a logical consequence of @) iff T satisfies
A for every 7 such that 7 satisfies ®.

Def’n A formula A is valid iff = A (i.e. A7 =T for all 7). A valid propositional formula
is called a tautology. We say that A and B are equivalent (written A <= B) iff A E B
and B E A.



Note that <= refers to semantic equivalence, as opposed to =j,,,, which indicates syntactic

equivalence. For example, (P V Q) <= (Q V P), but (P V Q) #s. (QV P).

Proposition ¢ = A iff ® U {—A} is unsatisfiable. Also A is a tautology iff = A is unsatis-
fiable.

Proof: Immediate from the definitions of “unsatisfiable” and |=.
Examples:

The following are tautologies:
PV P

PDOP

=(P A =P)
(=PV((PAQ)V(PA-Q))

Logical consequence:

(PAQ)E(PVQ)

Equivalence:
(PVQ)+=(QVP)
(PAQ) = (QAP)

(PAN(QVR) <= ((PANQ)V (P AR)) (A distributes over V.)
(PV(QAR)) <= ((PVQ)AN(PVR)) (V distributes over A.)
-(PV Q) <= (-P A=Q) (De Morgan’s Law)

(P A Q)<= (-PV-Q) (De Morgan’s Law)

(P D Q)<= (—Q D —P) (contrapositive)

Formal Proofs (Gentzen Systems)

One way to establish that a formula A with n atoms is a tautology is to verify that A =T
for all 2" truth assignments 7 to to the atoms of A. A similar exhaustive method can
be used to verify that A is a logical consequence of a finite set ® of formulas. However
another way is to use the notion of a formal proof, which may be both more efficient and
more illuminating. A formal proof is a syntactic notion, in contrast to validity, which is a
semantic notion. Many formal proof systems have been studied. The one we present here
is the very elegant sequent calculus, introduced by Gerhard Gentzen in 1935 (see [Buss],
section 1.2.1).

In the propositional sequent calculus system P K, each line in a proof is a sequent of the



form

Al,...,Ak%Bl,...,Bg (1)

where — is a new symbol (not to be confused with D), and Ay,..., Ay and By, ..., By are
sequences of formulas (k, ¢ > 0) called cedents. We call the cedent Ay, ..., Ay, the antecedent
and By, ..., By the succedent.

The semantics of sequents is given as follows. We say that a truth assignment 7 satisfies
the sequent (1) iff either 7 falsifies some A; or 7 satisfies some B;. Thus the sequent is
equivalent to the formula

(Ay A Ay Ao AN Ag) D (B V BaV ...V By)

(In other words, the conjunction of the A’s implies the disjunction of the B’s.) In the cases
in which the antecedent or succedent is empty, we see that the sequent — A is equivalent
to the formula A, and A — is equivalent to —=A, and just — (with both antecedent and
succedent empty) is false (unsatisfiable). We say that a sequent is valid if it is true under
all truth assignments (which is the same as saying that its corresponding formula is a
tautology).

Examples: The following are valid sequents, for any formulas A, B:

A— A

— A, -A

A, —A —

— AV A
AJ/ADB—B

A formal proof (or just proof) in the propositional sequent calculus PK is a finite rooted
tree in which the nodes are (labeled with) sequents. The sequent at the root (written at
the bottom) is what is being proved, and is called the endsequent. The sequents at the
leaves, written at the top, are logical arioms, and must be of the form A — A, where
A is a formula. Each sequent other than the logical axioms must follow from its parent
sequent(s) by one of the following rules of inference (here I and A denote finite sequences
of formulas).

weakening rules
I — A I'— A

AT oA neht TR A

exchange rules

left

F17A7B7F2—>A (oht F-}Al,A,B,AQ
Il
[, B, AT, — A S T AL B. A A,



contraction rules

loft A,A— A . htF—>A,A,A
T ASA N T A A
— introduction rules
left I'— AA Loht AT = A
AT S A e A CA
A introduction rules
left A B, I = A ,htF—>A,A I'—-AB
e ri
(ANB),T = A 8 [ = A, (AAB)
V introduction rules
lftA,F—>A B,I' - A (ot I'—-AAB
e ri
(AVB),I = A ST S A (AV B)

cut rule

'-AA ATl—=A
'— A

Note that there is one left introduction rule and one right introduction rule for each of
the three logical connectives A, V, . Further, these rules seem to be the simplest possible,
given that the fact that in each case the bottom sequent is valid iff all top sequents are

valid.

Exercise 1 Write down each of the six introduction rules from memory.

Note that repeated use of the exchange rules allows us to execute an arbitrary reordering
of the formulas in the antecedent or succedent of a sequent. In presenting a proof in the
system PK. we will usually omit mention of the steps requiring the exchange rules, but of
course they are there.

As an example, we give a PK proof of one of DeMorgan’s laws:

“(PAQ)— PV -Q



To find this (or any) proof, it is a good idea to start with the conclusion at the bottom,
and work up by removing the connectives one at a time, outermost first, by using the
introduction rules in reverse. This can be continued until some atom P occurs on both
the left and right side of a sequent. Then this sequent can be derived from the axiom
P — P using weakenings and exchanges. The cut and contraction rules are not necessary,
and weakenings are only needed immediately below axioms. (The cut rule can be used to
shorten proofs, and contraction will be needed later for the predicate calculus.)

PP , Q—0Q .
———— (weakening) ———— (weakening)
P — P -Q Q —Q,~P

——— (= right) —— (= right)
% P7 _|P7 _|Q % Q7_|P7 _|Q

A right
- PAQ,-P,-Q ( )

= PANQ,-PV-(Q
“(PANQ)— -PV-Q

(V right)
(~ lefo)

Exercise 2 Give PK proofs for each of the following valid sequents:

PV -Q —~(PAQ)
—(PVQ)—-PA-Q
“PA-Q —~(PVQ)

Exercise 3 Suppose that we allowed O as a primitive connective, rather than one intro-
duced by definition. Give the approprate left and right introduction rules for D.

Now we prove that PK is both sound and complete. That is, a propositional sequent is
provable in PK iff it is valid.

Soundness Theorem: Every sequent provable in PK is valid.

Proof: We show that the endsequent in every PK proof is valid, by induction on the
number of sequents in the proof. For the base case, the proof is a single line; an axiom
A — A. This is obviously valid. For the induction step, one need only verify for each rule,
if all top sequents are valid, then the bottom sequent is valid. O

Completeness Theorem: Every valid propositional sequent is provable in PK without
using cut or contraction.

Proof: The idea is discussed in the example proof above of DeMorgan’s laws. We need to
use the inversion principle.



Inversion Principle: For each PK rule except weakening and cut, if the bottom sequent
is valid, then all top sequents are valid.

This principle is easily verified by inspecting each of the ten rules in question.

Now for the completeness theorem: We show that every valid sequent I' —+ A has a PK
proof, by induction on the total number of logical connectives A, V, = occurring in I' — A.
For the base case, every formula in I' and A is an atom, and since the sequent is valid,
some atom P must occur in both I' and A. Hence I' —+ A can be derived from the axiom
P — P by weakenings and exchanges.

For the induction step, let A be any nonatomic formula (i.e. A is not an atom) in I' or
A. Then by the definition of propositional formula A must have one of the forms (B A C'),
(BV (), or =B. Thus ' = A can be derived from A introduction, V introduction, or
— introduction, respectively, using either the left case or the right case, depending on
whether A is in I' or A. In each case, each top sequent of the rule will have at least one
fewer connective than I' — A, and the sequent is valid by the inversion principle. Hence
each top sequent has a PK proof, by the induction hypothesis. O

Remark: The soundness and completeness theorems relate the semantic notion of validity
to the syntactic notion of proof.

We generalize the (semantic) definition of logical consequence from formulas to sequents in
the obvious way: A sequent S is a logical consequence of a set ® of sequents iff every truth
assignment 7 that satisfies ® also satisfies S. We generalize the (syntactic) definition of
PK proof of a sequent S to a PK proof of S from a set ® sequents by allowing sequents
in ® to be leaves (or nonlogical axioms) in the proof tree, in addition to the logical axioms
A — A. Tt turns out that soundness and completeness generalize to this setting.

Derivational Soundness and Completeness Theorem: A sequent S is a logical con-
sequence of a set ® of sequents iff there is a PK proof of S from .

A remarkable aspect of completeness is that a finite proof exists even in case ® is an infinite
set. This is because of the compactness theorem (below) which implies that if S is a logical
consequence of ®, then S is a logical consequence of some finite subset of ®.

Derivational soundness is proved in the same way as simple soundness: by induction on
the number of sequents in the PK proof. In the previous proof we observed that if the top
sequents of a rule are valid, then the bottom sequent is valid. Now we observe that the
bottom sequent is a logical consequence of the top sequent(s).

To prove completeness, by compactness it suffices to consider the case in which ® is a finite



set.

In general, to prove S from @ the cut rule is required. In particular, there is no PK proof
of - P from — P A @) without using the cut rule. To see this, we apply the following
result.

Subformula Property: Every formula in every sequent in a PK proof without cut is a
subformula of a formula in the endsequent.

This principle is proved by observing that for every rule other than cut, every formula on
the top is a subformula of some formula on the bottom.

We illustrate the completeness theorem by proving the special case in which ® consists of
the single sequent A — B. Assume that the sequent I' —& A is a logical consequence of
A — B. Then both of the sequents I' = A, A and B, A,I" — A are valid (why?). Hence by
the earlier completeness theorem, they have P K proofs m; and m3. We can use these proofs
to get a proof of I' = A from A — B as shown below, where the double line indicates
several rules have been applied.

A— B .
—————— (weakenings, exchanges) .2
L ATl'—-AB B,A,F—>(At)
- cu
' — A A AT = A
(cut)
' = A

Next consider the case in which ® has the form {— A;,— Ay, ...,— Ai} for some set
{Aq, ..., A} of formulas. Assume that I' — A is a logical consequence of ® in this case.

Then the sequent
Al, AQ, ey Ak, I - A

is valid (why?), and hence has a PK proof 7. Now we can use the assumptions ® and the
cut rule to successively remove Ay, Ay, ..., A from the above sequent to conclude I' — A.
For example, Ay is removed as follows:

— A

(weakenings, exchanges) T

Ag, s AnT — A A, Ay, Ay, o, A T = A
(cut)
Agy o AT = A

Exercise 4 Prove the completeness theorem for the more general case in which ® is any
finite set of sequents.



Propositional Compactness Theorem: We state three different forms of this result.
All three are equivalent.

Form 1: If & is an unsatisfiable set of propositional formulas, then some finite subset of
® is unsatisfiable.

Form 2: If a formula A is a logical consequence of a set @ of formulas, then A is a logical
consequence of some finite subset of ®.

Form 3: If every finite subset of a set ® of formulas is satisfiable, then ® is satisfiable.

Exercise 5 Prove the equivalence of the three forms. (Note that Form 3 is the contrapos-
itive of Form 1.)

Proof of Form 1: Let ® be an unsatisfiable set of formulas, and let Py, P, Ps, ... be an
infinite list including all atoms occurring in ®. Organize the set of truth valuations into an
infinite rooted binary tree B. Each node except the root is labelled with a literal P; or = F;.
The two children of the root are labelled P; and — Py, indicating that P; is assigned T or F/,
respectively. The two children of each of these nodes are labelled P, and = P,, respectively,
indicating the truth value of P,. Thus each infinite branch in the tree represents a complete
truth assignment, and each path from the root to a node represents a truth assignment to
the atoms Py, ..., P;, for some 1.

Now for every node v in the tree B, prune the tree at v (i.e. remove the subtree rooted
at v, keeping v itself) if the partial truth assignment 7, represented by the path to v
falsifies some formula A, in ®, where all atoms in A, get values from 7,. Let B’ be the
resulting pruned tree. Since ® is unsatisfiable, every path from the root in B’ must end
after finitely many steps in some leaf v labelled with a formula A, in ®. If follows from
Konig’s Lemma below that B’ is finite. Let ®' be the finite subset of ® consisting of all
formulas A, labelling the leaves of B’. Since every truth assignment 7 determines a path
in B’ which ends in a leal A, falsified by 7, it follows that @’ is unsatisfiable. a

Konig’s Lemma: Suppose 7' is a rooted tree in which every node has only finitely many
children. If every branch in T is finite, then 7' is finite.

Proof: We prove the contrapositive: If T' is infinite (but every node has only finitely many
children) then 7" has an infinite branch. We can define an infinite path in 7" as follows:
Start at the root. Since T is infinite but the root has only finitely many children, the
subtree rooted at one of these children must be infinite. Choose such a child as the second
node in the branch, and continue. O

10



Exercise 6 (For those with some knowledge of set theory or point set topology) The
above proof of the propositional compaciness theorem only works when the set of atoms is
countable, but the result still holds even when ® is an uncountable set with an uncountable
set A of atoms. Complele each of the two proof outlines below.

(a) Prove Form 3 using Zorn’s Lemma as follows: Call a set W of formulas finitely satisfiable
if every finite subset of W is satisfiable. Assume that ® is finitely satisfiable. Let C be the
class of all finitely satisfiable sets ¥ O & of propositional formulas using atoms in ®. Order
these sets WU by inclusion. Show that the union of any chain of sets in C is again in the
class C. Hence by Zorn’s Lemma, C has a maximal element W,. Show that ¥y has a unique
satisfying assignment, and hence ® is satisfiable.

(b) Show that Form 1 follows from Tychonoff’s Theorem: The product of compact topo-
logical spaces is compact. The set of all truth assignments to the atom set A can be given
the product topology, when viewed as the product for all atoms P in A of the two-point
space {1, F'} of assignments to P, with the discrete topology. By Tychonoff’s Theorem,
this space of assignments is compact. Show that for each formula A, the set of assignments
falsifying A is open. Thus Form 1 follows from the definition of compact: every open cover
has a finite subcover.
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