CSEP590 — Model Checking and
Automated Verification

Lecture outline for July 30, 2003

-We will first finish up Timed Automata from the last lecture...
-The fixed point characterization of CTL
-We discuss this 1ssue to motivate a proof of correctness of our
model checking algorithm for CTL
-This also provides necessary background for discussing the
relational mu-calculus and 1ts applications to model checking
-Recall: given a Model M = (S,->,L), our algorithm computes all s€S
s.t. M,s |= ¢ for a CTL formula ¢
-We denote this set as {¢}
-Our algorithm 1s recursive on the structure of ¢
-For boolean operators it is easy to find {¢} via combinations of
subsets using Union, Intersection, etc
-An interesting case though 1s a formula involving a temporal
operator (such as EX ¢)
-We compute the set {¢}, then compute the set of all states
with transitions to a state in {¢}
-How do we reason about EU,AF, and EG? — we are iteratinga
labelline nolicv until stabiliced!

-But how do we know that such iterations will terminate and
even return the correct sets?? How can we argue this?
-Defn: let S be a set of states and F: P(S) = P(S) be a function on the
power set of S (where P(S) denotes power set of S). Then,
-1) F 1s monotone 1f xcY implies that F(X)cF(Y) for all subsets X
and Y of S
-2) A subset X of S 1s called a fixed point of F if F(X) =X
-We’ll see an example 1n class of fixed points and monotone
functions. Indeed, a greatest fixed point 1s a subset X that 1s a fixed
point and has the largest size. A least fixed point can be defined
similarly
-Why are we exploring monotone functions?
-They always have a least and greatest fixed point
-The meanings of EG,AF,EU can be expressed via greatest and
least fixed points of monotone function on P(S) (S = set of states)
-Fixed points are easily computed

-Notation: Fi(X) = F(F(...F(X)...)) => a function F applied i times
-Theorem: Let S be a set {s,,s,...s,} with nt1 elements. If F: P(S) 2
P(S) is a monotone function, then F**1({J) is the least fixed point of F,
and F1(S) is the greatest fixed point of F.
-Proof: in book on page 207
-This theorem provides a recipe for computing fixed points!
Indeed, the method 1s bounded at n+1 1terations.
-Now, we can prove the correctness of our model checking algorithm
-Proof that EG algorithm 1s correct:
-We could say that EG ¢ = gAEXEG ¢ (call this (1))
-Also, {EG ¢} = {s|exists s’ s.t. s=2s’ and s’ {d}}
-Thus, we can rewrite (1) as
-{EG ¢} = {d} n {s|exists s’ s.t. s=2s’ and s’ {EG ¢} }
-Thus, we calculate {EG ¢} from {EG ¢} — this sounds
like a fixed point operation!
-Indeed, {EG ¢} is a fixed point of the function
-F(X) = {d} N {s|exists s’ s.t. s=2s’ and s’ e X} s

-F 1s monotone, and {EG ¢} 1s its greatest fixed point
-(Formal proof 1s 1n book on pg. 209)
-{EG ¢} can be computed using our theorem for fixed
points, applied iteratively
-ie, {EG ¢} = F**1(S) where n+1=[S]
-Thus, correctness of EG procedure 1s proved and it 1s
guaranteed to terminate 1n at most |S| iterations
-The book gives similar fixed point analysis for the EU operator,
showing that its algorithm 1s also correct
-This, when combined with the correctness of EX and the boolean
operators, completes proof of correctness of our CTL model
checking algorithm
-Now, let’s discuss the relational mu-calculus and how model
checking can be performed 1n i1t
-We introduce a syntax for referring to fixed points in the context
of boolean formulas

-Formulas of the relational mu-calculus grammar:
-t=x|Z
=01t !If| £, + £ | £*, | Ix.A| Vx| uZ.f| vZ.f|
f1X=X"]
-Where x 1s a boolean variable, Z 1s a relational variable, and
X 1s a tuple of variables
-A relational variable can be assigned a subset of S (set of
states)
-In formulas uZ.f and vZ.f any occurrence of Z in f'1s
required to fall within an even # of complementation
symbols
-Such an f 1s called formally monotone in Z
-Symbols u and v stand for least and greatest fixed point
operators
-Thus, uZ.f means “least fixed point of function
(where the 1teration 1s “occuring” on relational variable
Z. The “returned” Z 1s the least fixed point of f)

-The formula f]X=X"] expresses the explicit substitution
forcing 1 to be evaluated using the values of x;” rather than x.
(allows for notions of “next time” evaluations, like successors)
-A valuation p for f 1s an assignment of values 0 or 1 to all
variables
-Define: satisfaction relation p |= f inductively over the structure
of such formulas f, given a valuation p
-We define |= for formulas without fixed point operators:
p!FO,pl=ELpl=Eviffp(v)=1,pl=!fiffp!=1f p={+giffp
=forp|l=g p|l=f*giffp|=fand p |= g, p |= Ix.f 1ff p[x=0]
=forp[x=1] =1 p|= Vx.fiff p[x=0] |=fand p[x=1] |=1f, p |=
fIX=X"]iff p[X=X"] |=f
-Where p[X=X"] is the valuation assigning the same values as
p but for each x, in X, it assigns p(x.’)
-We’ll see a few examples in class that make all this jumbled
notation clearer
-Now, we extend the |= definition to fixed point operators u and v

-p |=uZ.fiff p |=u Z.f for some m >=0
-Where uZ.f 1s recursively defined as
-u,Z.f=0
-u Z.f=1u__,Z.1/Z] (that 1s, replace all occurrences of
Z in fwithu_ ,Z.1)
-pl=vZLiffp|=v Zfforallm>=0
-Where vZ.1f 1s recursively defined as
-v,Z.1=1
v, Z1=1]v Z1/7Z]
-We’ll see some examples 1n class that will makes this
intuitive. Essentially, these are just recursive definitions, they
iterate to fixed points
-So now we can code CTL models and specifications
-Given a model M=(S,->,L), the u and v operators permit us to
translate any CTL formula ¢ into a formula f? of the relational
mu-calculus s.t. f represents the set of states s where s |= ¢
-Then, given a valuation p (ie, a state), we can check if p |= ¥,
meaning that the state satisfies ¢

-Indeed, we can do this purely symbolically
-Recall that the transition relation = can be represented as a
boolean formula £ (from our symbolic model checking
lecture 4). Also, sets of states can be encoded as boolean
formulas
-Therefore, the coding of a CTL formula ¢ as a function f? in
relational mu-calculus is given inductively:
-f* = x for vars x

fL=0
{10 = 1Y
foVe = ko

-fEXO = 3X° (£ *[X=X"])
-What the heck does that mean? ‘“There exists a next state
s.t. the transition relation holds from the current state
AND f* holds in this next state”
-We can also encode the formula for EF¢

-Note that EF¢p = ¢ v EXEF¢

-Thus, fFF is equivalent to f? + EXEFe which is equivalent to ¥

+ IXC.(F7*EF[X=X"])

-Since EF involves computing the least fixed point, we obtain
-fEF = yZ.(f* + IX°.(f?*Z[X=X"])), where Z is a
relational variable.

-Thus, we are getting the least fixed point of the formula
that precisely encodes EF¢ = ¢ v EXEF¢

-The book provides similar coding for AF and EG on page

368

-The important point is to see how we used the fixed point

characterization of CTL to code CTL formulas in relational

mu-calculus (which has a fixed point syntax!)

-Thus, we can model check in terms of these relational mu-

calculus formulas and symbolic representations of states and

the transition relation

10

-Our last topic today, time-permitting, is to discuss a few abstraction
techniques in model checking
-Abstraction methods are a family of techniques used to simplify
automata.
-It 1s probably “the most important technique for reducing the
state explosion problem.” —EM Clarke
-A1m: given model as an automata A, we reduce a complex
problem of A |= ¢ 1nto a much simpler problem A’ |= ¢
-Thus, this 1s another layer of abstraction on top of the
abstraction of specifying a model to represent the system in
question
-We’ll look more at examples to illustrate abstraction as opposed
to developing a formal theory (for those interested, see me after
class or email)
-Why/when abstraction? Automata (model) is too big to check, of
model checker doesn’t handle certain details of the model

11

-We’ll look at 2 techniques
-Abstraction by state merging
-Cone of influence reduction
-Abstraction by state merging
-View some states as identical (ie, notions of folding states)
-Merged states are put together into a super-state
-Merging can be used for verifying safety properties, mainly
because
-1) the merged automata A’ has more behaviors than A
-2) the more behaviors an automata has, the fewer safety
properties 1t fulfills
-3) thus, 1f A’ satisfies a safety property p, then so too does A
satisfy p
-4) 1if A’ doesn’t satisfy p, no conclusion can be drawn about
A
-Why i1s this verification only one-way?
-There 1s a difficulty here though: 1

-How are atomic propositions labeling states gathered
together into the super-state??
-In principle: never merge states that are labeled with
different sets of atomic props
-But this 1s way too restrictive
-How weaken?
-Turns out that if merging 1s used to check property p,
then only the propositions occurring in p are relevant
-Thus, 1f a proposition X only appears in positive form
in p (each occurrence of X is within an even # of
negation symbols), then we can merge states w/o the
need for these to agree on the presence of X
-The super-state then carries the label of X 1ff all
merged states carry the label X
-This rationale i1sn’t obvious though...
-Abstraction via cone of influence reduction
-Suppose we are given a subset of the variables V'’V that arg;of
interest with respect to a required spec

-Recall: system can be specified as a Kripke Structure using
equations for transition relations, and an equation for the initial set
of states of the system
-We want to simplify the system description by referring to only
those variables V’
-But, values of V’ variables may depend on the values of variables
notin V’
-For example, we’ll consider the modulo 8 counter that we
examined 1n lecture 2
-We define the cone of influence C for V’ and use C for our
reduction of the system
-Deftn: the cone of influence C of V’ 1s the minimal set of vars s.t.
-1) V’ is a subset of C
-2) 1t for some v; € C its formula f; depends on v;, then v; 1s
also in C
-Therefore, the reduced system 1s constructed by removing all
transition equations whose left hand side variables do not appgar in

C

-We’ll see the full example of this technique 1n class using the
Kripke Structure model for the modulo 8 counter

-We won’t, however, go over the proof arguing that removal of
such equations doesn’t affect the equivalency of the model

15

	CSEP590 – Model Checking and Automated Verification

