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CSEP590 – Model Checking and 
Automated Verification

Lecture outline for July 30, 2003
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-We will first finish up Timed Automata from the last lecture…
-The fixed point characterization of CTL

-We discuss this issue to motivate a proof of correctness of our 
model checking algorithm for CTL
-This also provides necessary background for discussing the 
relational mu-calculus and its applications to model checking

-Recall: given a Model M = (S, ,L), our algorithm computes all s∈S 
s.t. M,s |= φ for a CTL formula φ

-We denote this set as {φ}
-Our algorithm is recursive on the structure of φ
-For boolean operators it is easy to find {φ} via combinations of 
subsets using Union, Intersection, etc
-An interesting case though is a formula involving a temporal 
operator (such as EX φ)

-We compute the set {φ}, then compute the set of all states 
with transitions to a state in {φ}

-How do we reason about EU,AF, and EG? – we are iterating a 
labelling policy until stabilised! 
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-But how do we know that such iterations will terminate and 
even return the correct sets??  How can we argue this?

-Defn: let S be a set of states and F: P(S) P(S) be a function on the 
power set of S (where P(S) denotes power set of S).  Then,

-1) F is monotone if x⊆Y implies that F(X)⊆F(Y) for all subsets X 
and Y of S
-2) A subset X of S is called a fixed point of F if F(X) = X

-We’ll see an example in class of fixed points and monotone 
functions.  Indeed, a greatest fixed point is a subset X that is a fixed 
point and has the largest size.  A least fixed point can be defined 
similarly
-Why are we exploring monotone functions?

-They always have a least and greatest fixed point
-The meanings of EG,AF,EU can be expressed via greatest and 
least fixed points of monotone function on P(S) (S = set of states)
-Fixed points are easily computed
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-Notation: Fi(X) = F(F(…F(X)…)) => a function F applied i times
-Theorem: Let S be a set {s0,s1,…sn} with n+1 elements.  If F: P(S) 
P(S) is a monotone function, then Fn+1(∅) is the least fixed point of F, 
and Fn+1(S) is the greatest fixed point of F.

-Proof: in book on page 207
-This theorem provides a recipe for computing fixed points!  
Indeed, the method is bounded at n+1 iterations.

-Now, we can prove the correctness of our model checking algorithm
-Proof that EG algorithm is correct:

-We could say that EG φ = φ∧EXEG φ (call this (1))
-Also, {EG φ} = {s|exists s’ s.t. s s’ and s’∈{φ}}
-Thus, we can rewrite (1) as

-{EG φ} = {φ} ∩ {s|exists s’ s.t. s s’ and s’∈{EG φ}}
-Thus, we calculate {EG φ} from {EG φ} – this sounds 
like a fixed point operation!

-Indeed, {EG φ} is a fixed point of the function
-F(X) = {φ} ∩ {s|exists s’ s.t. s s’ and s’∈X}
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-F is monotone, and {EG φ} is its greatest fixed point
-(Formal proof is in book on pg. 209)

-{EG φ} can be computed using our theorem for fixed 
points, applied iteratively

-ie, {EG φ} = Fn+1(S) where n+1=|S|
-Thus, correctness of EG procedure is proved and it is 
guaranteed to terminate in at most |S| iterations

-The book gives similar fixed point analysis for the EU operator,
showing that its algorithm is also correct
-This, when combined with the correctness of EX and the boolean
operators, completes proof of correctness of our CTL model 
checking algorithm

-Now, let’s discuss the relational mu-calculus and how model 
checking can be performed in it

-We introduce a syntax for referring to fixed points in the context 
of boolean formulas
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-Formulas of the relational mu-calculus grammar:
-t = x | Z
-f = 0 | 1| t | !f | f1 + f2 | f1*f2 | ∃x.f | ∀x.f | uZ.f | vZ.f | 
f[X=X’]
-Where x is a boolean variable, Z is a relational variable, and 
X is a tuple of variables
-A relational variable can be assigned a subset of S (set of 
states)
-In formulas uZ.f and vZ.f any occurrence of Z in f is 
required to fall within an even # of complementation 
symbols

-Such an f is called formally monotone in Z
-Symbols u and v stand for least and greatest fixed point 
operators

-Thus, uZ.f means “least fixed point of function f” 
(where the iteration is “occuring” on relational variable 
Z.  The “returned” Z is the least fixed point of f)
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-The formula f[X=X’] expresses the explicit substitution 
forcing f to be evaluated using the values of xi’ rather than xi
(allows for notions of “next time” evaluations, like successors)

-A valuation p for f is an assignment of values 0 or 1 to all 
variables
-Define: satisfaction relation p |= f inductively over the structure 
of such formulas f, given a valuation p
-We define |= for formulas without fixed point operators:

-p !|= 0, p |= 1, p |= v iff p(v)=1, p |= !f iff p !|= f, p |= f+g iff p 
|= f or p |= g, p |= f*g iff p |= f and p |= g, p |= ∃x.f iff p[x=0] 
|= f or p[x=1] |= f, p |= ∀x.f iff p[x=0] |= f and p[x=1] |= f, p |= 
f[X=X’] iff p[X=X’] |= f
-Where p[X=X’] is the valuation assigning the same values as 
p but for each xi in X, it assigns p(xi’)
-We’ll see a few examples in class that make all this jumbled 
notation clearer

-Now, we extend the |= definition to fixed point operators u and v
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-p |= uZ.f iff p |= umZ.f for some m >= 0
-Where uZ.f is recursively defined as

-u0Z.f = 0
-umZ.f = f[um-1Z.f/Z] (that is, replace all occurrences of 
Z in f with um-1Z.f)

-p |= vZ.f iff p |= vmZ.f for all m >= 0
-Where vZ.f is recursively defined as

-voZ.f = 1
-vmZ.f = f[vm-1Z.f/Z]

-We’ll see some examples in class that will makes this 
intuitive.  Essentially, these are just recursive definitions, they 
iterate to fixed points

-So now we can code CTL models and specifications
-Given a model M=(S, ,L), the u and v operators permit us to 
translate any CTL formula φ into a formula fφ of the relational 
mu-calculus s.t. fφ represents the set of states s where s |= φ
-Then, given a valuation p (ie, a state), we can check if p |= fφ, 
meaning that the state satisfies φ
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-Indeed, we can do this purely symbolically
-Recall that the transition relation can be represented as a 
boolean formula f (from our symbolic model checking 
lecture 4).  Also, sets of states can be encoded as boolean 
formulas

-Therefore, the coding of a CTL formula φ as a function fφ in 
relational mu-calculus is given inductively:

-fx = x for vars x
-f⊥ = 0
-f!φ = !fφ
-fφ∨ϕ = fφ*fϕ
-fEXφ = ∃X’.(f *fφ[X=X’])

-What the heck does that mean?  “There exists a next state 
s.t. the transition relation holds from the current state 
AND fφ holds in this next state”

-We can also encode the formula for EFφ
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-Note that EFφ = φ ∨ EXEFφ
-Thus, fEFφ is equivalent to fφ + fEXEFφ, which is equivalent to fφ
+ ∃X’.(f *fEFφ[X=X’])
-Since EF involves computing the least fixed point, we obtain

-fEFφ = uZ.(fφ + ∃X’.(f *Z[X=X’])), where Z is a 
relational variable.
-Thus, we are getting the least fixed point of the formula 
that precisely encodes EFφ = φ ∨ EXEFφ

-The book provides similar coding for AF and EG on page 
368
-The important point is to see how we used the fixed point 
characterization of CTL to code CTL formulas in relational 
mu-calculus (which has a fixed point syntax!)
-Thus, we can model check in terms of these relational mu-
calculus formulas and symbolic representations of states and 
the transition relation
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-Our last topic today, time-permitting, is to discuss a few abstraction 
techniques in model checking

-Abstraction methods are a family of techniques used to simplify 
automata.

-It is probably “the most important technique for reducing the 
state explosion problem.” –EM Clarke

-Aim: given model as an automata A, we reduce a complex 
problem of A |= φ into a much simpler problem A’ |= φ

-Thus, this is another layer of abstraction on top of the 
abstraction of specifying a model to represent the system in 
question

-We’ll look more at examples to illustrate abstraction as opposed
to developing a formal theory (for those interested, see me after 
class or email)
-Why/when abstraction? Automata (model) is too big to check, of 
model checker doesn’t handle certain details of the model
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-We’ll look at 2 techniques
-Abstraction by state merging
-Cone of influence reduction

-Abstraction by state merging
-View some states as identical (ie, notions of folding states)
-Merged states are put together into a super-state
-Merging can be used for verifying safety properties, mainly 
because

-1) the merged automata A’ has more behaviors than A
-2) the more behaviors an automata has, the fewer safety 
properties it fulfills
-3) thus, if A’ satisfies a safety property p, then so too does A
satisfy p
-4) if A’ doesn’t satisfy p, no conclusion can be drawn about 
A

-Why is this verification only one-way?
-There is a difficulty here though:
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-How are atomic propositions labeling states gathered 
together into the super-state??

-In principle: never merge states that are labeled with 
different sets of atomic props
-But this is way too restrictive
-How weaken?

-Turns out that if merging is used to check property p, 
then only the propositions occurring in p are relevant
-Thus, if a proposition X only appears in positive form 
in p (each occurrence of X is within an even # of 
negation symbols), then we can merge states w/o the 
need for these to agree on the presence of X
-The super-state then carries the label of X iff all 
merged states carry the label X
-This rationale isn’t obvious though…

-Abstraction via cone of influence reduction
-Suppose we are given a subset of the variables V’⊆V that are of 
interest with respect to a required spec
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-Recall: system can be specified as a Kripke Structure using 
equations for transition relations, and an equation for the initial set 
of states of the system
-We want to simplify the system description by referring to only 
those variables V’
-But, values of V’ variables may depend on the values of variables 
not in V’

-For example, we’ll consider the modulo 8 counter that we 
examined in lecture 2

-We define the cone of influence C for V’ and use C for our 
reduction of the system
-Defn: the cone of influence C of V’ is the minimal set of vars s.t.

-1) V’ is a subset of C
-2) if for some vl ∈ C its formula fl depends on vj, then vj is 
also in C

-Therefore, the reduced system is constructed by removing all 
transition equations whose left hand side variables do not appear in 
C
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-We’ll see the full example of this technique in class using the 
Kripke Structure model for the modulo 8 counter
-We won’t, however, go over the proof arguing that removal of 
such equations doesn’t affect the equivalency of the model
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