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CSEP590 – Model Checking and 
Automated Verification

Lecture outline for July 23, 2003



2

-Today, we will talk about a few “loose ends” from previous 
lectures, as well as model checking for timed, reactive systems.
-First, we deal with Fairness in model checking

-M,s0 |= φ may fail due to unrealistic behavior
-Example: 2 processes with critical sections.  Process1 may 
stay indefinitely in critical section, preventing Process2 from 
every entering its critical section.

-Fairness constraints: state that a given formula is true infinitely 
often on every computation path

-Such paths are fair computation paths
-How accomplish? When evaluating truth of CTL formula, A 
and E connectives only range over fair paths
-Defn: Let C = {f1,f2,…fn} be a set of n fairness constraints.  A 
computation path s0 s1 is fair with respect to C if for each i 
there are infinitely many j s.t. sj |= fi, that is, each fi is true 
infinitely often along the path
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-We’ll let AC and EC denote the operations A and E restricted to 
fair paths
-Recall: EU, EG, and EX form an adequate set for CTL

-Therefore, ECU, ECG, and ECX form an adequate set for 
fair CTL
-Indeed, ECU and ECX can be represented in terms of ECG, 
thus we only need an algorithm for checking ECGφ:

-Restrict graph to states satisfying φ
-In this graph, want to know from which states there 
is a fair computation path

-Find the maximal SCCs (Strongly Connected 
Components) of restricted graph
-Remove a SCC is for some fi, it doesn’t contain a state 
satisfying fi.  Result SCCs are “fair SCCs”

-Any state of restricted graph that can reach a fair 
SCC has a fair path from it

-Use search to find such states
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-The complexity of this algorithm is O(n*f*(V+E)) => still 
linear!

-Extensions and Alternatives to CTL
-Linear Time Logic (LTL)

-Close to CTL, but formulas have meanings on individual 
computation paths => no quantifiers A and E

-Is LTL less expressive than CTL?  More expressive?
-LTL syntax for a formula φ
-φ := p | (! φ) | (φ and φ) | (φ U φ) | (Gφ) | (Fφ) | (Xφ)
-Formula is evaluated on a path or a set of paths

-Set of paths satisfy formula if every path in the set does
-Consider path π = s1 s2 … where πi represents the suffix 
starting at si
-Defn: give a model M for CTL, define when a path π satisfies an 
LTL formula via |= relation:
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-1) π |= T
-2) π |= p iff p is in L(s1)
-3) π |= !φ iff π !|= φ
-4) π |= φ1 and φ2 iff π |= φ1 and π |= φ2
-5) π |= Xφ iff π2 |= φ
-6) π |= Gφ iff for all i at least 1, πi |= φ
-7) π |= Fφ iff for some i at least 1, πi |= φ
-8) π |= φ1Uφ2 iff for some i at least 1 s.t. πi |= φ2 and for all j 
= 1…i-1 we have πj |= φ1

-LTL formula is satisfied in a state s of the model if the formula 
is satisfied on every path starting at s
-LTL has the usual G and F equivalences, as well as distribution 
over AND and OR
-There is also 1 very important equivalence we will see, which is
relied upon to show that EG, EU, EX form an adequate set 
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-CTL* - allows nested modalities and boolean connectives before 
applying path quantifiers E and A.

-We’ll see some examples of this in class
-Syntax of CTL*

-Divides formulas into 2 classes
-State formulas: evaluated in states:

-φ := p | T | ! φ | (φ and φ) | A[α] | E[α]
-Path formulas: evaluated along paths:

-α := φ | ! α | (α and α) | (αU α) | G α | F α | X α
-This is a mutually recursive definition

-LTL us a subset of CTL*.  Why?
-CTL is subset of CTL*.  Why?
-We’ll see in class examples of formulas that define the 
differences between these 3 logics
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-Timed Automata 
-Model reactive systems where there are notions of “real-time”

-Ex: “trigger the alarm upon detection of a problem” vs. 
“trigger the alarm in less than 5 seconds after detecting the 
problem”
-How doe we model such systems?  How do we verify 
them?

-We’ve seen one way: basic synchronization based on a 
global clock

-Very inadequate though
-Timed Automata – model quantitative info on passage of time

-2 elements:
-Finite automata
-Clocks (associated with transitions)

-Take on non-negative real values
-All clocks start out null in the initial state
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-A configuration of the system is (q,v) where q is the current 
control state and v is a valuation of the automaton’s clocks
-Configurations change in 1 of 2 ways

-A delay d in time elapses, in which case all clocks are 
updated by d ( (q,v) (q, v+d) )
-Discrete transition – an action transition (as with normal 
automata, a control state change).  Some clocks may be 
reset to 0 on such transitions

-We’ll see an example in class
-Networks of Timed Automata

-Composite model composed of many timed automata 
synchronized.
-All clocks across all components are updated on delays
-Similar to what we saw with modeling systems via automata

-Example in class: the classical railway example
-There are 3 common extensions to this model of timed automata
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-Invariants: guarantee that a certain transition eventually 
occurs by placing invariants on clocks in a state

-If no transition is taken, invariants expire and system 
reaches deadlock

-Urgency: transition that can’t tolerate time delay
-Hybrid Linear Systems – provide access to dynamic 
variables

-Variables that evolve continuously (such as via a 
differential equation).

-Altitude, time, speed, temperature….
-Very tricky to model and model check (HyTECH 
system can do it on occasion)

-Timed Temporal Logic (TCTL)
-Used to state properties about timed automata
-Extension of CTL
-Extends U,F,… operators with info on the flow time
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-Ex: pU<2q means that p is true until q, where q is true in less 
than 2 time units from the current time
-TCTL syntax:

-φ1, φ2 := p | ! φ1 | (φ1 and φ2) | (φ1 φ2) | (φ1 or φ2) | 
EF(~k) φ1 | EG(~k) φ | E[φ1U(~k) φ2] | AF(~k) φ1 | AG(~k) φ1 | 
A[φ1U(~k) φ2]
-Where ~ is any comparison (<, >, =, …)
-We’ll see some examples of formulas in class
-Note: X operator doesn’t exist because clocks have real 
values, so there is no notion of “next configuration”

-So how do we performed Timed Model Checking?
-Problem: infinite number of configurations because clocks take 
on real values => infinitely many valuations
-How fix? 

-Define a notion of “closeness” between configurations
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-Given clock constraints appearing in transitions and 
largest constraint used in these constraints, 
equivalence (~) on clock valuations is defined with the 
following property: for any timed automaton using 
these constraints, 2 configurations (q,v) and (q,v’) 
with v ~ v’ satisfy the same TCTL formulas
-This defines a set of equivalence classes (or regions).  
There is a finite number of regions!
-Given a configuration (q,v), we consider instead the 
region [v] for v.
-This defines a global automaton, or a region graph 
that represents abstractly the system.  We model check 
on that instead
-Configurations are grouped into a region depending 
on their clock valuations

-One problem: exponential in number of clocks
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-Timed Automata are relatively new, but some progress is 
still being made

-We’ll see a full example of a region graph in class
-Time permitting, we will discuss some more about SMV (via a full
example) to prepare you for PS4
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