
1

CSEP590 – Model Checking and
Automated Verification

Lecture outline for July 16, 2003

2

-Our Model Checker suffers from state space explosion:
-We need a more compact representation of the system
-A verification procedure to handle this compact system

-Let’s develop this compact representation – will be in terms of
Ordered Binary Decision Diagrams (OBDDs)

-But first, we need some background on boolean functions
-Boolean functions

-Composed of boolean variables and operators (like in prop.
logic)
-Representations: truth tables or prop. formulas. Both very
inefficient in size of representation.

-Better representation: Binary Decision Diagrams (BDDs)
-Simpler form is called a Binary Decision Tree (bdt)

-Non-terminal nodes labeled with boolean var, terminals
with either 0 or 1. Dashed line and solid line links root
node x to 2 children (representing valuation of x of 0 and 1
respectively)

3

-(Example shown in class)
-If T is a bdt, then T represents a unique boolean function of the
variables representing non-terminals
-But, bdt is still inefficient in size, in fact it is ~size of a truth
table for representing boolean functions
-How improve? Eliminate redundancy!

-For example, combine all 0-terminals and all 1-terminals
-No longer have a tree, instead it is called a BDD
-Defn: a subBDD is part of a BDD below a given node n
such that n is the root of the subBDD
-3 ways of reducing bdt to its most compact form (called
reduced). (Explained in detail via examples in class)

-C1) Removal of duplicate terminal nodes
-C2) Removal of redundant tests
-C3) Removal of duplicate non-terminals

-BDDs are actually dags (directed non-acyclic graphs)
-We interpret links in BDDs as pointing down

4

-BDDs are dags with a unique initial node
-A BDD is reduced if no further C1-C3 optimizations
can be applied
-Note: BDDs also represent boolean functions just like
bdts

-BDDs can often be compact representations of boolean
functions (due to C1-C3 optimizations)

-Checking satisfiability is easy – just look for path to a 1
-How perform operations of AND, NOT, OR on BDDs?

-Given Bf and Bg representing functions f and g, then we can
construct a BDD B representing f op g.
-Inefficient methods – we’ll see in class. We can improve
on these (later in class)

-But we still have a problem: how check equivalency between
BDDs?? Ouch.

-Impose an ordering on the variables occurring along ANY path
of a BDD

5

-Then, impose that ordering on all BDDs under consideration
-Defn: if [x1,…xn] is an ordered list of variables with duplicates
and B is a BDD with all these variables, then B has ordering
[x1,…xn] if all variables of B occur in the list and for every
occurrence of xi followed by xj along any path in B, we have i<j

-Such BDDs with an ordering are called Ordered Binary Decision
Diagrams (OBDDs)

-We’ll see some examples in class
-To perform operations on 2 BDDs, we’ll require that they
have comparable variable orderings (ie, no inversions in their
orderings)
-Theorem: if 2 reduced OBDDs with comparable variable
orderings represent the same boolean function, then they
have identical structure! => unique OBDD for every boolean
formula
-OBDDs can yield exponential savings in space (ex in class)

6

-Note: the variable ordering can make a HUGE difference in the size
of the reduced OBDD

-Price we pay for advantages of OBDDs
-Luckily, good heuristics exist for find good orderings
-In-class example of computing reduced OBDD

-We now consider some basic algorithms for operating on reduced
OBDDs

-1) algorithm reduce: transforms OBDD to its reduced form
-Start with lowest layer (terminals), and work up to root
-Let lo(n) denote dashed child of n, hi(n) as solid child of n
-Label nodes with an integer id (node n = id(n)) s.t.
subOBDDs with root nodes n and m denote same function iff
id(n) = id(m)
-Assume we’ve labeled all nodes in layers > i. Given xi-node
n in layer i, there are 3 ways to label it

-1) if id(lo(n)) = id(hi(n)), id(n) = that label (C2 test)

7

-2) if there exists a node m s.t. n and m have the same
variable xi, and id(lo(n)) = id(lo(m)) and id(hi(n)) =
id(hi(m)), then id(n) = id(m). (C3 case)
-3) Otherwise, id(n) gets next unused integer

-Algorithm is efficient in the number of nodes in OBDD
-2) algorithm apply: implement operations on boolean functions
represented as OBDDs

-Given OBDDs Bf and Bg for functions f and g,
apply(op,Bf,Bg) returns the reduced OBDD for f op g.
-Defn: a restriction of function f is of the form f[0/x] or f[1/x]
which denotes f with all instances of x set to 0 (and 1
respectively)
-Shannon Expansion (really due to Boole):

-Function f ≡ !x*f[0/x] + x*f[1/x]
-Allows for recursion on boolean formulas!

-Idea: based on Shannon expansion for f op g
-f op g ≡ !xi*(f[0/xi] op g[0/xi]) + xi*(f[1/xi] op g[1/xi])
-Call this equation ‘(SE)’

8

-Algorithm proceeds from root rf of Bf and root rg of Bg
downwards in a recursive manner based on cases of rf and rg:

-1) if rf and rg are terminal nodes with labels lf and lg,
then compute the value of lf op lg and return the resulting
OBDD as B0 or B1 (depending on value, either 0 or 1)
-2) if both roots are xi-nodes, then create an xi-node n
with a dashed line to apply(op,lo(rf),lo(rg)) and a solid
line to apply(op,hi(rf),hi(rg)). This is precisely what
equation (SE) tells us to do!
-3) if rf is an xi-node and rg is either a terminal or xj-node
with j<i, then no xi-node exists in Bg because the 2
OBDDs have a comparable variable ordering and we are
proceeding top down. Thus, g is independent of variable
xi. Therefore, we create an xi-node n with a dashed line
to apply(op,lo(rf),rg) and a solid line to apply(op,hi(rf),rg)
-4) Symmetric case: rf takes the role of rg in 3) and vice
versa

9

-There are also 2 other algorithms, restrict and exists. But these
are straightforward and are covered in the book. They won’t be
necessary to understand for our understanding of symbolic
model checking.

-Now that we have developed the OBDD representation, we can use
it as our basic data structure in model checking.

-Recall that our model checking algorithm basically manipulates
intermediate sets of states. Operations are performed on these
sets.
-We now show how to represent sets of states as OBDDs, and
how these same operations on sets can be performed on
OBDDs. Thus, we can apply our model checker using the
compact OBDD representation instead of the huge, transition
system representation.
-This technique, in its basic form, is called Symbolic Model
Checking

-Provided a huge breakthrough in the early 1990s

10

-First, we need to encode sets of states as OBDDs and the transition
relation from our model as an OBDD

-Sets of states encoding:
-Each state s is represented by a unique vector of boolean
values (v1,…vn). A subset T of S is a boolean function fT
mapping (v1,…vn) onto 1 if s is in T and 0 otherwise. fT is
known as the characteristic function.
-How do we construct this vector? Use the set of atomic
propositions (AP). Let’s assume a fixed ordering on the
elements of AP, say x1,x2,…,xn. Then s is represented by the
vector (v1,…,vn) where for each i, vi = 1 if xi ∈ L(s) and 0
otherwise.
-We require that vectors are unique, namely that if L(s1) =
L(s2), then s1 = s2

-If not, we can just add extra, dummy atomic props to our
model

11

-We can then represent s as the OBDD for the boolean
function l1*l2*…*ln where li is xi if xi ∈ L(s) and !xi
otherwise
-A set of states is then just the disjunction of the formulas for
each state in the set!
-We’ll see an example in class, it really is pretty
straightforward ☺

-Now, let’s represent the transition relation of a system as an OBDD
-Recall: transition relation Æ is just a subset of S x S

-Think of it as a set of (curr state, next state) pairs
-We then represent such pairs using 2 boolean vectors, one for
the curr state and one for the next state in the pair
-Suppose we have the transition sÆs’

-This is represented by the pair of boolean vectors
((v1,…,vn),(v1’,…,vn’)) where v1 = 1 if pi ∈ L(s) and 0
otherwise, and vi’ = 1 if pi ∈ L(s’) and 0 otherwise

12

-Then, a transition sÆs’ is simply represented as an OBBD of the
boolean function (l1*l2*…*ln)*(l1’*l2’*…*ln’)
-To form the transition relation Æ for the entire system, it is just
the OBDD for the boolean formula that is the disjunction of all
such individual transition formulae
-Once again, we’ll see an example in class that will make it clear
☺

-What does this mean? We can use our apply algorithm to simulate
intersection, union, and complementation of sets on OBDD
representation of state sets!
-One last thing though…our model checking algorithm also had 2
trickier routines that it used, namely pre∃(X) which given a set of
states X, returns all states that can transition into X, and pre∀(X) that
returns those states that can transition only into X. These are used in
the routines for operators EX and EU, and AF respectively.

-How do we do those in terms of our OBDD representation?

13

-We first note that pre∀(X) = S - pre∃(S-X). Thus, we only
need to concern ourselves with pre∃(X), which is nice
-In short, it can be done, but it is a confusing equation
involving our exists and apply algorithms. It is given in the
textbook on page 357.

-The final part of this lecture with examine the model checker SMV
(for Symbolic Model Verifier) developed at CMU and widely
considered one of the best model checkers out there. I will be
handing out a handout in class describing the language used to
program SMV, with examples. We will discuss it, and you will use it
for your PS4.

	CSEP590 – Model Checking and Automated Verification

