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-Our Model Checker suffers from state space explosion:
-We need a more compact representation of the system
-A verification procedure to handle this compact system

-Let’s develop this compact representation – will be in terms of 
Ordered Binary Decision Diagrams (OBDDs)

-But first, we need some background on boolean functions
-Boolean functions

-Composed of boolean variables and operators (like in prop. 
logic)
-Representations: truth tables or prop. formulas.  Both very 
inefficient in size of representation.

-Better representation: Binary Decision Diagrams (BDDs)
-Simpler form is called a Binary Decision Tree (bdt)

-Non-terminal nodes labeled with boolean var, terminals 
with either 0 or 1.  Dashed line and solid line links root 
node x to 2 children (representing valuation of x of 0 and 1 
respectively) 
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-(Example shown in class)
-If T is a bdt, then T represents a unique boolean function of the 
variables representing non-terminals
-But, bdt is still inefficient in size, in fact it is ~size of a truth 
table for representing boolean functions
-How improve?  Eliminate redundancy!

-For example, combine all 0-terminals and all 1-terminals
-No longer have a tree, instead it is called a BDD
-Defn: a subBDD is part of a BDD below a given node n 
such that n is the root of the subBDD
-3 ways of reducing bdt to its most compact form (called 
reduced).  (Explained in detail via examples in class)

-C1) Removal of duplicate terminal nodes
-C2) Removal of redundant tests
-C3) Removal of duplicate non-terminals

-BDDs are actually dags (directed non-acyclic graphs)
-We interpret links in BDDs as pointing down
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-BDDs are dags with a unique initial node
-A BDD is reduced if no further C1-C3 optimizations 
can be applied
-Note: BDDs also represent boolean functions just like 
bdts

-BDDs can often be compact representations of boolean 
functions (due to C1-C3 optimizations)

-Checking satisfiability is easy – just look for path to a 1
-How perform operations of AND, NOT, OR on BDDs?

-Given Bf and Bg representing functions f and g, then we can 
construct a BDD B representing f op g.
-Inefficient methods – we’ll see in class.  We can improve 
on these (later in class)

-But we still have a problem: how check equivalency between 
BDDs??  Ouch.

-Impose an ordering on the variables occurring along ANY path 
of a BDD
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-Then, impose that ordering on all BDDs under consideration
-Defn: if [x1,…xn] is an ordered list of variables with duplicates 
and B is a BDD with all these variables, then B has ordering 
[x1,…xn] if all variables of B occur in the list and for every 
occurrence of xi followed by xj along any path in B, we have i<j

-Such BDDs with an ordering are called Ordered Binary Decision 
Diagrams (OBDDs)

-We’ll see some examples in class
-To perform operations on 2 BDDs, we’ll require that they 
have comparable variable orderings (ie, no inversions in their 
orderings)
-Theorem: if 2 reduced OBDDs with comparable variable 
orderings represent the same boolean function, then they 
have identical structure!  => unique OBDD for every boolean 
formula
-OBDDs can yield exponential savings in space (ex in class)
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-Note: the variable ordering can make a HUGE difference in the size 
of the reduced OBDD

-Price we pay for advantages of OBDDs
-Luckily, good heuristics exist for find good orderings
-In-class example of computing reduced OBDD

-We now consider some basic algorithms for operating on reduced 
OBDDs

-1) algorithm reduce: transforms OBDD to its reduced form
-Start with lowest layer (terminals), and work up to root
-Let lo(n) denote dashed child of n, hi(n) as solid child of n
-Label nodes with an integer id (node n = id(n)) s.t. 
subOBDDs with root nodes n and m denote same function iff 
id(n) = id(m)
-Assume we’ve labeled all nodes in layers > i.  Given xi-node 
n in layer i, there are 3 ways to label it

-1) if id(lo(n)) = id(hi(n)), id(n) = that label (C2 test)
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-2) if there exists a node m s.t. n and m have the same 
variable xi, and id(lo(n)) = id(lo(m)) and id(hi(n)) = 
id(hi(m)), then id(n) = id(m).  (C3 case)
-3) Otherwise, id(n) gets next unused integer

-Algorithm is efficient in the number of nodes in OBDD
-2) algorithm apply: implement operations on boolean functions 
represented as OBDDs

-Given OBDDs Bf and Bg for functions f and g, 
apply(op,Bf,Bg) returns the reduced OBDD for f op g.
-Defn: a restriction of function f is of the form f[0/x] or f[1/x] 
which denotes f with all instances of x set to 0 (and 1 
respectively)
-Shannon Expansion (really due to Boole):

-Function f ≡ !x*f[0/x] + x*f[1/x]
-Allows for recursion on boolean formulas!

-Idea: based on Shannon expansion for f op g
-f op g ≡ !xi*(f[0/xi] op g[0/xi]) + xi*(f[1/xi] op g[1/xi])
-Call this equation ‘(SE)’
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-Algorithm proceeds from root rf of Bf and root rg of Bg
downwards in a recursive manner based on cases of rf and rg:

-1) if rf and rg are terminal nodes with labels lf and lg, 
then compute the value of lf op lg and return the resulting 
OBDD as B0 or B1 (depending on value, either 0 or 1)
-2) if both roots are xi-nodes, then create an xi-node n 
with a dashed line to apply(op,lo(rf),lo(rg)) and a solid 
line to apply(op,hi(rf),hi(rg)).  This is precisely what 
equation (SE) tells us to do!
-3) if rf is an xi-node and rg is either a terminal or xj-node 
with j<i, then no xi-node exists in Bg because the 2 
OBDDs have a comparable variable ordering and we are 
proceeding top down.  Thus, g is independent of variable 
xi.  Therefore, we create an xi-node n with a dashed line 
to apply(op,lo(rf),rg) and a solid line to apply(op,hi(rf),rg)
-4) Symmetric case: rf takes the role of rg in 3) and vice 
versa
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-There are also 2 other algorithms, restrict and exists.  But these 
are straightforward and are covered in the book.  They won’t be 
necessary to understand for our understanding of symbolic 
model checking.

-Now that we have developed the OBDD representation, we can use 
it as our basic data structure in model checking.  

-Recall that our model checking algorithm basically manipulates 
intermediate sets of states.  Operations are performed on these 
sets.
-We now show how to represent sets of states as OBDDs, and 
how these same operations on sets can be performed on 
OBDDs.  Thus, we can apply our model checker using the 
compact OBDD representation instead of the huge, transition 
system representation.
-This technique, in its basic form, is called Symbolic Model 
Checking

-Provided a huge breakthrough in the early 1990s
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-First, we need to encode sets of states as OBDDs and the transition 
relation from our model as an OBDD

-Sets of states encoding: 
-Each state s is represented by a unique vector of boolean 
values (v1,…vn).  A subset T of S is a boolean function fT
mapping (v1,…vn) onto 1 if s is in T and 0 otherwise.  fT is 
known as the characteristic function.
-How do we construct this vector?  Use the set of atomic 
propositions (AP).  Let’s assume a fixed ordering on the 
elements of AP, say x1,x2,…,xn.  Then s is represented by the 
vector (v1,…,vn) where for each i, vi = 1 if xi ∈ L(s) and 0 
otherwise.
-We require that vectors are unique, namely that if L(s1) = 
L(s2), then s1 = s2

-If not, we can just add extra, dummy atomic props to our 
model
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-We can then represent s as the OBDD for the boolean 
function l1*l2*…*ln where li is xi if xi ∈ L(s) and !xi
otherwise
-A set of states is then just the disjunction of the formulas for
each state in the set!
-We’ll see an example in class, it really is pretty 
straightforward ☺

-Now, let’s represent the transition relation of a system as an OBDD
-Recall: transition relation Æ is just a subset of S x S

-Think of it as a set of (curr state, next state) pairs
-We then represent such pairs using 2 boolean vectors, one for 
the curr state and one for the next state in the pair
-Suppose we have the transition sÆs’

-This is represented by the pair of boolean vectors 
((v1,…,vn),(v1’,…,vn’)) where v1 = 1 if pi ∈ L(s) and 0 
otherwise, and vi’ = 1 if pi ∈ L(s’) and 0 otherwise
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-Then, a transition sÆs’ is simply represented as an OBBD of the 
boolean function (l1*l2*…*ln)*(l1’*l2’*…*ln’)
-To form the transition relation Æ for the entire system, it is just 
the OBDD for the boolean formula that is the disjunction of all 
such individual transition formulae
-Once again, we’ll see an example in class that will make it clear 
☺

-What does this mean?  We can use our apply algorithm to simulate
intersection, union, and complementation of sets on OBDD 
representation of state sets!
-One last thing though…our model checking algorithm also had 2 
trickier routines that it used, namely pre∃(X) which given a set of 
states X, returns all states that can transition into X, and pre∀(X) that 
returns those states that can transition only into X.  These are used in 
the routines for operators EX and EU, and AF respectively.

-How do we do those in terms of our OBDD representation?
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-We first note that pre∀(X) = S - pre∃(S-X).  Thus, we only 
need to concern ourselves with pre∃(X), which is nice
-In short, it can be done, but it is a confusing equation 
involving our exists and apply algorithms.  It is given in the 
textbook on page 357.

-The final part of this lecture with examine the model checker SMV 
(for Symbolic Model Verifier) developed at CMU and widely 
considered one of the best model checkers out there.  I will be 
handing out a handout in class describing the language used to 
program SMV, with examples.  We will discuss it, and you will use it 
for your PS4.
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