CSEP590 – Model Checking and Software Verification Summer 2003 Solution Set 5

If we include trivial SCCs, then there are four (add S_0 and S_3).

b) Does M, $S_0 \models E_c Gp$ hold?

Holds:

First, p is true in all states by definition. The SCC S₂, S₅, S₆, S₇, S₉, S₁₀, S₁₁, S₁₂ satisfies all the fairness constraints. We can reach the latter SCC from state S₀. Thus, M, S₀ \models E_cGp holds.

c) p false in s₆. Does M, S₀ |= E_cGp hold? Does not hold: Now there are three SCCs in the system: S₂, S₅; S₇, S₁₁, S₁₂; S₁, S₄, S₈ None of these SCCs satisfy the fairness constraints, so there are no fair SCCs. Thus, M, S₀ |= E_cGp does not hold.

2. The Spring Kripke structure

Solutions:

LTL formulae and run $\pi = S_1 S_2 S_1 S_2 S_3 S_3 S_3 ...$ a) extended Not satisfied because 'extended' is false in S_1 .

b) X extended Satisfied because 'extended' is true at S₂.

c) XX extended Not satisfied because 'extended' is false in S₁.

d) F extended Satisfied because 'extended' is true in some future state (e.g. S₂).

e) G extended Not satisfied because 'extended' is not true at all states in the path (e.g. S₁). f) FG extended Satisfied because after we reach S₃, 'extended' is true globally.

g) !extended U malfunction Not satisfied because 'extended' is not continuously false until 'malfunction' is true – since 'extended' is true in S_2 .

LTL formulae and system Spring Note: by definition, a path π for LTL must be infinite.

a) F extended Satisfied because from S_1 we must move to a state were extended is true in all paths.

b) G(!extended \Rightarrow X extended) Satisfied because !extended is true only at S₁, and the next state after S₁ in all paths must be S₂, at which extended holds.

c) FG extended Not satisfied because in path $S_1 \rightarrow S_2 \rightarrow S_1 \rightarrow S_2 \dots$ is it never the case that G extended is true.

d) !FG extended Not satisfied because in path $S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_3 \rightarrow S_3 \dots$ G extended is satisfied.

e) G(extended \Rightarrow X !extended) Not satisfied, look at path $S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_3 \rightarrow S_3 \dots$

3. LTL equivalencesSolutions:a) XFp, FXpEquivalent

b) (FGp) \land (FGq), F(Gp \land Gq) Equivalent

c) (p U q) U q, p U q Equivalent

d) (p U q) \land (q U r), (p U r) Not equivalent. This is so because the first for

Not equivalent. This is so because the first formula requires that q hold at some point in the path, while the second formula does not. Thus, a counterexample structure is:

Let p be true in state S_1 , r true in state S_2 , and q true in state S_3 Then $S_1 \rightarrow S_1 \rightarrow S_1 \rightarrow S_2$ satisfies the second formula but not the first. e) Find a CTL* path formula A[G($p \rightarrow X \neg p$) G($\neg p \rightarrow Xp$)]

4. Monotone functions and fixed points

Solutions:

a) Which are monotone?

H1 is monotone

Its is clear to see that if $X_1 \subseteq X_2$, then $H_1(X_1) \subseteq H_1(X_2)$ because H_1 will have removed the same elements from *both* X_1 and X_2 , thereby maintaining their relationship.

H2 is not monotone

Counterexample:

Let $X_1 = \{2\}$, $X_2 = \{2,5\}$, then $X_1 \subseteq X_2$, but $H_2(X_1) = \{5,9\}$, $H_2(X_2) = \{9\}$, so $H_2(X_1) !\subseteq H_2(X_2)$

H3 is monotone

A union with a larger set cat either make the intersection larger, or make no change in size – it will never reduce the size. Thus the relation between X_1 and X_2 is maintained.

b) Greatest and least fixed points of H₃

Least fixed point: {2,4} Greatest fixed point: {1,2,3,4,5}

c) Fixed points of H₂?

No fixed points because if the input contains any of $\{2,5,9\}$, those elements will be removed, resulting in a different output. Likewise, if the input does not contain any of $\{2,5,9\}$, then the output will be $\{2,5,9\}$ which will be different than the input.

5. Relational mu-calculus Solution: We need to prove $p \models vZ.Z$ so here f = Z

We use induction on m Base case m = 0 $v_0Z.f = 1$ (by definition)

By mu-calculus grammar definition, $p \models 1$ so the base case holds.

Suppose this holds for m = p.

 $p \models V_p Z.Z$

Then we compute $V_{p+1}Z.Z$

 $V_{p+1}Z.Z = VpZ.Z$ (replace Z with $V_{p+1-1}Z.Z$ according to vZ.f definition.)

But we know from the induction hypothesis that $p \models VpZ.Z$. So $p \models V_{p+1}Z.Z$ And by induction for all $m \ge 0$, $p \models vZ.Z$