
CSEP576 Autumn 2021 Project 3 (updated 11/18/2021) Instructor: Vitaly Ablavsky

[Overview] In this project you will explore the basics of supervised learning using a neural network with several
convolutional and fully connected layers. Your experiments will be conducted on the CIFAR-10 dataset.1 We provide
you with starter code in PyTorch,2 but you are free to use a framework of your choice. In the starter code, several
sections are marked as TODO, indicating locations where you need to add code (typically a handful of lines that are
key to complete an algorithm).

(a) Implementing the training loop [20pts] Define the loss function and optimizer, then complete the implemen-
tation of the training loop. After your implementation is complete, your train and test() function will return a
sequence of actual (rather than placeholder) loss-function values on the train and test partitions of the dataset.

(b) Training the model [20pts] Write a function to visualize loss-vs-epoch plots, showing the train-partition loss
and the test-partition loss on the same figure. Extend train and test() to allow the ability to interchange train
and test data, thus simulating a data-poor regime; we’ll call this data split iCIFAR-10 (inverted CIFAR). Decide on
the optimization parameters, number of epochs, optimizer settings, etc. Then use those parameters to generate loss-
vs-epoch plots, one for the train/test partitions of CIFAR-10 and the for the train/test partitions of iCIFAR-10.

(c) Defining a new model [20pts] In class we’ll study several published CNN architectures and design patterns,
each developed to achieve a particular objective. Decide on an objective (e.g., better accuracy or better computational
efficiency, etc.) and implement a (shallow) network Net 1, possibly derived from Net 0. Compare Net 1 to Net 0
on CIFAR-10 using loss-vs-epoch plots.

As a side objective, you need to demonstrate (in your project writeup and comments in your code) that you
understand how to perform shape computations e.g., to ensure that a linear layer is specified with the correct number
of input features given the preceding convolutional or pooling layer. You can demonstrate this on Net 1 or on a
separate network Net 1c. For example, you could keep the padding argument of the nn.Conv2d layer at its
default padding=0 so that the output shape changes and you have to take that change of shape into consideration
when computing the shape of the subsequent layers.

(d) Performance evaluation [20pts] While monitoring the values of the loss function is useful for assessing whether
the network is training properly, once trained the network is typically evaluated using statistical performance-evaluation
metrics (possibly fine-tuned for a given application). In this project you will implement the precision-recall (PR) metric
by completing csep576 precision recall curve() so that it returns a correct sequence of precision/recall
values. Once this function is implemented, evaluate Net 0 and Net 1 on CIFAR-10 and iCIFAR-10 using PR plots.
In your writeup, comment on which classes are recognized well (in the PR sense), and which ones underperform
compared to the rest?

(e) Dealing with overfitting [20pts] In this part of the assignment you will try to mitigate overfitting on iCIFAR-10
via regularization. Select and implement one of the methods described in [CVA2] Ch.5 by extending Net 1 to Net 2.
Using the same experimental settings as before (optimizer, number of epochs) as in (d), compare Net 1 and Net 2
using “loss curves” and the PR plots.

[What to submit] Your completed p3.py and a PDF report that includes motivation, hypotheses you wanted to test,
findings/lessons you learned, and answers to specific questions, e.g., at the end of (d). The report should be backed up
by figures/tables you generated in (a)-(e).

1https://www.cs.toronto.edu/˜kriz/cifar.html
2https://pytorch.org

https://www.cs.toronto.edu/~kriz/cifar.html
https://pytorch.org

