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Dense Methods 2: Depth, Flow

® Depth Imaging + Fusion, Signed Distance Functions
® Non-Rigid matching, Optical Flow, Lucas Kanade



Depth Image Fusion

® How can we combine multiple depth scans!?

[ KinectFusion lzadi et al ]



Problem: How to Combine Depth Images
into a Complete Model?

[Extracted from KinectFusion. Newcombe et al, 2011]

[ Slides from Richard Newcombe and Steven Lovegrove | 4



Merging depth maps

Depth map 1 Depth map 2 Combination (Union)

Reconstructed
Surfaces

* Nalve combination (union) produces artifacts

« Better solution: find “average” surface
« =» Surface that minimizes sum (of squared) distances to the depth maps

[From Curless & Levoy, 1996]



Least squares surface solution

E(f) = ; | d (x, fax

[Slide from Seitz, UW CSEP576]



Representing Geometry Implicitly

Signed Distance Functions



Example: Truncated Signed Distance Function
(TSDF)

[Newcombe, 2015]



Representing Scenes with TSDF

[KinectFusion, Newcombe et al, 2011]



A Single Ray Observation in TSDF

|10
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Fusing Noisy Ray Observations in TSDF
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VRIP [Curless & Levoy 1996]

depth map 1 depth map 2

signed
distance
function

combination
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Isosurface
extraction
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Merging Depth Maps: Temple Model

input image 317 images ground truth model
(hemisphere)

Goesele, Curless, Seitz, 2006

Michael Goesele

| 4



Application: Multi-view stereo from Internet Collections

[Goesele, Snavely, Curless, Hoppe, Seitz, ICCV 20§
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KinectFusion: Dense Surface Tracking and Mapping in Real-Time

* Uses an RGB-D Sensor
* First Dense SLAM System

* Interleaves:
1. TSDF Fusion (Map)
2. Projective ICP (Track)

* Efficient to implement on
GPU Compute Architecture

 Memory for Scene is O(N”3)

Newcombe, Izadi et al

|6



lterated Closest Point

® [Estimate camera pose from unmatched point clouds

® Assign points in the scan to closest model point red
® Compute pose (R,t) of the scanner using correspondences
® Re-assign closest points and iterate until converged

|7



2-view Rigid Matching

e |D search, points constrained to lie along epipolar lines

|18



2-view Non-Rigid Matching

e 2D search, points can move anywhere in the image

[ vision.middlebury.edu/flow | |9



http://vision.middlebury.edu/flow

2-view Non-Rigid Matching

e 2D search, points can move anywhere in the image

1 B

[ vision.middlebury.edu/flow ] 20



http://vision.middlebury.edu/flow

2-view Non-Rigid Matching

e 2D search, points can move anywhere in the image

[ vision.middlebury.edu/flow ]



http://vision.middlebury.edu/flow

2-view Non-Rigid Matching

e 2D search, points can move anywhere in the image

[ vision.middlebury.edu/flow ]
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http://vision.middlebury.edu/flow

Optical Flow: Example |
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Optical Flow: Example 2

[ Brox Malik 2011 ] 24



Lucas Kanade

® The previous algorithm performed a discrete search over
displacements/flow vectors u

® We can do better by looking at the structure of the error
surface:
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Lucas Kanade

® This is the Lucas-Kanade algorithm for 2D image flow

Try out LucasKanade. ipynb from the course
webpage

26



Lucas-Kanade Jupyter Notebook

26.1



Flow at a pixel

® | ook at previous equation at a single pixel:

oI, *
a_xl Au = Iy(x) — I (x)
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Flow Ambiguity

® Optical Flow Constraint:

ol
ot

® The stripes can be interpreted
as moving vertically, horizontally
(rotation), or somewhere in
between!

® The component of velocity
parallel to the edge is unknown

L VItv =0
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Horn-Schunk

® The optical flow constraint gives | equation per pixel to solve
for the velocity field (2 parameters per pixel)

We can use other considerations, such as smoothness,
to find a plausible velocity field, e.g.,

o1 :
eHS:Z oy L VITv +a|Av\2

[ Horn Schunck 1981, Szeliski Ch. 9.1.3 ] 29



Brightness Constancy

All the methods presented in this lecture have relied on the
assumption that

I(x+u) =~ IH(x)

This is called the brightness constancy assumption

Taylor expansion for small motion at a single pixel = optical
flow constraint

Horn-Schunk = optical flow constraint + smoothing over u

Lucas-Kanade = brightness constancy over patches with
gradient based search for u
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Next Lecture

® Visual Recognition, Linear Classification

31





