
CSEP 576: Dense Prediction

Jonathan Huang (jonathanhuang@google.com)

University of Washington 26 May 2020

Google Research

credit: https://upload.wikimedia.org/wikipedia/commons/0/02/Intelligent_scissors_segmentation.png

Lecture Outline

Dense Prediction (pixel level prediction)

● Semantic Segmentation

● Instance Segmentation

● Panoptic Segmentation

● Keypoint Estimation

We will mainly focus on semantic
segmentation as a way to introduce
some of technical details behind “dense
prediction”

Problem statement

classify classify and regress
bounding box per object

classify per pixel

(bounding box)
detection

semantic
segmentation

Segmentation
Applications

Original Segmentation map Final

Segmentation
Applications

Large Scale High-Resolution Land Cover Mapping with Multi-Resolution Data by Robinson et al

Medical Segmentation

Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy by Nikolov et al

Outline of Semantic Segmentation

● The sliding window connection (again)

● Fully Convolutional models

● How to get high resolution outputs with

○ Atrous convolutions

○ “Upconvolutions”

● Target Assignment

● Evaluation of Semantic Segmentation

Relevant for all dense prediction
tasks

“Sliding Window” Segmentation

Sky

Same idea as detection:
Extract features from a
window around a point;
Predict class label for point

“Sliding Window” Segmentation

Sky Sky

Same idea as detection:
Extract features from a
window around a point;
Predict class label for point

“Sliding Window” Segmentation

Sky Sky Sky

Same idea as detection:
Extract features from a
window around a point;
Predict class label for point

“Sliding Window” Segmentation

Sky Sky Sky Sky

Same idea as detection:
Extract features from a
window around a point;
Predict class label for point

“Sliding Window” Segmentation

Sky Sky Sky Sky

Same idea as detection:
Extract features from a
window around a point;
Predict class label for point

“Sliding Window” Segmentation

Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky

Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky

Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky

Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky

WaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterBeachBeach

WaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterBeach

WaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterBeachBeach

WaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterBeachBeach

WaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterBeachBeach

Water

Same idea as detection:
Extract features from a
window around a point;
Predict class label for point

Fully Convolutional Networks - Standard for detection /
segmentation / keypoint prediction
“Fully Convolutional”: All layers operate on local inputs (e.g. Conv, Pool,
ReLU); E.g. no FC layers allowed.

Properties of FCNs:

● Operate on input of any size
● Output tensors scale with input size
● Can train with heterogenous resolutions
● Can train and test at different resolutions

“Fully Convolutional”: All layers operate on local inputs (e.g. Conv, Pool,
ReLU); E.g. no FC layers allowed.

Properties of FCNs:

● Operate on input of any size
● Output tensors scale with input size
● Can train with heterogenous resolutions
● Can train and test at different resolutions

VGG trained on
224x224 images

[7x7x512] “pool5” given 224x224 inputs

A VGG-16 “non-example”
(that is still illustrative)

Fully Convolutional Networks - Standard for detection /
segmentation / keypoint prediction

“Fully Convolutional”: All layers operate on local inputs (e.g. Conv, Pool,
ReLU); E.g. no FC layers allowed.

Properties of FCNs:

● Operate on input of any size
● Output tensors scale with input size
● Can train with heterogenous resolutions
● Can train and test at different resolutions

What if we try
running inference
448x448 image?

VGG trained on
224x224 images

[7x7x512]

Fully Convolutional Networks - Standard for detection /
segmentation / keypoint prediction

“Fully Convolutional”: All layers operate on local inputs (e.g. Conv, Pool,
ReLU); E.g. no FC layers allowed.

Properties of FCNs:

● Operate on input of any size
● Output tensors scale with input size
● Can train with heterogenous resolutions
● Can train and test at different resolutions

What if we try
running inference
448x448 image?

VGG trained on
224x224 images

[7x7x512] [14x14x512]
Things will be

good up to this
point...

Fully Convolutional Networks - Standard for detection /
segmentation / keypoint prediction

“Fully Convolutional”: All layers operate on local inputs (e.g. Conv, Pool,
ReLU); E.g. no FC layers allowed.

Properties of FCNs:

● Operate on input of any size
● Output tensors scale with input size
● Can train with heterogenous resolutions
● Can train and test at different resolutions

What if we try
running inference
448x448 image?

VGG trained on
224x224 images

[7x7x512]

Dimension mismatch
for FC :(
Wants 7x7x512=25088
input!

Conclusion:
VGG-16 not fully

convolutional

[14x14x512]
Things will be

good up to this
point...

Fully Convolutional Networks - Standard for detection /
segmentation / keypoint prediction

Ways to get an FCN (from an existing non-FCN)

Option 1: Chop off FC (and pooling layers) at top
 (and possibly add new convs)

Option 2: Convert FC layers to “Equivalent” Convs

C
on

v

Convert top FC layer to Conv
layer that takes full extent of
input (in this case, FC is 1x1 with
1000 output channels)

Note: w/o the avg pool, we’d
convert the FC to a 7x7 conv
with 1000 output channels

224x224

Now can run network on much
larger image (even after
training!)

Sky

1x
1

C
on

v

Ways to get an FCN (from an existing non-FCN)

Typical Semantic Segmentation model

● Run image through FCN
● Train with per-pixel sigmoid X-entropy

Sigmoid
X-entropy

Figure from Chen et al

Fully Convolutional model

● Run image through FCN
● Train with per-pixel sigmoid X-entropy

Figure from Chen et al

Fully Convolutional model
But: if we directly convert typical
classification model (e.g. VGG) to
FCN, we’ll get something like this :(

Typical Semantic Segmentation model

Typical CNN Output sizes are too small

● Network stride = product of layer strides (for single path network)
○ For typical ImageNet networks (e.g. AlexNet, VGG, Resnet) stride prior to FC layers is 32

● For segmentation we typically want smaller network stride (e.g. 2, 4 or 8)

640x640

1x
1

C
on

v

Stride 2 ops (5 ops)

20x20

Total Network Stride = 2^5 = 32;
Output size = (640/32) x (640x32) = 20x20

Too small!! :(

How to get high resolution outputs (e.g. w/stride <
32)

● Use fewer stride 2 convolutions

● Use “upconvolution” operators

Approach 1: Just don’t downsample that many times

Resulting network stride: 8

Make these stride 2 ops
stride 1 instead

1x
1

C
on

v

80x80

Replace stride 2 convolutions with stride 1

Stride 1

Stride 2

Stride 1

Stride 1

x x x x x x x x x

x x x x x

x x x x x

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

Problem: Doing this directly can significantly reduce receptive field size...

Chen, Papandreou, et al, 2015

Some Receptive Field arithmetic
How big is our receptive field?

https://distill.pub/2019/computing-receptive-fields/

Receptive field size

Sum over network layers

Product of strides up to
layer l

Kernel size at layer l

layers stride @ layer

1 1
1 2
3 4
4 8
6 16
3 32

layers stride @ layer

1 1
1 2
3 4
4 8
6 8
3 8

Resnet-{34,50}
Resnet-{34,50}

after converting last 2 stride 2 layers to stride 1

R0 = 1 + (3-1) * (1 * 1
 + 1 * 2
 + 3 * 4
 + 4 * 8
 + 6 * 16
 + 3 * 32)

 = 479

R0 = 1 + (3-1) * (1 * 1
 + 1 * 2
 + 3 * 4
 + 4 * 8

 + 6 * 8
 + 3 * 8)

 = 239
Receptive field area reduced 4x :(

Replace stride 2 convolutions with stride 1

Stride 1

Stride 1

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

Problem: Doing this directly can reduce receptive field size...

Solution: Use dilated/atrous convolution (convolution with holes, en
français) to compensate at the second layer.

Stride 1

Stride 2

Stride 1

Stride 1

x x x x x x x x x

x x x x x

x x x x x

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

Chen, Papandreou, et al, 2015

Convolution with atrous rate=2Convolution with atrous rate=1,
(i.e., ordinary convolution)

Stringing atrous through multiple layers
Compensation needs to happen at all higher layers

x x x x x x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x

Receptive Field Size = 11 Receptive Field Size = 11

Stride 1

Stride 2

Stride 1

Stride 1

Stride 1

Stride 1

Use convolution with atrous rate=2 at both
layers above to maintain receptive field size

Atrous Cost/Benefit
● Quadrupled memory
● Quadrupled theoretical FLOPS
● Same # parameters

● High resolution outputs
● Large receptive field
● Can initialize model from ImageNet w/o retraining

Only in affected layers, and due to larger inputs
(Atrous Conv itself is not more expensive than
ordinary Conv)

Case Study (2015): DeepLab-LargeFOV Architecture

Start with VGG; Remove last two pools; Use Atrous Convs in higher layers

Stride 1

Stride 2

Stride 4

Stride 8

Stride 16

Stride 32

Stride 8, 3x3 convs w/atrous rate 2

Conv 3x3 1024 rate 12

Conv 1x1 1024

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs by Chen et al
Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs by Chen et al

Original
VGG-16

DeepLab-
LargeFOV

Stride 1

Stride 2

Stride 4

Stride 8

DeepLab results (Pascal VOC dataset)

VGG based
DeepLab

Resnet-101 based
DeepLab

How to get high resolution outputs (e.g. w/stride <
32)

● Use fewer stride 2 convolutions

● Use “upconvolution” operators

“Upconvolution” operators
● Resize + Conv

● Fractional / Sub-pixel Convolution

● Transpose Convolution

● Convolution + “Periodic Reshuffling”

● Unpool (not super common)

To reduce spatial resolution, use
Convolution w/stride 2

To increase spatial resolution, use ???

Resize + Conv

2x NN or
bilinear resize

Conv

(often merging with
lower level
features)

Fractionally Strided / Subpixel Convolution

Conv “Bed of nails”

Fractional indices w/half stride

Convolution + “Periodic reshuffling”

Low Resolution High Resolution

Is the deconvolution layer the same as a convolutional layer? by Shi et al

Input

Output

Zero paddings

1-D Convolution (stride 2)

Transpose Conv

We can always write (ordinary)
convolution as a matrix
multiplication

Input

Output

Zero paddings

Crop instead of
pad

1-D Convolution (stride 2) 1-D Transpose Convolution (stride 2)

Transpose Conv

Interesting fact: Swapping forwards and backwards passes of Conv op
will give Transpose Conv op

1 2 3

4 5 6

7 8 9

0 0 1

0 1 0

1 0 0

Filter/“stamp”

Transpose Conv (stride 2)

Input Output

Crop borders

Transpose Conv (2-d example)

Think of “stamping” filter across the output image

1 2 3

4 5 6

7 8 9

0 0 1

0 1 0

1 0 0

Filter/“stamp”

Transpose Conv (stride 2)

Input Output

Crop borders

0 0 1

0 1 0

1 0 0

Transpose Conv (2-d example)

Think of “stamping” filter across the output image

1 2 3

4 5 6

7 8 9

0 0 1

0 1 0

1 0 0
1 0

0 0

Filter/“stamp”

Transpose Conv (stride 2)

Input Output

0 1

0

1

0

Crop borders

0 0 2

0 2 0

2 0 0

Transpose Conv (2-d example)

Think of “stamping” filter across the output image

1 2 3

4 5 6

7 8 9

0 0 1

0 1 0

1 0 0
1 0 2

0 2 0

0

0

Filter/“stamp”

Transpose Conv (stride 2)

Input Output

0 1 0 2

0

1

0

Crop borders

0 0 3

0 3 0

3 0 0

Transpose Conv (2-d example)

Think of “stamping” filter across the output image

1 2 3

4 5 6

7 8 9

0 0 1

0 1 0

1 0 0
1 0 2

0 2 0

0 3

3 0

Filter/“stamp”

Transpose Conv (stride 2)

Input Output

0 1 0 2 0

0

1

0

0

0

3

Crop borders

0 0 4

0 4 0

4 0 0

Transpose Conv (2-d example)

Think of “stamping” filter across the output image

1 2 3

4 5 6

7 8 9

0 0 1

0 1 0

1 0 0
1 0 2

0 6 0

4 0

0 0

0 3

3 0

Filter/“stamp”

Transpose Conv (stride 2)

Input Output

0 1 0 2 0

0

1

0

4

0

0

0

3

Crop borders

0 0 5

0 5 0

5 0 0

Transpose Conv (2-d example)

Think of “stamping” filter across the output image

1 2 3

4 5 6

7 8 9

0 0 1

0 1 0

1 0 0
1 0 2

0 6 0

4 0 5

0 5 0

0 3

8 0

0

0

Filter/“stamp”

Transpose Conv (stride 2)

Input Output

0 1 0 2 0

0

1

0

4

0

0

0

3

Crop borders

0 0 6

0 6 0

6 0 0

Transpose Conv (2-d example)

Think of “stamping” filter across the output image

1 2 3

4 5 6

7 8 9

0 0 1

0 1 0

1 0 0
1 0 2

0 6 0

4 0 5

0 5 0

0 3

8 0

0 6

6 0

Filter/“stamp”

Transpose Conv (stride 2)

Input Output

0 1 0 2 0

0

1

0

4

0

0

6

0

0

3

Crop borders

0 0 7

0 7 0

7 0 0

Transpose Conv (2-d example)

Think of “stamping” filter across the output image

1 2 3

4 5 6

7 8 9

0 0 1

0 1 0

1 0 0
1 0 2

0 6 0

4 0 5

0 12 0

7 0

0 3

8 0

0 6

6 0

Filter/“stamp”

Transpose Conv (stride 2)

Input Output

0 1 0 2 0

0 0

0

1

0

4

0

0

7

0

6

0

0

3

Crop borders

0 0 8

0 8 0

8 0 0

Transpose Conv (2-d example)

Think of “stamping” filter across the output image

1 2 3

4 5 6

7 8 9

0 0 1

0 1 0

1 0 0
1 0 2

0 6 0

4 0 5

0 12 0

7 0 8

0 3

8 0

0 6

14 0

0

Filter/“stamp”

Transpose Conv (stride 2)

Input Output

0 1 0 2 0

0 8 0 0

0

1

0

4

0

0

7

0

6

0

0

3

Crop borders

0 0 9

0 9 0

9 0 0

Transpose Conv (2-d example)

Think of “stamping” filter across the output image

1 2 3

4 5 6

7 8 9

0 0 1

0 1 0

1 0 0
1 0 2

0 6 0

4 0 5

0 12 0

7 0 8

0 3

8 0

0 6

14 0

0 9

Filter/“stamp”

Transpose Conv (stride 2)

Input Output

0 1 0 2 0

0 8 0 9 0

0

1

0

4

0

0

7

0

6

0

9

0

3

0

Crop borders

Transpose Conv (2-d example)

Think of “stamping” filter across the output image

1 2 3

4 5 6

7 8 9

0 0 1

0 1 0

1 0 0
1 0 2

0 6 0

4 0 5

0 12 0

7 0 8

0 3

8 0

0 6

14 0

0 9

Filter/“stamp”

Transpose Conv (stride 2)

Input Output

Transpose Conv (2-d example)

Think of “stamping” filter across the output image

Which one should I use??

● Fractional / Sub-pixel Convolution
● Transpose Convolution
● Convolution + “Periodic Reshuffling”
● Resize + Conv

Representationally Equivalent!

Slightly less expressive

1 1

1 1

Resize + Conv equivalent to Bed-of-Nails followed by an “all ones” 2x2 Conv then ordinary Conv

Checkerboard artifacts

https://distill.pub/2016/deconv-checkerboard/

Transpose Convolutions “want” to generate checkerboards

Resize + Conv less expressive than Transpose
Conv, but less susceptible to checkerboard
artifacts

Case Study (2015): FCN

Fully Convolutional Networks for Semantic Segmentation by Long et al.

VGG-based FCN (stride 32)

1x1 Conv

1x1 Conv

Case Study (2015): FCN

Fully Convolutional Networks for Semantic Segmentation by Long et al.

VGG-based FCN (stride 16)

1x1 Conv

1x1 Conv

Transpose Conv

“Make local predictions that
respect global structure”

Case Study (2015): FCN

Fully Convolutional Networks for Semantic Segmentation by Long et al.

VGG-based FCN (stride 8)

Transpose Conv

1x1 Conv

1x1 Conv

Case Study (2015): FCN

Fully Convolutional Networks for Semantic Segmentation by Long et al.

Case Study (2019): FPN (revisited)

Panoptic Feature Pyramid Networks by Kirillov et al

Case Study(2018) DeepLabV3+

Figure from Chen et al

Atrous Spatial Pyramid
(Bilinear) Resize + Conv

Outline of Semantic Segmentation

● The sliding window connection (again)

● Fully Convolutional models

● How to get high resolution outputs with

○ Atrous convolutions

○ “Upconvolutions”

● Target Assignment

● Evaluation of Semantic Segmentation

Relevant for all dense prediction
tasks

Target Assignment / Alignment

Subsample groundtruth

Upsample predictions

Image

GT

GT

Image

Loss

Loss

or...

Target Assignment / Alignment
A reasonable desideratum: groundtruth target for a particular logit should be
sampled at center of that prediction’s receptive field

● Getting this right requires thinking about padding, specific resizing algorithm

“Valid padded”
network

“Same padded”
network

Assign “Water” Assign “Beach”

Recap
We want

● High output resolution

● Large receptive fields

● “Alignment” between receptive fields and targets

Outline of Semantic Segmentation

● The sliding window connection (again)

● Fully Convolutional models

● How to get high resolution outputs with

○ Atrous convolutions

○ “Upconvolutions”

● Target Assignment

● Evaluation of Semantic Segmentation

Relevant for all dense prediction
tasks

How to evaluate a segmentation model: Per-Pixel
Accuracy

Problem with per-pixel accuracy --- not fair to small/thin classes

Categories: Water, Land

Categories: Water, Land

Setting every pixel
to “Land” is >90%

Accuracy

How to evaluate a segmentation model: Per-Pixel
Accuracy

Problem with per-pixel accuracy --- not fair to small/thin classes

How to evaluate a segmentation model: “Mask IOU”
G

ro
un

dt
ru

th

Predictio
n

G
ro

un
dt

ru
th

Predictio
n

IOU =
Intersection

Union

● Masks are disjoint if and only if IOU=0
● Masks are identical if and only if IOU=1

How to evaluate a semantic segmentation model

Image Groundtruth Prediction

Figure from Jégou et al.

Mean IOU = Mean(IOU(groundtruth_c, predicted_c)
for c in {Sky, Building, Pole, ...})

Lecture Outline

Dense Prediction (pixel level prediction)

● Semantic Segmentation

● Instance Segmentation

● Panoptic Segmentation

● Keypoint Estimation

Semantic vs Instance Segmentation: Don’t get confused!

classify classify and regress
bounding box per object

classify per pixel classify per pixel per object

(bounding box)
detection

semantic
segmentation

instance
segmentation

Figure from Lin et al 2014

Mask R-CNN

Mask R-CNN by He et al, 2017

Boxes first paradigm:

1. Run detector (Faster R-CNN)

2. Produce segmentation relative

to each predicted box

Mask R-CNN combines both steps

into an end-to-end trainable model

Block 1 Block 2 Block 3

Block 4

Crop/Resize (a.k.a.
ROIAlign) and
Stack

Faster R-CNN Stage 1

Faster R-CNN Stage 2

RPN Classification Loss

RPN Localization Loss

Object Classification Loss

Object Localization Loss

Mask Loss
Per-pixel Sigmoid XEnt

“Mask Head”

7x7x512

Note: exact dimensions in this
figure are a bit off as this figure is
based on “basic residual unit” 14
x1

4
x5

12

14
x1

4
xKTranspose

Conv

Mask R-CNN Training

Block 1 Block 2 Block 3

Block 4

Crop/Resize (a.k.a.
ROIAlign) and
Stack

Faster R-CNN Stage 1

Faster R-CNN Stage 2 7x7x512

14
x1

4
x5

12

14
x1

4
xKTranspose

Conv

Mask R-CNN Inference

Block 4

Crop/Resize (a.k.a.
ROIAlign) and
Stack

Mask R-CNN Stage 3

Apply Mask head to top-100 scoring boxes (for speed)

Transpose
Conv

Evaluation for Instance Segmentation

● We care about the same things as object detection

○ E.g. Precision, Recall, Average Precision (AP), mean Average Precision (mAP)

Mask IOU =
Intersection

UnionBox IOU =
Intersection

Union

But… with Mask IOU instead of Box IOU

Stuff vs Things

Figure from Caesar et al 2018

Stuff

Things

Semantic segmentation makes more sense

Instance segmentation makes more sense

Handle both stuff and things: Panoptic Segmentation

Kirillov et al, 2018

● Assign (category, instance id)
pair to each pixel in image.

● Instance label ignored for
“stuff” categories.

Measuring Panoptic Quality

Figure by Kirillov et al 2018

mAP mIOU

Things Standard for thing categories (instance
segmentation)

Does not account for False
Positives/Negatives

Stuff Stuff segments typically do not come
with a score needed to compute mAP

Standard for stuff categories (semantic
segmentation)

Match Groundtruth and Predicted
segments if IOU>50%

Figure by Kirillov et al 2018

Measuring Panoptic Quality

Figure by Kirillov et al 2018

Measuring Panoptic Quality

More generally:

Figure by Kirillov et al 2018

Measuring Panoptic Quality

More generally: (= F1-score * mIOU)

Another common detection metric

Figure by Kirillov et al 2018

Measuring Panoptic Quality

Keypoint Detection

Slide courtesy of George Papandreou, Tyler Zhu

“Top-down” approach: Mask R-CNN

Right

Wris
t

Left

Wris
t

Left

Eye

Predict heatmap for
each pose keypoint

..
.

He et al, 2017

Image credit: DeeperCut paper

“Bottom up” approach: Predict keypoint positions (Step 1)

“Bottom up” approach: Group keypoints (Step 2)

Image Source

Right
KneeRight

Ankle

Right
Knee

Right
Ankle

Right
KneeRight

Ankle

Right
Knee

Right
Ankle

vs.

BAD
GOOD

Example “bottom up” method: PersonLab

Papandreou, Zhu et al, 2018

“Bottom up” vs “Top down”

Papandreou, Zhu et al, 2018

Performance on COCO keypoints task

Another example “bottom up” method: “Objects as
Points”

Zhou et al, 2019

Predict heatmap for
each pose keypoint

Predict heatmap for
object center

Predict offset to each
pose keypoint

Predict object
height/width

Zhou et al, 2019

New kid on the block: “Anchor-free” object detection

Zhou et al, 2019

anchors

anchors

anchors

anchor-free

Wrap up

Dense Prediction (pixel level prediction)

● Semantic Segmentation

● Instance Segmentation

● Panoptic Segmentation

● Keypoint Estimation

Technology!

ImageNet: Where have we been? Where are we going? by Fei Fei Li and Jia Deng

