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Lecture Outline

We will mainly focus on semantic

. ae . . segmentation as a way to introduce
Dense Prediction (pixel level prediction) some of technical details behind “dense

: : diction”
e Semantic Segmentation precieton
e Instance Segmentation

e Panoptic Segmentation

e Keypoint Estimation



Problem statement
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classify classify and regress classify per pixel
bounding box per object

(bounding box) semantic
detection segmentation




Segmentation
Applications

Original Segmentation map



Segmentation |
Applications




Large Scale High-R ing with Multi-Resolution Data by Robinson et al
= = o -7 . on e, 7 LTS ¥

Developed, Open space
' Developed, Low intensity
I Developed, Medium intensity
I Developed, High intensity

' Deciduous Forest

A - B Evergreen Forest
‘ Shrub/Scrub

’ [ Cultivated Crops



Medical Segmentation

Wlsrain
Lacrimal Left / Right
Lens Left / Right
Optic Nerve Left / Right

|Orbit Left / Right

u|Model
W] oncologist

100mm W: 300, L: 40
MliBrain
Brainstem
Cochlea Left / Right
[ Mandible

W Model
[l oncologist

100mm W: 3000, L: 500
| E=
Brainstem
iMand\b\e
Parotid Left / Right

| ] Model
| Oncologist

100mm W: 350, L: 80

Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy by Nikolov et al




Outline of Semantic Segmentation

e The sliding window connection (again)

e Fully Convolutional models

e How to get high resolution outputs with
o Atrous convolutions . Relevant for all dense prediction

tasks
o “Upconvolutions”

e Target Assignment

e Evaluation of Semantic Segmentation



“Sliding Window"” Segmentation

Same idea as detection:
Extract features from a
window around a point;
Predict class label for point



“Sliding Window"” Segmentation

Same idea as detection:
Extract features from a
window around a point;
Predict class label for point



“Sliding Window" Segmentation
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window around a point;
Predict class label for point
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window around a point;
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“Sliding Window" Segmentation

Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky
° ° ° ° ° N\ © ° ° ° ° ° °

Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky Sky
° ° ° ° ° ° ° ° ° ° ° ° °

S Same idea as detection:

Sky  Sky Sky Sky Sky Sky Sky Sky Sky Sky
° ° ° ° ° ° °

Sky Sky
S Extract features from a
window around a point;

Predict class label for point




Fully Convolutional Networks - Standard for detection /
segmentation / keypoint prediction

“Fully Convolutional”: All layers operate on local inputs (e.g. Conv, Pool,
ReLU); E.g. no FC layers allowed.

Properties of FCNs:

Operate on input of any size

Output tensors scale with input size

Can train with heterogenous resolutions
Can train and test at different resolutions



Fully Convolutional Networks - Standard for detection /
segmentation / keypoint prediction

“Fully Convolutional”: All layers operate on local inputs (e.g. Conv, Pool,
ReLU); E.g. no FC layers allowed.

[7x7x512] “pool5” given 224x224 inputs
Properties of FCNs: A VGG-16 “non-example”
(that is still illustrative)
e Operate on input of any size
e Output tensors scale with input size
e Can train with heterogenous resolutions
e Can train and test at different resolutions
VGG trained on

224x224 images



Fully Convolutional Networks - Standard for detection /
segmentation / keypoint prediction

“Fully Convolutional”: All layers operate on local inputs (e.g. Conv, Pool,
ReLU); E.g. no FC layers allowed.

[7x7x512]
Properties of FCNs:
e Operate on input of any size
e Output tensors scale with input size
e Can train with heterogenous resolutions
e Can train and test at different resolutions
VGG trained on Wh.at 'f we try
224x224 images running inference

448x448 image?



Fully Convolutional Networks - Standard for detection /
segmentation / keypoint prediction

“Fully Convolutional”: All layers operate on local inputs (e.g. Conv, Pool,

ReLU); E.g. no FC layers allowed.

Properties of FCNs:

Operate on input of any size
Output tensors scale with input size
Can train with heterogenous resolutions

[
([
o
e Can train and test at different resolutions

Softmax
FC 1000
FC 4096
FC 4096

5
5
=
5
5
=

VGG trained on
224x224 images

Softmax
FC 1000
FC 4096
FC 4096

[7x7x512]

What if we try
running inference
448x448 image?

[14x14x512]
Things will be
good up to this
point...



Fully Convolutional Networks - Standard for detection /
segmentation / keypoint prediction

“Fully Convolutional”: All layers operate on local inputs (e.g. Conv, Pool,
ReLU); E.g. no FC layers allowed.

Dimension mismatch
for FC +(
Wants 7x7x512=25088
— a1~ input!
[7x7x512] [14x14x512]
Things will be
good up o this
Properties of FCNs: point...
e Operate on input of any size _
e Outputt e with inbut i Conclusion:
utput tensors scCale witn Input size VGG-16 not fully
e Can train with heterogenous resolutions convolutional
e Can train and test at different resolutions

VGG trained on What if we try

224x224 i running inference
Xeorimages 448x448 image?



Ways to get an FCN (from an existing non-FCN)
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Chop off FC (and pooling layers) at top

Option 1

(and possibly add new convs)
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Convert FC layers to “Equivalent” Convs

Option 2



Ways to get an FCN (from an existing non-FCN)

224x224

1x1 Conv

Convert top FC layer to Conv
layer that takes full extent of
input (in this case, FC is 1x1 with
1000 output channels)

Now can run network on much
larger image (even after

Note: wio th L we'd
training!) ote: w/o the avg pool, we

convert the FC to a 7x7 conv
with 1000 output channels




Typical Semantic Segmentation model

Sigmoid
X-entropy

Fully Convolutional model

e Runimage through FCN
e Train with per-pixel sigmoid X-entropy

Figure from Chen et al



Typical Semantic Segmentation model

Fully Convolutional model
But: if we directly convert typical
classification model (e.g. VGG) to
e Runimage through FCN FCN, we'll get something like this :(

e Train with per-pixel sigmoid X-entropy

Figure from Chen et al



Typical CNN Output sizes are too small

Stride 2 ops (5 ops)

640x640

pool, /2
i

20x20

1x1 Conv

Total Network Stride = 2*5 = 32;

Output size = (640/32) x (640x32) = 20x20
Too small!! i(

e Network stride = product of layer strides (for single path network)
o For typical ImageNet networks (e.g. AlexNet, VGG, Resnet) stride prior to FC layers is 32

e For segmentation we typically want smaller network stride (e.g. 2, 4 or 8)



How to get high resolution outputs (e.g. w/stride <
32)

e Use fewer stride 2 convolutions

e Use “upconvolution” operators



Approach 1: Just don't downsample that many times

80x80

1x1 Conv

Make these stride 2 ops
stride 1 instead

Resulting network stride: 8



Replace stride 2 convolutions with stride 1

X X X X X X X X X X X X X X

X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

Problem: Doing this directly can significantly reduce receptive field size...

Chen, Papandreou, et al, 2015



Some Receptive Field arithmetic

Resnet-{34,50}

#layers | stride @ layer
1 1
1 2
3 4
4 8
6 16
3 32

Receptive field size

\TO:Z

Sum over network layers

RO=1+3-1)*( 1*1
+1%2
+3*4
+4*8
+6*16
+3%*32)

=479

https://distill.pub/2019/computing-receptive-fields/

[ How big is our receptive field?

Kernel size at layer |

-1
(ki —1)[]si ] +1
=1

Product of strides up to

layer |

Resnet-{34,50}

after converting last 2 stride 2 layers to stride 1

# layers

stride @ layer RO =1+ (3_1) * (1 * 1

1

1

+1*2

+3*4

W o bhlwl—

| 00 0 AN

+47*8

+6*8
+3*8)
=239
Receptive field area reduced 4x :(



Replace stride 2 convolutions with stride 1

X X X X X X X X X X X X X X X X X X X X X X X
X X X X X|:> X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X X X X X X X X X X

Convolution with atrous rate=1, Convolution with atrous rate=2

(i.e., ordinary convolution)

Problem: Doing this directly can reduce receptive field size...

Solution: Use dilated/atrous convolution (convolution with holes, en
francais) to compensate at the second layer.

Chen, Papandreou, et al, 2015



Stringing atrous through multiple layers

Compensation needs to happen at all higher layers

Use convolution with atrous rate=2 at both
layers above to maintain receptive field size

X X X X X X X X X X X X X X X X X X X X X X X X
Stride 1 / \ Stride 1 / \

X X X X X X X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X X X X X X X
Stride 2 M \/\/\/{\ Stride 1 M \/\/\/{\

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

N J N J
Y Y

Receptive Field Size = 11 Receptive Field Size = 11



Atrous Cost/Benefit

¢ Quadrupled memaory Only in affected layers, and due to larger inputs
e Quad rup|ed theoretical FLOPS (Atrous Conv itself is not more expensive than

ordinary Conv)
e Same # parameters

e High resolution outputs
e Large receptive field
e Can initialize model from ImageNet w/o retraining



Case Study (2015): DeeplLab-LargeFOV Architecture

Start with VGG; Remove last two pools; Use Atrous Convs in higher layers

Conv 1x1 1024 |

Softmax |

t
| Conv3x3 1024 rate 12 |
Stride 32 ﬁ
Original ‘ } Stride 16 DeepLab_ } Stride 8, 3x3 convs wiatrous rate 2
T — p— =y
VGG-16 LargeFOV _
} Stride 8 Stride 8
} Stride 4 } Stride 4
; } Stride 2 } Stride 2
} Stride 1 } Stride 1

Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs by Chen et al
Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs by Chen et al




DeeplLab results (Pascal VOC dataset)

1

VGG based Resnet-101 based
DeepLab DeepLab



How to get high resolution outputs (e.g. w/stride <
32)

e Use fewer stride 2 convolutions

e Use “upconvolution” operators



“Upconvolution” operators

e Resize + Conv

e Fractional / Sub-pixel Convolution :>

e Transpose Convolution

To reduce spatial resolution, use
e Convolution + “Periodic Reshuffling”

e Unpool (not super common)

=)

To increase spatial resolution, use 7?7



Resize + Conv

om0

2x NN or
bilinear resize

i

=)

Conv

(often merging with
lower level
features)



Fractionally Strided / Subpixel Convolution

= I

“Bed of nails” H F Conv

\/

Fractional indices w/half stride



Convolution + “Periodic reshuffling”

Low Resolution n, feature maps ... n  feature maps r? channels High Resolution

%,

\

Is the deconvolution layer the same as a convolutional layer? by Shi et al




Transpose Conv

Vs

InM Zero paddings
LT ]|
A A

Output E

1-D Convolution (stride 2)

We can always write (ordinary)
convolution as a matrix
multiplication



Transpose Conv

Input Zero paddings I—’__|;|%|

Crop instead of
\ 4 A\ A\ A\ 4 A\
pad

Output E ]

A A

A A A A A

A

1-D Convolution (stride 2) 1-D Transpose Convolution (stride 2)

Interesting fact: Swapping forwards and backwards passes of Conv op
will give Transpose Conv op



Transpose Conv (2-d example)

Crop borders
Filter/“stamp” /
0]jo]1 r*r*‘"/
O]110 %“‘ S M “‘i
11213 11010 ! !
4|56 Transpose Conv (stride 2) > i:-" "-45

Input

Think of “stamping” filter across the output image



Transpose Conv (2-d example)

Crop borders
Filter/“stamp” /
ON ON I TR S
OlO]1 . !
O|11]0 -
O|110 !
110|0 i
1123 1100 !
4|5 |6 Transpose Conv (stride 2) >
71819 : .
input Output

Think of “stamping” filter across the output image



Transpose Conv (2-d example)

Crop borders

Filter/“stamp” /

olo]

:O 0 1O O 2 :

O|11]0 e ]

1]o]o B e 5

1123 " p2fofo i

4|5 |6 Transpose Conv (stride 2) >

7189 :
Input Output

Think of “stamping” filter across the output image



Transpose Conv (2-d example)

Filter/“stamp”
0101
011160
11213 11010
41|56 Transpose Conv (stride 2) >
71819
Input

Crop borders

P oo
:?)———1 (0] 2 OO 3
i1 (0] 2 (6} 03 O O
! I I I I
! I I 1 I

RN A Y

Output

Think of “stamping” filter across the output image



Transpose Conv (2-d example)

Crop borders

Filter/“stamp” /
0fo]1
of[1]o0 S e A S

1]2]3 110109 "OFOFaP | F P .

4156 Transpose Conv (stride 2) > ol4a]0 "-45

7189 41010 1

Input Output

Think of “stamping” filter across the output image



Transpose Conv (2-d example)

Crop borders
Filter/“stamp” /
0l|O]"
O 1 O i;——— 1 |O l2 lO l3 0———i
1{o]o0 | %
1 2 3 i1 0 0 PO B5 P 0 :
4 5|6 Transpose Conv (stride 2) > ok PrOo|5]10
7 9 “ ° 51010
Input Output

Think of “stamping” filter across the output image



Transpose Conv (2-d example)

Crop borders
Filter/“stamp” /
0o
O 1 O %;——— 1 |0 l2 lO l3 O———i
1]0]0 | |
1 2 3 i1 (0] 6 (6] 80 OO 06
4|56 Transpose Conv (stride 2) > ok P s POl6|0
718 =P F P P6lo]oO
Input Output

Think of “stamping” filter across the output image



Transpose Conv (2-d example)

Crop borders
Filter/“stamp” /
0fo]1
O 1 O ;———1 [0] 2 [0] 3 O———l:
1 1 O O 1 (0] 6 (6] 8 0 )
4|5 |6 Transpose Conv (stride 2) > 55"-4 SO L L O-"E
7189 coFoF7 F F P P
710 L
7fofof i i &
Input Output

Think of “stamping” filter across the output image



Transpose Conv (2-d example)

Filter/“stamp”

O0]0 |1

Of11]0
11213 110]0
41|56 Transpose Conv (stride 2) >
71819

Input

o — —— —

_____

0 0 i o} 2 o} 3

! I I 1 I

b ==

0 1 o 2 o 3 0

!

1 o 6 0 8 0 6

- i

0 4 o 5 o 6 0

1

:4 o 120 0 O 6 8 0 0

1

1

:O 7 0 O 8 O

:____ - - - - Looo

7P [8]10]0

L f I
Output

Think of “stamping” filter across the output image

Crop borders



Transpose Conv (2-d example)

Crop borders
Filter/“stamp” /
0|0]1
Ol1 0 ;;———1 0 2 0 3 o———l:
1 213 1 0]0 i1 0 6 o 8 0 6 E
4|5 |6 Transpose Conv (stride 2) > 55"-4 SO L L O-"E
7 8 9 E:l___O 12 (0] 140 OO 09
f 7___0____8___00 9 O
bt b pefo]o
Input

Think of “stamping” filter across the output image



Transpose Conv (2-d example)

Filter/“stamp”

0]

0

1

0

1

0]

1

0]

0]

Input

1
41|56 Transpose Conv (stride 2) >
71819

o — —— —

_____

1

0 o N o2 o 3

! I I 1 I

P _—

0 1 0 2 o 3 o

1

1

1 0 6 o 8 o 6

1

e —

0 4 0 5 0 6 0

1

[bo== ===

14 o 2 o u o 9

1

1

0 7 o ] o 9 o

1

| I - —_———t—— - R -

! 1 | ] I

7 o s o e o 0

! I I 1 I

L D P Y S
Output

Think of “stamping” filter across the output image

Crop borders



Transpose Conv (2-d example)

Filter/“stamp”

0]

0

1

0

1

0]

1

0]

0]

Input

1
41|56 Transpose Conv (stride 2) >
71819

Output

Think of “stamping” filter across the output image




Which one should | use??

e Fractional / Sub-pixel Convolution

e Transpose Convolution Representationally Equivalent!
e Convolution + “Periodic Reshuffling”

e Resize + Conv } Slightly less expressive

Resize + Conv equivalent to Bed-of-Nails followed by an “all ones” 2x2 Conv then ordinary Conv




Checkerboard artifacts

Transpose Convolutions “want” to generate checkerboards

Deconv in last two layers.
Other layers use resize-convolution.
Artifacts of frequency 2 and 4.

Deconv only in last layer.
Other layers use resize-convolution.
Artifacts of frequency 2.

All layers use resize-convolution.
No artifacts.

Resize + Conv less expressive than Transpose
Conv, but less susceptible to checkerboard
artifacts

https://distill.pub/2016/deconv-checkerboard/




Case Study (2015): FCN

32x upsampled
predicti N-32s)

pooll pool2 pool3 poold poold

VGG-based FCN (stride 32)

Fully Convolutional Networks for Semantic Segmentation by Long et al.




Case Study (2015): FCN

prediction (FCN-32s)

Transpose Conv

/

32x upsampled 2x upsampled

prediction

image pooll pool2 pool3 pool4 poold

poold
prediction

-

~o * k/

16x upsampled
prediction (FCN-16s)

“Make local predictions that
respect global structure”

VGG-based FCN (stride 16)

Fully Convolutional Networks for Semantic Segmentation by Long et al.




Case Study (2015): FCN

Transpose Conv

32x upsampled 2x upsampled 16x upsampled 2x upsampled 8x upsampled
prediction (FCN-32s)  prediction  prediction (FCN-16s)  prediction prediction (FCN-8s)

image pooll pool2 pool3 poold poold poold 3 pool3
prediction 4 predicti
/
/
/
i SUSE ‘x‘ Con\’ ...............................
............................................................................. 1X1 Conv

VGG-based FCN (stride 8)

Fully Convolutional Networks for Semantic Segmentation by Long et al.



Case Study (2015): FCN

FCN-32s FCN-16s FCN-8s Ground truth

Fully Convolutional Networks for Semantic Segmentation by Long et al.




Case Study (2019): FPN (revisited)

Panoptic Feature Pyramid Networks by Kirillov et al




Case Study(2018) DeepLabV3+

Atrous Spatial Pyramid
(Bilinear) Resize + Conv
- 4

- /
L= (7 (T,
Spatial Pyramid Pooling
\ v I S
‘ LA

4x

Figure from Chen et al



Outline of Semantic Segmentation

e The sliding window connection (again)

e Fully Convolutional models

e How to get high resolution outputs with
o Atrous convolutions . Relevant for all dense prediction

tasks
o “Upconvolutions”

e Target Assignment

e Evaluation of Semantic Segmentation



Target Assignment / Alignment

. N
or... \ /
Upsample predictions

[
L
= =

Loss

Subsample groundtruth

Loss }




Target Assignment / Alignment

A reasonable desideratum: groundtruth target for a particular logit should be

sampled at center of that prediction’s receptive field

e Getting this right requires thinking about padding, specific resizing algorithm

“Valid padded”
network

Assign “Water”

“Same padded”
network



Recap

We want

e High output resolution
e Large receptive fields

e “Alignment” between receptive fields and targets



Outline of Semantic Segmentation

e The sliding window connection (again)

e Fully Convolutional models

e How to get high resolution outputs with
o Atrous convolutions . Relevant for all dense prediction

tasks
o “Upconvolutions”

e Target Assignment )

e Evaluation of Semantic Segmentation



How to evaluate a segmentation model: Per-Pixel
Accuracy

Problem with per-pixel accuracy --- not fair to small/thin classes

=

Eitopia

Categories: Water, Land



How to evaluate a segmentation model: Per-Pixel
Accuracy

Problem with per-pixel accuracy --- not fair to small/thin classes

| Setting every pixel
to “Land” is >90%
Accuracy

Categories: Water, Land



How to evaluate a segmentation model: “Mask IOU”

Intersection
Union ‘

e Masks are disjoint if and only if IOU=0
e Masks are identical if and only if IOU=1

IOU =




How to evaluate a semantic segmentation model

Image Groundtruth Prediction

Mean IOU = Mean(lIOU(groundtruth_c, predicted c)
for c in {Sky, Building, Pole, ...})

Figure from Jégou et al.



Lecture Outline

Dense Prediction (pixel level prediction)
e Semantic Segmentation
e Instance Segmentation
e Panoptic Segmentation

e Keypoint Estimation



Semantic vs Instance Segmentation: Don’t get confused!

person, sheep 'dog

classify classify and regress classify per pixel classify per pixel per object
bounding box per object

(bounding box) semantic instance
detection segmentation segmentation

Figure from Lin et al 2014



Mask R-CNN

Boxes first paradigm:
1. Run detector (Faster R-CNN)
2. Produce segmentation relative

to each predicted box

Mask R-CNN combines both steps

into an end-to-end trainable model

Mask R-CNN by He et al, 2017




Mask R-CNN Training

Faster R-CNN Stage

Block 1

Block 2

—| RPN Classification Loss |

—| RPN Localization Loss |

e
-—— -
- -

=
—
—
——
—
- -

-~ (|
'\ (] Crop/Resize (a.k.a.
Sal > ROIAlign) and
| Stack

Note: exact dimensions in this
figure are a bit off as this figure is
based on “basic residual unit”

3x3 cony, 512, /;. al
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512

Block 4

Transpose
Conv

—| Obiject Classification Loss |

—| Object Localization Loss |

“Mask Head”

Mask Loss
Per-pixel Sigmoid XEnt




Mask R-CNN Inference

Faster R-CNN Stage 1 ] N -

BT oa

Block1 Block 2

- -
—-——
—-— -
-

—
— -
—-—— -
-
- -
-—

N Crop/Resize (a.k.a. ISR EEN |EIRE
\‘i > ROIAlign) and EINEE NG VNS
sl (8|88 |8] |8
| Stack 21 12l 12l I2] 12] |2
(5(' m om m ™ oM
Mask R-CNN Stage3 ___------°
- O .-'

‘o (=] Crop/Resize (a.k.a. ISR EEN |EIRE
R = ROIAlign) and HNHHENEI (ENE

sl (8|88 |8] |8 L

Stack ol (=] (2] (2] 12 |g| Transpyse
2 @ o0 L) ) [ Con‘

Apply Mask head to top-100 scoring boxes (for speed)
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Evaluation for Instance Segmentation

e We care about the same things as object detection

o E.g. Precision, Recall, Average Precision (AP), mean Average Precision (mAP)

Intersection

Mask IOU =

Union ]

But... with Mask IOU instead of Box IOQU




Stuff vs Things

Semantic segmentation makes more sense

Stuff

leaves
sky-other =
Y sky-othe[, yal
clouds

clouds sky-off
structural-other |eg
sky-other
ey Y sky-of
cleuds X ’ g e T ET sea
tree s N p ‘ I St e

3 i? x n‘ person

persol pers"q.. S€a cea sand

2 sand person  textile-other
* kextile-other Person. sand uoxtile-other s person

person sand

nPerso

chair
textile-other

platform a S < = 4 textile-other bottle
platform = { extile-other spi

-
] railroad

ground-other

gravel gravel

lground-other platform

railroad gravel

wood

gravel

Things
Instance segmentation makes more sense

Figure from Caesar et al 2018



Handle both stuff and things: Panoptic Segmentation

e Assign (category, instance id)
pair to each pixel in image.

(a) image

e |Instance label ignored for
“stuff” categories.

(c) instance segmentation (d) panoptic segmentation

Kirillov et al, 2018



Measuring Panoptic Quality

with a score needed to compute mAP

Ground Truth Prediction
mAP miOU
Things Standard for thing categories (instance Does not account for False
segmentation) Positives/Negatives
Stuff Stuff segments typically do not come Standard for stuff categories (semantic

segmentation)

Figure by Kirillov et al 2018



Measuring Panoptic Quality

Ground Truth

{

TP, = {(
FPy = {
FN; = {

) (

G

~»

Prediction

)}

Match Groundtruth and Predicted
segments if IOU>50%

Figure by Kirillov et al 2018



Measuring Panoptic Quality

Ground Truth Prediction
TP ={({ {4 D G} &)}
FP, :{ }
LU € |4 ) + oul Bl $)
FN,={ '} Py = [ TPy |+[FPy|+[FN|

Figure by Kirillov et al 2018



Measuring Panoptic Quality

Ground Truth Prediction

> (p.gyerp 10U(D, 9)
More generally: PQ = g 1 i
|TP| + §|FP| + 3|FN)|

Figure by Kirillov et al 2018



Measuring Panoptic Quality

Ground Truth Prediction

IoU(p, .
More generally: PQ = Z(p,g)lé TP (f 9) (= F,-score *mIOU )
|TP| + 5|FP|+ 5|FN| \

Another common detection metric

Figure by Kirillov et al 2018



Keypoint Detection

Slide courtesy of George Papandreou, Tyler Zhu






Chowma e B Wew Wy Bamsete  Pead UL Wves e

I L0 T AW LY N MRS New

.- Y It pyon S

G

Don’t touch your face

$37

oy Sat ar wet wtenr o0 wwTE
i

g srentoced| |nach rous fece
e

iy

ot

Y

M

™

oy

.

-y

oy

ey

iy

v

SN NS

4 401 40T Dy, 07 e g 0 b T ps W 68 WETILTIR

How touse it

whon watrrey tw

TR

E-TTEIE

1™
[ ahaR







“Top-down” approach: Mask R-CNN

He et al, 2017

Predict heatmap for
each pose keypoint

’

- N
<9 9 N
2%, % < 75
/ w\m\,\//&\//m@%/ .




“Bottom up” approach: Predict keypoint positions (Step 1)

Image credit: DeeperCut paper




“Bottom up” approach: Group keypoints (Step 2)

Image Source



Example “bottom up” method: PersonlLab

Hough arrays

‘ decoding

|
|
|
|
|
|
|
|
|
; ‘ Person pose |
|
|
|
|
1
|
|
|

Papandreou, Zhu et al, 2018



“Bottom up” vs “Top down”

Performance on COCO keypoints task

AP AP AP"™ APY AP"| AR AR®® AR™ AR AR"

Bottom-up methods:

CMU-Pose [32] (+refine) 0.618 0.849 0.675 0.571 0.682|0.665 0.872 0.718 0.606 0.746
Assoc. Embed. [2] (multi-scale) |0.630 0.857 0.689 0.580 0.704| - - - - -
Assoc. Embed. [2] (mscale, refine)| 0.655 0.879 0.777 0.690 0.752(0.758 0.912 0.819 0.714 0.820
Top-down methods:

Mask-RCNN [34] 0.631 0.873 0.687 0.578 0.714|0.697 0.916 0.749 0.637 0.778
G-RMI COCO-only [33] 0.649 0.855 0.713 0.623 0.700(0.697 0.887 0.755 0.644 0.771
PersonLab (ours):

ResNet101 (single-scale) 0.655 0.871 0.714 0.613 0.715|0.701 0.897 0.757 0.650 0.771
ResNet152 (single-scale) 0.665 0.880 0.726 0.624 0.723]0.710 0.903 0.766 0.661 0.777
ResNet101 (multi-scale) 0.678 0.886 0.744 0.630 0.748]0.745 0.922 0.804 0.686 0.825
ResNet152 (multi-scale) 0.687 0.890 0.754 0.641 0.755]|0.754 0.927 0.812 0.697 0.830

Papandreou, Zhu et al, 2018



Another example “bottom up” method: “Objects as

Points”

N

L~y =+

—

Predict heatmap for
object center

Predict heatmap for
each pose keypoint

AN

g R, —— ol
—— | —

Predict object
height/width

Predict offset to each
pose keypoint

Zhou et al, 2019



ou et aI,A2019



New kid on the block: “Anchor-free” object detection

-fre€
chof
40 - an
Ay
< 35
o
)
Q
)
. —8— CenterNet(ours)
FasterRCNN
l RetinaNet
YOLOv3
25 1 1 1 1
0 50 100 150 200

Inference time (ms) Zhou et al. 2019



Wrap up

Dense Prediction (pixel level prediction)

e Semantic Segmentation
e Instance Segmentation
e Panoptic Segmentation

e Keypoint Estimation




‘ Wants to
weigh
himself

Stepping on a scale adds weight and
ups the reading.

ImageNet: Where have we been? Where are we going? by Fei Fei Li and Jia Deng




