
Pixel Labelling: Depth, 
Super-Res + Colorization

CSE P576

Dr. Matthew Brown



Pixel Labelling
• Per-Pixel Regression + Classification, Examples, Architectures

• Depth Estimation: direct vs self supervised, pretraining

• Super-Resolution, Colorization, Image Translation
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Pixel vs Image Labelling
• Image labelling, e.g., classification (N class scores per image)
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Previously

H

W C

1
1 F

CNN

Convert HxW image into a F-dimensional vector

Is this image a cat?
At what distance was this photo taken?

Is this image fake?

N

Now

H

W C

CNN H

W F

Convert HxW image into a F-dimensional vector

Which pixels in this image are a cat? 
How far is each pixel away from the camera?

Which pixels of this image are fake?

N

[ David Fouhey ]

• Pixel labelling, e.g., segmentation, depth estimation, superres,  
(N class scores, depth, RGB value etc. per pixel)



Segmentation
• Predict object identity and/or category per pixel
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Figure 5. Example mask predictions from our MaskX R-CNN on 3000 classes in Visual Genome. The green boxes are the 80 classes

that overlap with COCO (set A with mask training data) while the red boxes are the remaining 2920 classes not in COCO (set B without

mask training data). It can be seen that our model generates reasonable mask predictions on many classes in set B. See §5 for details.

the model does a reasonable job segmenting isolated trees,
but tends to fail at segmentation when the detected ‘tree’ is
more like a forest. Finally, the detector does a reasonable
job at segmenting whole objects and parts of those objects,
such as windows of a trolley car or handles of a refrigera-
tor. Compared to a detector trained on 80 COCO categories,
these results illustrate the exciting potential of systems that
can recognize and segment thousands of concepts.

6. Conclusion

This paper addresses the problem of large-scale instance
segmentation by formulating a partially supervised learn-
ing paradigm in which only a subset of classes have in-
stance masks during training while the rest have box an-

notations. We propose a novel transfer learning approach,
where a learned weight transfer function predicts how each
class should be segmented based on parameters learned
for detecting bounding boxes. Experimental results on the
COCO dataset demonstrate that our method greatly im-
proves the generalization of mask prediction to categories
without mask training data. Using our approach, we build a
large-scale instance segmentation model over 3000 classes
in the Visual Genome dataset. The qualitative results are en-
couraging and illustrate an exciting new research direction
into large-scale instance segmentation. They also reveal that
scaling instance segmentation to thousands of categories,
without full supervision, is an extremely challenging prob-
lem with ample opportunity for improved methods.
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Figure 5. Example mask predictions from our MaskX R-CNN on 3000 classes in Visual Genome. The green boxes are the 80 classes

that overlap with COCO (set A with mask training data) while the red boxes are the remaining 2920 classes not in COCO (set B without

mask training data). It can be seen that our model generates reasonable mask predictions on many classes in set B. See §5 for details.

the model does a reasonable job segmenting isolated trees,
but tends to fail at segmentation when the detected ‘tree’ is
more like a forest. Finally, the detector does a reasonable
job at segmenting whole objects and parts of those objects,
such as windows of a trolley car or handles of a refrigera-
tor. Compared to a detector trained on 80 COCO categories,
these results illustrate the exciting potential of systems that
can recognize and segment thousands of concepts.

6. Conclusion

This paper addresses the problem of large-scale instance
segmentation by formulating a partially supervised learn-
ing paradigm in which only a subset of classes have in-
stance masks during training while the rest have box an-

notations. We propose a novel transfer learning approach,
where a learned weight transfer function predicts how each
class should be segmented based on parameters learned
for detecting bounding boxes. Experimental results on the
COCO dataset demonstrate that our method greatly im-
proves the generalization of mask prediction to categories
without mask training data. Using our approach, we build a
large-scale instance segmentation model over 3000 classes
in the Visual Genome dataset. The qualitative results are en-
couraging and illustrate an exciting new research direction
into large-scale instance segmentation. They also reveal that
scaling instance segmentation to thousands of categories,
without full supervision, is an extremely challenging prob-
lem with ample opportunity for improved methods.
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Figure 5. Example mask predictions from our MaskX R-CNN on 3000 classes in Visual Genome. The green boxes are the 80 classes

that overlap with COCO (set A with mask training data) while the red boxes are the remaining 2920 classes not in COCO (set B without

mask training data). It can be seen that our model generates reasonable mask predictions on many classes in set B. See §5 for details.

the model does a reasonable job segmenting isolated trees,
but tends to fail at segmentation when the detected ‘tree’ is
more like a forest. Finally, the detector does a reasonable
job at segmenting whole objects and parts of those objects,
such as windows of a trolley car or handles of a refrigera-
tor. Compared to a detector trained on 80 COCO categories,
these results illustrate the exciting potential of systems that
can recognize and segment thousands of concepts.

6. Conclusion

This paper addresses the problem of large-scale instance
segmentation by formulating a partially supervised learn-
ing paradigm in which only a subset of classes have in-
stance masks during training while the rest have box an-

notations. We propose a novel transfer learning approach,
where a learned weight transfer function predicts how each
class should be segmented based on parameters learned
for detecting bounding boxes. Experimental results on the
COCO dataset demonstrate that our method greatly im-
proves the generalization of mask prediction to categories
without mask training data. Using our approach, we build a
large-scale instance segmentation model over 3000 classes
in the Visual Genome dataset. The qualitative results are en-
couraging and illustrate an exciting new research direction
into large-scale instance segmentation. They also reveal that
scaling instance segmentation to thousands of categories,
without full supervision, is an extremely challenging prob-
lem with ample opportunity for improved methods.
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[ Hu et al 2017 ]



Depth + Normals Estimation

5[ Alhashim Wonka 2019 ]

• Predict depth or surface normal per pixel, given RGB input

[ Eigen Fergus 2015 ]



Image Colorization
• Predict color per pixel, given grayscale input

6[ Zhang et al. 2016 ]



Super-Resolution
• Predict high resolution RGB, given low resolution RGB input

7

A.4. Set5 - Visual Results

bicubic SRResNet SRGAN original

Figure 11: Results for Set5 using bicubic interpolation, SRResNet and SRGAN. [4⇥ upscaling]

4 x downsampled bicubic upsample 4 x superresolution

[ Ledig et al. 2017 ]

real size = 
1 pixel → 16 pixels
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Why Not Stack Convolutions?

H

W C

« H

W F

n 3x3 convs have a receptive field of 2n+1 pixels
How many convolutions until >=200 pixels?

100

[ David Fouhey ]
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Why Not Stack Convolutions?

H

W C

« H

W F

Suppose 200 3x3 filters/layer, H=W=400
Storage/layer/image: 200 * 400 * 400 * 4 bytes = 122MB

Uh oh!*
*100 layers, batch size of 20 = 238GB of memory!

[ David Fouhey ]
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Encoder-Decoder

Key idea: First downsample towards middle 
of network. Then upsample from middle.

H

W C

H

WF

How do we downsample?
Convolutions, pooling

[ David Fouhey ]
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Putting it Together

H

W C

Input Downsample
Conv, pool
³EQcRdHU´

Upsample
Tr. Conv./Unpool

³DHcRdHU´

H

WF

Output

Convolutions + pooling downsample/compress/encode
Transpose convs./unpoolings upsample/uncompress/decode

[ David Fouhey ]

or bilinear upsample
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Putting It Together ± Block Sizes
� Often multiple layers at each spatial resolution.

� Often halve spatial resolution and double 
feature depth every few layers 

H
W
D

H/2 
W/2
2D

H/4
W/4
4D

H/8
W/8 
8D

H/4
W/4
4D

H/2 
W/2
2D

H
W
D

[ David Fouhey ]
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Missing Details
Where is the useful information about the high-

frequency details of the image?

Result from Long et al. Fully Convolutional Networks For Semantic Segmentation. CVPR 2014

EBA C D

[ David Fouhey ]
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Copy

Missing Details
How do you send details forward in the network? 

You copy the activations forward. 
Subsequent layers at the same resolution figure 

out how to fuse things.

Result from Long et al. Fully Convolutional Networks For Semantic Segmentation. CVPR 2014 [ David Fouhey ]
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U-Net

Ronneberger HW aO. ³U-Net: Convolutional Networks for Biomedical Image Segmentation. MICCAI 2015 

Extremely 
popular 
architecture, was 
originally used for 
biomedical image 
segmentation.

[ David Fouhey ]

Transpose conv,
bilinear upsample 

etc.



Single-View Depth Estimation

16[ T. Zhou, A. Geiger ]
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CloseFar

Farther

[ T. Zhou, A. Geiger ]

Single-View Depth Estimation



Single-View Depth Estimation

18[ T. Zhou, A. Geiger ]



NYU Depth v2 Dataset

• 400K RGBD frames captured using Microsoft Kinect

• ~1500 have segmentation labels (26 classes) as well

• The dataset has depth holes, note offset between RGB and 
NIR cameras, and NIR dot projector, also raw RGB + D 
frames are not synchronized

• Synchronized and filled subset of 50K images by [Alhashim 
Wonka 2018] — see Project 4 description 

• Limited to indoor scenes due to active NIR illumination
19



NYU Depth Estimation

20[ Eigen Fergus 2015 ]

Other Tasks ± Surface Normals

NormalsColor Image

𝒏 ൌ 𝑛௫, 𝑛௬, 𝑛௭ , 𝒏 ൌ 1

Room

Legend

Image credit: NYU Dataset, Silberman et al.  ECCV 2012

Direct supervision 
via Kinect RGB+D

timization on a grid drawn from vanishing point rays [11],
while Ladicky et al. learn a regression from over-segmented
regions to a discrete set of normals and mixture coefficients.
Barron and Malik [3, 2] infer normals from RGB-D inputs
using a set of handcrafted priors, along with illumination
and reflectance. From RGB inputs, Wang et al. [38] use
convolutional networks to combine normals estimates from
local and global scales, while also employing cues from
room layout, edge labels and vanishing points. Importantly,
we achieve as good or superior results with a more general
multiscale architecture that can naturally be used to perform
many different tasks.

Prior work on semantic segmentation includes many dif-
ferent approaches, both using RGB-only data [35, 4, 9] as
well as RGB-D [31, 29, 26, 6, 15, 17, 13]. Most of these
use local features to classify over-segmented regions, fol-
lowed by a global consistency optimization such as a CRF.
By comparison, our method takes an essentially inverted ap-
proach: We make a consistent global prediction first, then
follow it with iterative local refinements. In so doing, the lo-
cal networks are made aware of their place within the global
scene, and can can use this information in their refined pre-
dictions.

Gupta et al. [13, 14] create semantic segmentations first
by generating contours, then classifying regions using either
hand-generated features and SVM [13], or a convolutional
network for object detection [14]. Notably, [13] also per-
forms amodal completion, which transfers labels between
disparate regions of the image by comparing planes from
the depth.

Most related to our method in semantic segmentation
are other approaches using convolutional networks. Farabet
et al. [9] and Couprie et al. [6] each use a convolutional net-
work applied to multiple scales in parallel generate features,
then aggregate predictions using superpixels. Our method
differs in several important ways. First, our model has a
large, full-image field of view at the coarsest scale; as we
demonstrate, this is of critical importance, particularly for
depth and normals tasks. In addition, we do not use super-
pixels or post-process smoothing — instead, our network
produces fairly smooth outputs on its own, allowing us to
take a simple pixel-wise maximum.

Pinheiro et al. [28] use a recurrent convolutional network
in which each iteration incorporates progressively more
context, by combining a more coarsely-sampled image in-
put along with the local prediction from the previous itera-
tion. This direction is precisely the reverse of our approach,
which makes a global prediction first, then iteratively re-
fines it. In addition, whereas they apply the same network
parameters at all scales, we learn distinct networks that can
specialize in the edits appropriate to their stage.

Most recently, in concurrent work, Long et al. [24] adapt
the recent VGG ImageNet model [32] to semantic segmen-

upsample 

Input 

Normals 

conv/pool 

conv/pool 

!!!"
convolutions 

!!!"
convolutions 

full conn. 
!!!"

conv/pool 

Scale 1 

Scale 2 

Scale 3 

concat 

concat 

upsample 

Depth Labels 

Layer 1.1 1.2 1.3 1.4 1.5 1.6 1.7 upsamp

Scale 1
Size 37x27 18x13 18x13 18x13 8x6 1x1 19x14 74x55

(AlexNet)
#convs 1 1 1 1 1 – – –
#chan 96 256 384 384 256 4096 64 64
ker. sz 11x11 5x5 3x3 3x3 3x3 – – –
Ratio /8 /16 /16 /16 /32 – /16 /4
l.rate 0.001 0.001 0.001 0.001 0.001 see text
Layer 1.1 1.2 1.3 1.4 1.5 1.6 1.7 upsamp

Scale 1
Size 150x112 75x56 37x28 18x14 9x7 1x1 19x14 74x55

(VGG)
#convs 2 2 3 3 3 – – –
#chan 64 128 256 512 512 4096 64 64
ker. sz 3x3 3x3 3x3 3x3 3x3 – – –
Ratio /2 /4 /8 /16 /32 – /16 /4
l.rate 0.001 0.001 0.001 0.001 0.001 see text

Scale 2

Layer 2.1 2.2 2.3 2.4 2.5 upsamp
Size 74x55 74x55 74x55 74x55 74x55 147x109
#chan 96+64 64 64 64 C C
ker. sz 9x9 5x5 5x5 5x5 5x5 –
Ratio /4 /4 /4 /4 /4 /2
l.rate 0.001 0.01 0.01 0.01 0.001

Scale 3

Layer 3.1 3.2 3.3 3.4 final
Size 147x109 147x109 147x109 147x109 147x109
#chan 96+C 64 64 C C
ker. sz 9x9 5x5 5x5 5x5 –
Ratio /2 /2 /2 /2 /2
l.rate 0.001 0.01 0.01 0.001

Figure 1. Model architecture. C is the number of output channels
in the final prediction, which depends on the task. The input to the
network is 320x240.

tation by applying 1x1 convolutional label classifiers at fea-
ture maps from different layers, corresponding to different
scales, and averaging the outputs. By contrast, we apply
networks for different scales in series, which allows them to
make more complex edits and refinements, starting from the
full image field of view. Thus our architecture easily adapts
to many tasks, whereas by considering relatively smaller
context and summing predictions, theirs is specific to se-
mantic labeling.

multi-scale 
architecture

Loss, 
e.g., L2



NYU Depth Estimation
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Other Tasks ± Surface Normals

NormalsColor Image

𝒏 ൌ 𝑛௫, 𝑛௬, 𝑛௭ , 𝒏 ൌ 1

Room

Legend

Image credit: NYU Dataset, Silberman et al.  ECCV 2012

U-Net with skip 
connections

Loss, 
e.g., L2Direct supervision 

via Kinect RGB+D



NYU Depth Estimation

22[ Alhashim Wonka 2019 ]

• ImageNet Pretrained DenseNet 169 with skip connections

[ DenseNet Huang et al 2018 ]



Depth Estimation: Pre-Training
• ImageNet Pretrained DenseNet 169 with skip connections

23

orange = pretrained 
Densenet 169

decoder blocks = 
bilinear ↑2 → 2 x conv 

No pre-training

No skip connections
loss

epoch

[ DenseNet Huang et al 2018 ] [ Alhashim Wonka 2019 ]



KITTI 2015

24

[ Slides: Clement Godard ]http://www.cvlibs.net/datasets/kitti/ 

http://www.cvlibs.net/datasets/kitti/


Supervised Depth Estimation

Input 
color 

Model Output 
depth

Target 
depth

Loss

25



Unsupervised Depth Estimation - Concept

Input 
colors

CNN

L

Output 
disparity

L

Output 
color

L

Sampler

R
Target 
color

L
Loss

26

[ Godard et al. 2016 ] [ Garg et al 2016 ]

Note: sampling must be differentiable (dpixel/ddepth), e.g., bilinear



Unsupervised Depth: Left-Right Consistency Loss

L
R L L

R
L

R R
LossL-R Loss

Input 
colors

CNN Output 
colors

Target 
colors

SamplerOutput 
disparities 27



Input

28



Without Left-Right Consistency

29
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With Left-Right consistency



Architecture
• Fully convolutional 

• Choose your favorite encoder 

• Skip connections 
• Similar to DispNet and FlowNet 

• Multiscale generation 
• And Loss! 

• Fast! 
• ~30fps on a Titan X

31

Encoder Decoder

Skips

Outputs
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Super-Resolution
• Increase the spatial resolution of an image

33

↑5 =

• Super-res algorithms use knowledge of image statistics to 
predict a likely high resolution version given low-res input

• Training data is easy — just downsample images!



Super-Resolution: SRCNN
• Small networks (e.g., 3 layers) generate reasonable results

34[ SRCNN, Dong et al 2014 ]

What does this suggest about super-resolution?

4

feature maps

 Patch extraction 
and representation

Non-linear mapping Reconstruction 

Low-resolution
image (input)

High-resolution
image (output)

of low-resolution image of high-resolution image 
feature maps

Fig. 2. Given a low-resolution image Y, the first convolutional layer of the SRCNN extracts a set of feature maps. The
second layer maps these feature maps nonlinearly to high-resolution patch representations. The last layer combines
the predictions within a spatial neighbourhood to produce the final high-resolution image F (Y).

a kernel size c ⇥ f1 ⇥ f1. The output is composed of
n1 feature maps. B1 is an n1-dimensional vector, whose
each element is associated with a filter. We apply the
Rectified Linear Unit (ReLU, max(0, x)) [33] on the filter
responses4.

3.1.2 Non-linear mapping
The first layer extracts an n1-dimensional feature for
each patch. In the second operation, we map each of
these n1-dimensional vectors into an n2-dimensional
one. This is equivalent to applying n2 filters which have
a trivial spatial support 1⇥ 1. This interpretation is only
valid for 1⇥1 filters. But it is easy to generalize to larger
filters like 3 ⇥ 3 or 5 ⇥ 5. In that case, the non-linear
mapping is not on a patch of the input image; instead,
it is on a 3⇥ 3 or 5⇥ 5 “patch” of the feature map. The
operation of the second layer is:

F2(Y) = max (0,W2 ⇤ F1(Y) +B2) . (2)

Here W2 contains n2 filters of size n1⇥f2⇥f2, and B2 is
n2-dimensional. Each of the output n2-dimensional vec-
tors is conceptually a representation of a high-resolution
patch that will be used for reconstruction.

It is possible to add more convolutional layers to
increase the non-linearity. But this can increase the com-
plexity of the model (n2 ⇥ f2 ⇥ f2 ⇥ n2 parameters for
one layer), and thus demands more training time. We
will explore deeper structures by introducing additional
non-linear mapping layers in Section 4.3.3.

3.1.3 Reconstruction
In the traditional methods, the predicted overlapping
high-resolution patches are often averaged to produce
the final full image. The averaging can be considered
as a pre-defined filter on a set of feature maps (where
each position is the “flattened” vector form of a high-
resolution patch). Motivated by this, we define a convo-
lutional layer to produce the final high-resolution image:

F (Y) = W3 ⇤ F2(Y) +B3. (3)

4. The ReLU can be equivalently considered as a part of the second
operation (Non-linear mapping), and the first operation (Patch extrac-
tion and representation) becomes purely linear convolution.

Here W3 corresponds to c filters of a size n2 ⇥ f3 ⇥ f3,
and B3 is a c-dimensional vector.

If the representations of the high-resolution patches
are in the image domain (i.e.,we can simply reshape each
representation to form the patch), we expect that the
filters act like an averaging filter; if the representations
of the high-resolution patches are in some other domains
(e.g.,coefficients in terms of some bases), we expect that
W3 behaves like first projecting the coefficients onto the
image domain and then averaging. In either way, W3 is
a set of linear filters.

Interestingly, although the above three operations are
motivated by different intuitions, they all lead to the
same form as a convolutional layer. We put all three
operations together and form a convolutional neural
network (Figure 2). In this model, all the filtering weights
and biases are to be optimized. Despite the succinctness
of the overall structure, our SRCNN model is carefully
developed by drawing extensive experience resulted
from significant progresses in super-resolution [49], [50].
We detail the relationship in the next section.

3.2 Relationship to Sparse-Coding-Based Methods
We show that the sparse-coding-based SR methods [49],
[50] can be viewed as a convolutional neural network.
Figure 3 shows an illustration.

In the sparse-coding-based methods, let us consider
that an f1 ⇥ f1 low-resolution patch is extracted from
the input image. Then the sparse coding solver, like
Feature-Sign [29], will first project the patch onto a (low-
resolution) dictionary. If the dictionary size is n1, this
is equivalent to applying n1 linear filters (f1 ⇥ f1) on
the input image (the mean subtraction is also a linear
operation so can be absorbed). This is illustrated as the
left part of Figure 3.

The sparse coding solver will then iteratively process
the n1 coefficients. The outputs of this solver are n2

coefficients, and usually n2 = n1 in the case of sparse
coding. These n2 coefficients are the representation of
the high-resolution patch. In this sense, the sparse coding

Train using 
L2 loss vs 

ground truthrelu

64 32

9x9 1x1 5x5



Super-Resolution: SRCNN
• Small networks (e.g., 3 layers) generate reasonable results

35

bicubic = 24.04dB SRCNN = 27.95dB

6

where ` 2 {1, 2, 3} and i are the indices of layers and it-
erations, ⌘ is the learning rate, and @L

@W `
i

is the derivative.
The filter weights of each layer are initialized by drawing
randomly from a Gaussian distribution with zero mean
and standard deviation 0.001 (and 0 for biases). The
learning rate is 10�4 for the first two layers, and 10�5 for
the last layer. We empirically find that a smaller learning
rate in the last layer is important for the network to
converge (similar to the denoising case [22]).

In the training phase, the ground truth images {Xi}
are prepared as fsub⇥fsub⇥c-pixel sub-images randomly
cropped from the training images. By “sub-images” we
mean these samples are treated as small “images” rather
than “patches”, in the sense that “patches” are overlap-
ping and require some averaging as post-processing but
“sub-images” need not. To synthesize the low-resolution
samples {Yi}, we blur a sub-image by a Gaussian kernel,
sub-sample it by the upscaling factor, and upscale it by
the same factor via bicubic interpolation.

To avoid border effects during training, all the con-
volutional layers have no padding, and the network
produces a smaller output ((fsub� f1� f2� f3+3)2⇥ c).
The MSE loss function is evaluated only by the difference
between the central pixels of Xi and the network output.
Although we use a fixed image size in training, the
convolutional neural network can be applied on images
of arbitrary sizes during testing.

We implement our model using the cuda-convnet pack-
age [26]. We have also tried the Caffe package [24] and
observed similar performance.

4 EXPERIMENTS
We first investigate the impact of using different datasets
on the model performance. Next, we examine the filters
learned by our approach. We then explore different
architecture designs of the network, and study the rela-
tions between super-resolution performance and factors
like depth, number of filters, and filter sizes. Subse-
quently, we compare our method with recent state-of-
the-arts both quantitatively and qualitatively. Following
[42], super-resolution is only applied on the luminance
channel (Y channel in YCbCr color space) in Sections 4.1-
4.4, so c = 1 in the first/last layer, and performance
(e.g., PSNR and SSIM) is evaluated on the Y channel. At
last, we extend the network to cope with color images
and evaluate the performance on different channels.

4.1 Training Data
As shown in the literature, deep learning generally
benefits from big data training. For comparison, we use
a relatively small training set [41], [50] that consists
of 91 images, and a large training set that consists of
395,909 images from the ILSVRC 2013 ImageNet detec-
tion training partition. The size of training sub-images is
fsub = 33. Thus the 91-image dataset can be decomposed
into 24,800 sub-images, which are extracted from origi-
nal images with a stride of 14. Whereas the ImageNet

provides over 5 million sub-images even using a stride
of 33. We use the basic network settings, i.e., f1 = 9,
f2 = 1, f3 = 5, n1 = 64, and n2 = 32. We use the Set5 [2]
as the validation set. We observe a similar trend even
if we use the larger Set14 set [51]. The upscaling factor
is 3. We use the sparse-coding-based method [50] as our
baseline, which achieves an average PSNR value of 31.42
dB.

The test convergence curves of using different training
sets are shown in Figure 4. The training time on Ima-
geNet is about the same as on the 91-image dataset since
the number of backpropagations is the same. As can be
observed, with the same number of backpropagations
(i.e.,8 ⇥ 108), the SRCNN+ImageNet achieves 32.52 dB,
higher than 32.39 dB yielded by that trained on 91
images. The results positively indicate that SRCNN per-
formance may be further boosted using a larger training
set, but the effect of big data is not as impressive as
that shown in high-level vision problems [26]. This is
mainly because that the 91 images have already cap-
tured sufficient variability of natural images. On the
other hand, our SRCNN is a relatively small network
(8,032 parameters), which could not overfit the 91 images
(24,800 samples). Nevertheless, we adopt the ImageNet,
which contains more diverse data, as the default training
set in the following experiments.

4.2 Learned Filters for Super-Resolution
Figure 5 shows examples of learned first-layer filters
trained on the ImageNet by an upscaling factor 3. Please
refer to our published implementation for upscaling
factors 2 and 4. Interestingly, each learned filter has
its specific functionality. For instance, the filters g and
h are like Laplacian/Gaussian filters, the filters a - e
are like edge detectors at different directions, and the
filter f is like a texture extractor. Example feature maps
of different layers are shown in figure 6. Obviously,
feature maps of the first layer contain different structures
(e.g., edges at different directions), while that of the
second layer are mainly different on intensities.

4.3 Model and Performance Trade-offs
Based on the basic network settings (i.e., f1 = 9, f2 = 1,
f3 = 5, n1 = 64, and n2 = 32), we will progressively
modify some of these parameters to investigate the best
trade-off between performance and speed, and study the
relations between performance and parameters.
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Super-Resolution
• Small networks are generally good at sharpening edges and 

can work well for small factor (e.g., 2) super-resolution

• Better results can be achieved by using deeper networks, + 
more sophisticated loss functions (perceptual loss, GANs)
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Ground Truth

This image
Set5 mean

Bicubic

31.78 / 0.8577
28.43 / 0.8114

Ours (`pixel)
31.47 / 0.8573
28.40 / 0.8205

SRCNN [11]
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Ours (`feat)
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Ground Truth
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Ours (`pixel)
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SRCNN [11]
22.53 / 0.6524
27.49 / 0.7503
26.90 / 0.7101

Ours (`feat)
21.04 / 0.6116
24.99 / 0.6731
24.95 / 63.17

Fig. 8. Results for ⇥4 super-resolution on images from Set5 (top) and Set14 (bottom).
We report PSNR / SSIM for each example and the mean for each dataset. More results
are shown in the supplementary material.

a batch size of 4 for 200k iterations using Adam [51] with a learning rate of
1⇥10�3 without weight decay or dropout. As a post-processing step, we perform
histogram matching between our network output and the low-resolution input.

Baselines. As a baseline model we use SRCNN [1] for its state-of-the-art per-
formance. SRCNN is a three-layer convolutional network trained to minimize
per-pixel loss on 33⇥ 33 patches from the ILSVRC 2013 detection dataset. SR-
CNN is not trained for ⇥8 super-resolution, so we can only evaluate it on ⇥4.

SRCNN is trained for more than 109 iterations, which is not computation-
ally feasible for our models. To account for di↵erences between SRCNN and our
model in data, training, and architecture, we train image transformation net-
works for ⇥4 and ⇥8 super-resolution using `pixel; these networks use identical
data, architecture, and training as the networks trained to minimize `feat.

Evaluation. We evaluate all models on the standard Set5 [60], Set14 [61], and
BSD100 [41] datasets. We report PSNR and SSIM [54], computing both only on
the Y channel after converting to the YCbCr colorspace, following [1,39].

Results. We show results for ⇥4 super-resolution in Figure 8. Compared to the
other methods, our model trained for feature reconstruction does a very good
job at reconstructing sharp edges and fine details, such as the eyelashes in the
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Original Bicubic SRCNN Johnson et al*
[ Johnson et al. 2016 ]*12-layer, residual conn., fully conv, VGG loss 
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Colorization Challenges
• Many colors may be possible for an object (multimodal)

• Object colors should be consistent for the whole object  
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Fig. 5. Example results from our ImageNet test set. Our classification loss with re-
balancing produces more accurate and vibrant results than a regression loss or a clas-
sification loss without rebalancing. Successful colorizations are above the dotted line.
Common failures are below. These include failure to capture long-range consistency,
frequent confusions between red and blue, and a default sepia tone on complex indoor
scenes. Please visit http://richzhang.github.io/colorization/ to see the full range
of results.

How might this affect our model?



Colorful Image Colorization
• Zhang et al. predict a distribution of color by quantizing a,b 
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Fig. 2. Our network architecture. Each conv layer refers to a block of 2 or 3 repeated
conv and ReLU layers, followed by a BatchNorm [30] layer. The net has no pool layers.
All changes in resolution are achieved through spatial downsampling or upsampling
between conv blocks.

[29]. In Section 3.1, we provide quantitative comparisons to Larsson et al., and
encourage interested readers to investigate both concurrent papers.

2 Approach

We train a CNN to map from a grayscale input to a distribution over quantized
color value outputs using the architecture shown in Figure 2. Architectural de-
tails are described in the supplementary materials on our project webpage1, and
the model is publicly available. In the following, we focus on the design of the
objective function, and our technique for inferring point estimates of color from
the predicted color distribution.

2.1 Objective Function

Given an input lightness channel X 2 RH⇥W⇥1, our objective is to learn a
mapping bY = F(X) to the two associated color channels Y 2 RH⇥W⇥2, where
H,W are image dimensions. (We denote predictions with ab· symbol and ground
truth without.) We perform this task in CIE Lab color space. Because distances
in this space model perceptual distance, a natural objective function, as used in
[1, 2], is the Euclidean loss L2(·, ·) between predicted and ground truth colors:

L2( bY,Y) =
1

2

X

h,w

kYh,w � bYh,wk
2
2 (1)

However, this loss is not robust to the inherent ambiguity and multimodal
nature of the colorization problem. If an object can take on a set of distinct
ab values, the optimal solution to the Euclidean loss will be the mean of the
set. In color prediction, this averaging e↵ect favors grayish, desaturated results.
Additionally, if the set of plausible colorizations is non-convex, the solution will
in fact be out of the set, giving implausible results.

1 http://richzhang.github.io/colorization/

Colorful Image Colorization 5

Fig. 3. (a) Quantized ab color space with a grid size of 10. A total of 313 ab pairs are
in gamut. (b) Empirical probability distribution of ab values, shown in log scale. (c)
Empirical probability distribution of ab values, conditioned on L, shown in log scale.

Instead, we treat the problem as multinomial classification. We quantize the
ab output space into bins with grid size 10 and keep the Q = 313 values which
are in-gamut, as shown in Figure 3(a). For a given input X, we learn a mapping
bZ = G(X) to a probability distribution over possible colors bZ 2 [0, 1]HxWxQ,
where Q is the number of quantized ab values.

To compare predicted bZ against ground truth, we define function Z = H
�1
gt

(Y),
which converts ground truth color Y to vector Z, using a soft-encoding scheme2.
We then use multinomial cross entropy loss Lcl(·, ·), defined as:

Lcl(bZ,Z) = �

X

h,w

v(Zh,w)
X

q

Zh,w,q log(bZh,w,q) (2)

where v(·) is a weighting term that can be used to rebalance the loss based
on color-class rarity, as defined in Section 2.2 below. Finally, we map probability
distribution bZ to color values bY with function bY = H(bZ), which will be further
discussed in Section 2.3.

2.2 Class rebalancing

The distribution of ab values in natural images is strongly biased towards val-
ues with low ab values, due to the appearance of backgrounds such as clouds,
pavement, dirt, and walls. Figure 3(b) shows the empirical distribution of pix-
els in ab space, gathered from 1.3M training images in ImageNet [28]. Observe
that the number of pixels in natural images at desaturated values are orders of
magnitude higher than for saturated values. Without accounting for this, the

2 Each ground truth value Yh,w can be encoded as a 1-hot vector Zh,w by searching for
the nearest quantized ab bin. However, we found that soft-encoding worked well for
training, and allowed the network to quickly learn the relationship between elements
in the output space [31]. We find the 5-nearest neighbors to Yh,w in the output
space and weight them proportionally to their distance from the ground truth using
a Gaussian kernel with � = 5.

Loss is cross entropy, 
with an additional 

weighting to penalise 
desaturated values

[ Zhang et al. 2016 ]



Colorful Image Colorization
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Fig. 5. Example results from our ImageNet test set. Our classification loss with re-
balancing produces more accurate and vibrant results than a regression loss or a clas-
sification loss without rebalancing. Successful colorizations are above the dotted line.
Common failures are below. These include failure to capture long-range consistency,
frequent confusions between red and blue, and a default sepia tone on complex indoor
scenes. Please visit http://richzhang.github.io/colorization/ to see the full range
of results.
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Fig. 5. Example results from our ImageNet test set. Our classification loss with re-
balancing produces more accurate and vibrant results than a regression loss or a clas-
sification loss without rebalancing. Successful colorizations are above the dotted line.
Common failures are below. These include failure to capture long-range consistency,
frequent confusions between red and blue, and a default sepia tone on complex indoor
scenes. Please visit http://richzhang.github.io/colorization/ to see the full range
of results.
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[ Ansel Adams, Yosemite Valley Bridge ]
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[ Henri Cartier-Bresson, Sunday on the Banks of the River Seine, 1938 ]



[ Henri Cartier-Bresson, Sunday on the Banks of the River Seine, 1938 ]



Image Translation
• Many problems in vision/graphics can be viewed as image 

translation problems

46[ pix2pix, Isola et al. 2018 ]

Can we build a general machine to translate images?



Image Translation
• e.g., translation from grey to color should be indistinguishable 

from real

47
This is a (conditional) Generative Adversarial Network
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Fig. 5. Example results from our ImageNet test set. Our classification loss with re-
balancing produces more accurate and vibrant results than a regression loss or a clas-
sification loss without rebalancing. Successful colorizations are above the dotted line.
Common failures are below. These include failure to capture long-range consistency,
frequent confusions between red and blue, and a default sepia tone on complex indoor
scenes. Please visit http://richzhang.github.io/colorization/ to see the full range
of results.
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Fig. 5. Example results from our ImageNet test set. Our classification loss with re-
balancing produces more accurate and vibrant results than a regression loss or a clas-
sification loss without rebalancing. Successful colorizations are above the dotted line.
Common failures are below. These include failure to capture long-range consistency,
frequent confusions between red and blue, and a default sepia tone on complex indoor
scenes. Please visit http://richzhang.github.io/colorization/ to see the full range
of results.
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Fig. 5. Example results from our ImageNet test set. Our classification loss with re-
balancing produces more accurate and vibrant results than a regression loss or a clas-
sification loss without rebalancing. Successful colorizations are above the dotted line.
Common failures are below. These include failure to capture long-range consistency,
frequent confusions between red and blue, and a default sepia tone on complex indoor
scenes. Please visit http://richzhang.github.io/colorization/ to see the full range
of results.
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additional supervisory 
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sification loss without rebalancing. Successful colorizations are above the dotted line.
Common failures are below. These include failure to capture long-range consistency,
frequent confusions between red and blue, and a default sepia tone on complex indoor
scenes. Please visit http://richzhang.github.io/colorization/ to see the full range
of results.
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Next Lecture
• 3D Deep Learning, Generative Adversarial Networks
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