Pixel Labelling: Depth, Super-Res + Colorization

CSE P576

Dr. Matthew Brown
Pixel Labelling

- Per-Pixel Regression + Classification, Examples, Architectures
- Depth Estimation: direct vs self supervised, pretraining
- Super-Resolution, Colorization, Image Translation
Pixel vs Image Labelling

- Image labelling, e.g., classification (N class scores per image)

- Pixel labelling, e.g., segmentation, depth estimation, superres, (N class scores, depth, RGB value etc. per pixel)
Segmentation

• Predict object identity and/or category per pixel
Depth + Normals Estimation

- Predict depth or surface normal per pixel, given RGB input
Image Colorization

- Predict color per pixel, given grayscale input

[Zhang et al. 2016]
Super-Resolution

- Predict high resolution RGB, given low resolution RGB input

4 x downsampled bicubic upsample 4 x superresolution
real size = 1 pixel → 16 pixels

[Ledig et al. 2017]
Why Not Stack Convolutions?

$n \ 3x3 \ \text{convs} \ \text{have a receptive field of} \ 2n+1 \ \text{pixels}$

How many convolutions until ≥ 200 pixels?

100

[David Fouhey]
Why Not Stack Convolutions?

Suppose 200 3x3 filters/layer, \(H=W=400 \)

Storage/layer/image: \(200 \times 400 \times 400 \times 4 \) bytes = 122MB

Uh oh!*
*100 layers, batch size of 20 = 238GB of memory!

[David Fouhey]
Encoder-Decoder

Key idea: First **downsample** towards middle of network. Then **upsample** from middle.

How do we downsample?

Convolutions, pooling

[David Fouhey]
Putting it Together

Convolutions + pooling downsample/compress/encode
Transpose convs./unpoolings upsample/uncompress/decode

[David Fouhey]
Putting It Together – Block Sizes

• Often multiple layers at each spatial resolution.
• Often halve spatial resolution and double feature depth every few layers
Missing Details

Where is the useful information about the high-frequency details of the image?

Result from Long et al. *Fully Convolutional Networks For Semantic Segmentation*. CVPR 2014

[David Fouhey]
How do you send details forward in the network?

You copy the activations forward.

Subsequent layers at the same resolution figure out how to fuse things.
U-Net

Extremely popular architecture, was originally used for biomedical image segmentation.

Transpose conv, bilinear upsample etc.

Single-View Depth Estimation
Single-View Depth Estimation
Single-View Depth Estimation
NYU Depth v2 Dataset

- 400K RGBD frames captured using Microsoft Kinect
- ~1500 have segmentation labels (26 classes) as well
- The dataset has depth holes, note offset between RGB and NIR cameras, and NIR dot projector, also raw RGB + D frames are not synchronized
- Synchronized and filled subset of 50K images by [Alhashim Wonka 2018] — see Project 4 description
- Limited to indoor scenes due to active NIR illumination
NYU Depth Estimation

Direct supervision via Kinect RGB+D

multi-scale architecture

Loss, e.g., L2

[Eigen Fergus 2015]
NYU Depth Estimation

U-Net with skip connections

Loss, e.g., L2

Direct supervision via Kinect RGB+D
NYU Depth Estimation

- ImageNet Pretrained DenseNet 169 with skip connections

[DenseNet Huang et al 2018] [Alhashim Wonka 2019]
Depth Estimation: Pre-Training

- ImageNet Pretrained DenseNet 169 with skip connections

![Graph showing loss over epochs for different settings.]

- No pre-training
- No skip connections

- Orange = pretrained DenseNet 169 decoder blocks = bilinear $\uparrow 2 \rightarrow 2 \times$ conv

[DepthNet Huang et al 2018] [Alhashim Wonka 2019]
KITTI 2015

http://www.cvlibs.net/datasets/kitti/ [Slides: Clement Godard]
Supervised Depth Estimation

Input color -> Model -> Output depth

Target depth

Loss
Unsupervised Depth Estimation - Concept

Input colors \rightarrow \text{CNN} \rightarrow \text{Output disparity} \rightarrow \text{Sampler} \rightarrow \text{Output color} \rightarrow \text{Target color}

Note: sampling must be differentiable (dpixel/ddepth), e.g., bilinear

[Godard et al. 2016] [Garg et al 2016]
Unsupervised Depth: Left-Right Consistency Loss

Input colors \rightarrow CNN \rightarrow Output disparities \rightarrow Sampler \rightarrow Output colors \rightarrow Target colors
Input
Without Left-Right Consistency
With Left-Right consistency
Architecture

- Fully convolutional
 - Choose your favorite encoder

- Skip connections
 - Similar to DispNet and FlowNet

- Multiscale generation
 - And Loss!

- Fast!
 - ~30fps on a Titan X
Super-Resolution

- Increase the spatial resolution of an image

\[\uparrow 5 = \]

- Super-res algorithms use knowledge of image statistics to predict a likely high resolution version given low-res input
- Training data is easy — just downsample images!
Super-Resolution: SRCNN

- Small networks (e.g., 3 layers) generate reasonable results.

What does this suggest about super-resolution?

[SRCNN, Dong et al 2014]
Super-Resolution: SRCNN

- Small networks (e.g., 3 layers) generate reasonable results

bicubic = 24.04dB SRCNN = 27.95dB

Can be trained using a small image set (e.g., 91 images)
Super-Resolution

- Small networks are generally good at sharpening edges and can work well for small factor (e.g., 2) super-resolution.
- Better results can be achieved by using deeper networks, + more sophisticated loss functions (perceptual loss, GANs).

12-layer, residual conn., fully conv, VGG loss [Johnson et al. 2016]
Image Colorization

Grayscale: L channel

$X \in \mathbb{R}^{H \times W \times 1}$

F

Color: ab channels

$\hat{Y} \in \mathbb{R}^{H \times W \times 2}$

$\mathbf{L} \rightarrow \mathbf{F} \rightarrow \mathbf{ab}$

[Zhang et al. 2016]
Image Colorization

Grayscale: L channel

$X \in \mathbb{R}^{H \times W \times 1}$

Color: ab channels

$\hat{Y} \in \mathbb{R}^{H \times W \times 2}$

$[\text{Zhang et al. 2016}]$
Colorization Challenges

- Many colors may be possible for an object (multimodal)
- Object colors should be consistent for the whole object

How might this affect our model?
Colorful Image Colorization

- Zhang et al. predict a distribution of color by quantizing a,b values.

\[\text{Lightness } L \]

\[\text{conv1} \quad \text{conv2} \quad \text{conv3} \quad \text{conv4} \quad \text{conv5} \quad \text{conv6} \quad \text{conv7} \quad \text{conv8} \]

\[64 \quad 128 \quad 256 \quad 512 \quad 512 \quad 512 \quad 512 \quad 256 \]

\[32 \quad 32 \quad 32 \quad 32 \quad 64 \]

\[128 \quad 64 \quad 256 \]

\[256 \quad 64 \]

\[a, b \] probability distribution

\[(a, b) \]

\[\text{Lab Image} \]

\[+ L \]

\[RGB(a,b|L=50) \]

\[\log(P(a,b)) \]

Loss is cross entropy, with an additional weighting to penalise desaturated values.

[Zhang et al. 2016]
Colorful Image Colorization

Fig. 5. Example results from our ImageNet test set. Our classification loss with rebalancing produces more accurate and vibrant results than a regression loss or a classification loss without rebalancing. Successful colorizations are above the dotted line. Common failures are below. These include failure to capture long-range consistency, frequent confusions between red and blue, and a default sepia tone on complex indoor scenes. Please visit http://richzhang.github.io/colorization/ to see the full range of results.
[Ansel Adams, Yosemite Valley Bridge]
[Ansel Adams, Yosemite Valley Bridge]
Henri Cartier-Bresson, Sunday on the Banks of the River Seine, 1938
Image Translation

- Many problems in vision/graphics can be viewed as image translation problems

Can we build a general machine to translate images?

[pix2pix, Isola et al. 2018]
Image Translation

• e.g., translation from grey to color should be indistinguishable from real

Note: pix2pix has an additional supervisory \(L1 \) loss = \(|y - \hat{y}|\)

This is a (conditional) Generative Adversarial Network
Next Lecture

• 3D Deep Learning, Generative Adversarial Networks