CSEP 576: Object Detection

Jonathan Huang (jonathanhuang@google.com)

University of Washington 17 May 2020 Google Research

Lecture Outline

May 19

- Part 1: Advanced CNNs (Focusing on classification)
 - Reusable higher level building blocks of modern convnet architectures
 - Dropout, Batch Norm, Factorized Convolutions, Residual Connections, etc.
 - Tour through "popular" classification architectures
 - E.g., AlexNet, VGG, GoogLeNet, Resnet, MobileNet, SE-Net
- Part 2: Object Detection
 - Motivation, Applications
 - Anchor based detection methodology
 - Single stage and Two stage meta-architectures
 - Evaluation metrics
 - Practical Tips

From Classification to Detection

Detection = Classification + Localization

- Variable # outputs
 - Need to classify based on much fewer pixels than in Imagenet setting; Requires context! Usually need to operate on much larger images

background

background

Typical to enlarge region to include some "context"

Sliding window placement

Slide over *fine grid* in x, y, scale, aspect ratio

Slow and Accurate

Slide over *coarse grid* in x, y, scale, aspect ratio

Fast and Not-so-accurate (... or can it be?)

Bounding Box Regression

Idea:

Also predict continuous offset from anchor to "snap" onto object

Bounding Box Regression

Idea:

Also predict continuous offset from anchor to "snap" onto object

Outline

- Sliding Window Detectors
- Detection with Convolutional Networks
- How to Evaluate a Detector
- Practical tips/tricks

Using convolutional networks for detection

Detection Generator

Multimore

Agenda for next few slides:

- Cover a simplified convnet approach for generating detections in detail;
- Touch on more modern architectures (all of

which are based on the same concept)

reature Extractor

- Extract features at sliding window positions via convolution
- Deep networks -> large receptive fields that can account for context

Solution: use multiple W^{loc} and W^{cls} (one for each aspect ratio/scale)

• • •

Fancier Solution: use multiple anchor grid resolutions

Target Assignment

groundtruth boxes (person, class 2)

Step 1: Match anchor boxes to groundtruth boxes (based on Euclidean distance or overlap area) Step 2: Give each anchor a classification and regression target

If anchor has no matching groundtruth, it classifies as 0 and no regression target is given

Location targets (only for matched anchors)

-			
	gt_{xmin}	-	$\operatorname{anchor}_{\operatorname{xmin}}$
	gt_{vmin}	-	anchor _{ymin}
	gt_ _{xmax}	-	anchor _{xmax}
	$\operatorname{gt}_{\operatorname{ymax}}$	-	$\operatorname{anchor}_{\operatorname{ymax}}$

Typical Training Objective

Common to use other location losses here...

Per-anchor Loss:

L(anchor **a**) = $\alpha * \delta(\mathbf{a} \text{ has matching groundtruth}) * L_2(\mathbf{t}^{\text{loc}}, W^{\text{loc}} \cdot \mathbf{v}_{ii})$

+
$$\beta$$
 * SoftMaxCrossEntropy(\mathbf{t}^{cls} , $W^{cls} \cdot \mathbf{v}_{ij}$)

Total Loss: Average per-anchor loss over anchors

Minimize w/SGD

Classification Loss: Dealing with Class Imbalance

Problem:

negative/background anchors >> # positive/foreground anchors

Typical solutions:

- Subsample negatives
- Downweight negatives
- Online hard mining (Srivastava et al.)
- Focal loss function (Lin et al.)

Classification Loss: Dealing with Class Imbalance

Problem:

negative/background anchors >> # positive/foreground anchors

Typical solutions:

- Subsample negatives
- Downweight negatives
- Online hard mining (Srivastava et al.)
- Focal loss function (Lin et al.)

Dealing with multiple detections of the same object

Duplicate detection problem: Typically many anchors will detect the same underlying object and give slightly different boxes, with slightly different scores.

Solution: remove detections if they overlap too much with another higher scoring detection.

Non Max Suppression (NMS)

Algorithm:

- 1. Sort detections in decreasing order with respect to score
- 2. Iterate through sorted detections:
 - a. Reject a detection if it overlaps with a previous (unrejected) detection with IOU greater than some threshold
- 3. Return all unrejected detections

Some shortcomings of NMS to remember:

- Imposes a hard limitation on how close objects can be in order to be detected
- Similar classes do not suppress each other

Single Stage Models (Encapsulates Multibox, SSD, YOLO, YOLO v2, RetinaNet)

Single Stage Case Study: RetinaNet (Lin et al 2017)

Key Ideas:

- Multi-Resolution Feature Extractor:
 - Resnet + FPN
- Focal Loss
- Smart initialization of classification bias for fast training:
 - On Google TPUs, can train on
 COCO dataset in 3.5 hours

One way to extracting multiresolution feature maps from Resnet

One way to extracting multiresolution feature maps from Resnet

Enter Feature Pyramid Networks (FPN)

All resolutions now benefit from deep feature representations

<u>Feature Pyramid Networks for Object Detection</u> by Lin et al 2017 <u>Focal Loss for Dense Object Detection</u> by Lin et al 2018

<u>Feature Pyramid Networks for Object Detection</u> by Lin et al 2017 <u>Focal Loss for Dense Object Detection</u> by Lin et al 2018

RetinaNet with Resnet 101 with FPN Feature Extractor "RetinaNet" with EfficientNet + biFPN Feature Extractor

Videos by Karol Majek

Case Study: Faster R-CNN by Ren et al 2015

Stage 1: Use a first stage to (over)-predict class agnostic proposals

Region Proposal Network (RPN) (Think of this as your standard single stage model)

Image from <u>NYTimes</u>

Case Study: Faster R-CNN by Ren et al 2015

Stage 2: Crop + Resize; Second stage classification

But crop from RPN features instead of pixels!

Image from <u>NYTimes</u>

Faster R-CNN with Resnet (He et al 2015)

Winning architecture for COCO 2015 Challenge

Faster R-CNN with Resnet (He et al 2015)

Winning architecture for COCO 2015 Challenge

Faster R-CNN Stage 1

Differentiable Op!; Entire model jointly trainable using sum of losses from first and second stage.

Faster R-CNN with Resnet 101 Feature Extractor

Videos by Karol Majek

One stage vs Two stage Models

- Somewhat-outdated understanding: one stage fast not as accurate, two stage slow, more accurate
- Today the divide is fuzzy
- One stage:
 - Tends to have a "simpler" architecture using only standard ops (Conv, BN, ReLU, Concat);
 - Fussier to "get right"
- Two stage:
 - Require NMS, ROIAlign at training time
 - Yields per-instance feature vectors easier to stick Faster R-CNN together with other tasks (we will see this later)

Speed/accuracy trade-offs for modern convolutional object detectors by Huang et al

You should know:

- How to do sliding window detection using ConvNets aka anchor-based object detection
- Single stage and Two stage "meta-architectures" for detection

Outline

- Sliding Window Detectors
- Detection with Convolutional Networks
- How to Evaluate a Detector
- Practical tips/tricks

First you need a dataset...

COCO 2017 train/val browser (123,287 images, 886,284 instances). Crowd labels not shown.

Pascal VOC 20 classes, 5K images

COCO

80 classes, ~120K images

Open Images (600 classes, 1.7M images) LVIS v0.5 (1000 classes, 50K images)

How do we know how good our model is?

Evaluating Detectors is harder :(

Problem 1: Metrics must handle location errors

Should we consider this detection to be correct?

Evaluating Detectors is harder :(

Problem 2: Metrics must account for overprediction and underprediction

Intersection over Union (IOU)

IOU = Intersection Union

- Boxes are disjoint if and only if IOU=0
- Boxes are identical if and only if IOU=1

Detection is considered "correct" if IOU > α

Intersection over Union (IOU)

IoU = 0.5

IoU = **0.7**

IoU = 0.95

Ground-Truth BBox

Detection BBox

Slide credit: http://image-net.org/challenges/talks/2016/ECCV2016_ilsvrc_coco_detection_segmentation.pdf

True/False Positives and Missed Objects

Summarizing Performance with Precision/Recall

Precision: Of the detections our model produced, how many were correct (i.e. True Positives)?

#TP Precision = ______ #TP + #FP

Recall: Of the groundtruth instances in our data, what fraction of instances were correctly detected (i.e., not missed)? $_{\#TP}$

Recall = ______ #Groundtruth Objects

Remember: Precision and Recall are in [0, 1] and higher is better.

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Last step of detection pipeline: use score threshold to select final detections

When would it be better to be on one side of this spectrum than the other?

Precision/Recall Curves and AP (Average Precision)

Precision

Precision/Recall Curves and AP (Average Precision)

Remember:

- AP is always in [0, 1]
- Higher AP is better
- Always relative to an IOU criterion, e.g., AP@.5 IOU, AP@.75 IOU, etc...

AP, mAP, "COCO (Integrated) mAP"

RFCN w/Resnet101, 300

COCO

Faster R-CNN w/Inception Resnet V2, 300 proposals

SSD w/MobileNet (Low Resolution)

COCO

SSD w/Inception V2 (Low Resolution)

Faster R-CNN w/Resmet 100 proposals

RFCN w/Resnet101, 300

Faster R-CNN w/Inception Resnet V2, 300 proposals

You should know:

- How to mark detections as True or False positives based on IOU
- What *Precision* and *Recall* mean
- And have some vague idea about how P-R Curves and Average Precision are computed :)

Outline

- Sliding Window Detectors
- Detection with Convolutional Networks
- How to Evaluate a Detector
- Practical tips/tricks

How to select a model

Decisions:

- Which meta-architecture? {SSD, Faster R-CNN, R-FCN}
- Which feature extractor? {VGG, Resnet, Inception v2, Inception v3, Mobilenet, etc}
- Which image size? {300x300, 512x512, 600x1024, 800x1296}

Things to consider: sensor, device, latency constraints, memory constraints

Your laptop

Datacenters

Mobile

Raspberry Pi Tensor Processing Unit

Pick a point on the speed/accuracy tradeoff curve

Overall mAP

Google Al

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., ... Speed/accuracy trade-offs for modern convolutional object detectors. CVPR 2017

GPU Time

Google Al

Use lower resolution images for speed

Use a small number of proposals for speed (for proposal based architectures)

Lower # of proposals much faster; sacrifices a bit of recall

Training with High Resolution Images

Dataset	Typical Training Resolutions
MNIST	28x28
CIFAR	32x32
ImageNet	112x112, 224x224, 299x299
COCO	640x640, 600x1024, 1024x1024, 800x1333,

Larger images => Smaller batch sizes => Noisy batch norm statistics :(

Common approaches:

- Freeze batch norm
- Use batch norm variant (e.g. GroupNorm)
- Train with multi GPU/TPU (even better, use Sync BN)

58.0

56.3

37.4

35.5

ImageNet+300M

Inception ResNet [37]

See "Revisiting Unreasonable Effectiveness of Data in Deep Learning Era" [Sun et al 2017]

You should know:

- Anchor based object detection methodology
- Examples of single stage and two stage models
- Evaluation concepts (IOU, Precision, Recall, mean AP)
- Practical Tips

Next Time

Segmentation

- Semantic Segmentation
- Dense Prediction: general
- Instance and Panoptic Segmentation
- Keypoint Estimation
- Object Detection II: Anchor free approaches