
CSEP 576: Object Detection

Jonathan Huang (jonathanhuang@google.com)

University of Washington 17 May 2020

Google Research

Lecture Outline
May 19

● Part 1: Advanced CNNs (Focusing on classification)
○ Reusable higher level building blocks of modern convnet architectures

■ Dropout, Batch Norm, Factorized Convolutions, Residual Connections, etc.
○ Tour through “popular” classification architectures

■ E.g., AlexNet, VGG, GoogLeNet, Resnet, MobileNet, SE-Net
● Part 2: Object Detection

○ Motivation, Applications
○ Anchor based detection methodology
○ Single stage and Two stage meta-architectures
○ Evaluation metrics
○ Practical Tips

Detection = Classification + Localization
● Variable # outputs
● Need to classify based

on much fewer pixels
than in Imagenet setting;
Requires context!

● Usually need to operate
on much larger images

From Classification to Detection

Photo credit: Michael Mina

Object
Detection

Applications

Object
Detection

Applications

Object
Detection

Applications

Object
Detection

Applications

Object
Detection

Applications

“Sliding Window” Detection
background

“Sliding Window” Detection
background

“Sliding Window” Detection
background

“Sliding Window” Detection
background

“Sliding Window” Detection
background

“Sliding Window” Detection
background

“Sliding Window” Detection
background

“Sliding Window” Detection
background

“Sliding Window” Detection
background

“Sliding Window” Detection
background

“Sliding Window” Detection

background

“Sliding Window” Detection

background

“Sliding Window” Detection

person!

“Sliding Window” Detection

person!

f()

f()
Compute within-region features,

then classify

“Sliding Window” Detection

person!

f()

f()
Typical to enlarge region to include

some “context”

Sliding window placement
Slide over fine grid

in x, y, scale, aspect ratio
Slide over coarse grid

in x, y, scale, aspect ratio

Slow and Accurate Fast and Not-so-accurate
(… or can it be?)

Bounding Box Regression

Also predict continuous
offset from anchor to
“snap” onto object

Coarse sliding window position
(aka “anchor”)

Idea:

Bounding Box Regression

person!

Also predict continuous
offset from anchor to
“snap” onto object

Idea:

Coarse sliding window position
(aka “anchor”)

● Sliding Window Detectors

● Detection with Convolutional Networks

● How to Evaluate a Detector

● Practical tips/tricks

Outline

Using convolutional networks for detection

● Extract features at sliding window positions via convolution
● Deep networks -> large receptive fields that can account for

context

Agenda for next few slides:
● Cover a simplified convnet approach for

generating detections in detail;
● Touch on more modern architectures (all of

which are based on the same concept)

Think of each feature vector vij as
corresponding to a sliding window (anchor).

vij

Anchor

Category score = SoftMax(Wcls·vij)

Offset from anchor = Wloc·vij

A simplified convnet for detection

Receptive Field

V

Think of each feature vector vij as
corresponding to a sliding window (anchor).

vij

Anchor

A simplified convnet for detection

Use the same Wloc and Wcls for all i, j
in anchor grid if anchors are:

● of the same shape, and
● contained and centered in

receptive field

Receptive Field

Category score = SoftMax(Wcls·vij)

Offset from anchor = Wloc·vij

V

Think of each feature vector vij as
corresponding to a sliding window (anchor).

vij

Anchor

A simplified convnet for detection

Receptive Field

Category score = SoftMax(Wcls·vij)

Offset from anchor = Wloc·vij

Category score = SoftMax(Conv(V; Wcls))

Offset from anchor = Conv(V; Wloc)

Use convolution to do simultaneous prediction for all anchors:

V

Think of each feature vector vij as
corresponding to a sliding window (anchor).

vij

Anchor

A simplified convnet for detection

Receptive Field

Category score = SoftMax(Wcls·vij)

Offset from anchor = Wloc·vij

Category score = SoftMax(Conv(V; Wcls))

Offset from anchor = Conv(V; Wloc)

Use convolution to do simultaneous prediction for all anchors:

V

But… if anchors need to be the same shape, how
do we handle different scales/aspect ratios?

Solution: use multiple Wloc and Wcls (one for each
aspect ratio/scale)

SoftMax(Wcls,ar1·vij)
Wloc,ar1·vij

SoftMax(Wcls,ar2·vij)
Wloc,ar2·vij

SoftMax(Wcls,ar3·vij)
Wloc,ar3·vij
...

Fancier Solution: use multiple anchor grid resolutions

[Liu et al 2016]

Target Assignment

groundtruth boxes (person, class 2)

0 0 0

0 0 0

2 0 2

Class target matrix
(one entry per anchor)

gtxmin - anchorxmin
gtymin - anchorymin
gtxmax - anchorxmax
gtymax - anchorymax

Location targets
(only for matched anchors)

Step 1: Match anchor boxes to
groundtruth boxes (based on Euclidean
distance or overlap area)
Step 2: Give each anchor a classification
and regression target

● If anchor has no matching
groundtruth, it classifies as 0 and no
regression target is given

Typical Training Objective

L(anchor a) = α * δ(a has matching groundtruth) * L2(t
loc, Wloc·vij)

+ β * SoftMaxCrossEntropy(tcls, Wcls·vij)

Per-anchor Loss:

Total Loss: Average per-anchor loss over anchors

Common to use other
location losses here...

Minimize w/SGD

Localization Loss in Box Encoding Space

Wloc·vi
j

Huber ,

Localization Loss in Box Encoding Space

Wloc·vi
j

Huber ,

Groundtruth box center
in normalized
coordinates

Localization Loss in Box Encoding Space

Wloc·vi
j

Huber ,

Groundtruth box center
in normalized
coordinates

Groundtruth box
size in log space

Localization Loss in Box Encoding Space

Wloc·vi
j

Huber ,

Groundtruth box center
in normalized
coordinates

Groundtruth box
size in log space

Huber = “Smooth L1”

Classification Loss: Dealing with Class Imbalance
Problem:

 # negative/background anchors >> # positive/foreground anchors

 Typical solutions:
● Subsample negatives
● Downweight negatives
● Online hard mining (Srivastava et al.)
● Focal loss function (Lin et al.)

Classification Loss: Dealing with Class Imbalance
Problem:

 # negative/background anchors >> # positive/foreground anchors

 Typical solutions:
● Subsample negatives
● Downweight negatives
● Online hard mining (Srivastava et al.)
● Focal loss function (Lin et al.)

Give less weight to:

Dealing with multiple detections of the
same object

Duplicate detection problem: Typically
many anchors will detect the same
underlying object and give slightly
different boxes, with slightly different
scores.

Solution: remove detections if they
overlap too much with another higher
scoring detection.

Non Max Suppression (NMS)

Algorithm:
1. Sort detections in decreasing order with respect

to score
2. Iterate through sorted detections:

a. Reject a detection if it overlaps with a
previous (unrejected) detection with IOU
greater than some threshold

3. Return all unrejected detections

Some shortcomings of NMS to remember:
● Imposes a hard limitation on how

close objects can be in order to be
detected

● Similar classes do not suppress each
other

Single Stage Models
(Encapsulates Multibox, SSD, YOLO, YOLO v2, RetinaNet)

Detection “meta-architectures” are a recipe for
converting classification architectures into
detection architectures

Another popular meta-architecture

Two-Stage
(R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN)
[e.g., Ren et al 2015]

Single Stage Case Study: RetinaNet (Lin et al 2017)

Key Ideas:

● Multi-Resolution Feature Extractor:

○ Resnet + FPN

● Focal Loss

● Smart initialization of classification

bias for fast training:

○ On Google TPUs, can train on

COCO dataset in 3.5 hours

One way to extracting multiresolution feature maps
from Resnet

Block 1,
c=64

3 residual units

Block 2,
c=128

4 residual units

Block 3,
c=256

6 residual units

Block 4,
c=512

3 residual units

High
resolution

inputs:
e.g.

640x640

80x80 40x40 20x20

One way to extracting multiresolution feature maps
from Resnet

Block 1,
c=64

3 residual units

Block 2,
c=128

4 residual units

Block 3,
c=256

6 residual units

Block 4,
c=512

3 residual units

High
resolution

inputs:
e.g.

640x640

80x80 40x40 20x20

Tradeoff:
● Want: high resolution feature maps to match high density anchor

grids capturing small objects.

● But: high resolution feature maps live at earlier layers; can’t take
advantage of network depth :(

80x80

40x40

20x20

80x80

40x40

20x20

10x10

5x5

All resolutions now benefit from
deep feature representations

Feature Pyramid Networks for Object Detection by Lin et al 2017
Focal Loss for Dense Object Detection by Lin et al 2018

Enter Feature Pyramid Networks (FPN)

80x80

40x40

20x20

80x80

40x40

20x20

10x10

5x5
FPN

class/box predictor

class/box predictor

class/box predictor

class/box predictor

class/box predictor

Feature Pyramid Networks for Object Detection by Lin et al 2017
Focal Loss for Dense Object Detection by Lin et al 2018

FPN

class/box predictor

class/box predictor

class/box predictor

class/box predictor

class/box predictor

Feature Pyramid Networks for Object Detection by Lin et al 2017
Focal Loss for Dense Object Detection by Lin et al 2018

Shared
predictor
weights
across FPN
levels

FPN

Videos by Karol Majek

RetinaNet with Resnet 101 with FPN Feature
Extractor

“RetinaNet” with EfficientNet + biFPN
Feature Extractor

Case Study: Faster R-CNN by Ren et al 2015
Stage 1: Use a first stage to (over)-predict class agnostic proposals

Image from NYTimes

Region Proposal Network (RPN)
(Think of this as your standard single stage model)

Stage 2: Crop + Resize; Second stage classification

Image from NYTimes

But crop from RPN features
instead of pixels!

Case Study: Faster R-CNN by Ren et al 2015

Faster R-CNN with Resnet (He et al 2015)

Block 1 Block 2 Block 3

Block 4

Crop/Resize
(a.k.a. ROIAlign)
and Stack

Faster R-CNN Stage 1

Faster R-CNN Stage 2

Winning architecture for COCO 2015 Challenge

Faster R-CNN with Resnet (He et al 2015)

Block 1 Block 2 Block 3

Block 4

Crop/Resize
(a.k.a. ROIAlign)
and Stack

Faster R-CNN Stage 1

Faster R-CNN Stage 2

Winning architecture for COCO 2015 Challenge

Differentiable Op!; Entire model
jointly trainable using sum of losses
from first and second stage.

RPN Classification Loss

RPN Localization Loss

Object Classification Loss

Object Localization Loss

ROI-Align / Crop-and-resize
PyTorch: torchvision.ops.RoIAlign
TF: tf.image.crop_and_resize

Lay regular grid over
proposal box

Samples typically won’t
line up nicely with RPN
feature map grid

Use bilinear interpolation with 4
neighboring cells to compute
feature@sample point

RPN proposal

Sum over 4 neighbors

Differentiable with respect to RPN
feature f_i,j

Faster R-CNN with Resnet 101 Feature
Extractor

Videos by Karol Majek

One stage vs Two stage Models
● Somewhat-outdated understanding: one stage fast not as accurate, two

stage slow, more accurate

● Today the divide is fuzzy

● One stage:

○ Tends to have a “simpler” architecture using only standard ops (Conv, BN, ReLU, Concat);

○ Fussier to “get right”

● Two stage:

○ Require NMS, ROIAlign at training time

○ Yields per-instance feature vectors - easier to stick Faster R-CNN together with other tasks

(we will see this later)

Speed/accuracy trade-offs for modern convolutional object detectors by Huang et al

● How to do sliding window detection using ConvNets - aka

anchor-based object detection

● Single stage and Two stage “meta-architectures” for

detection

You should know:

● Sliding Window Detectors

● Detection with Convolutional Networks

● How to Evaluate a Detector

● Practical tips/tricks

Outline

First you need a dataset...

Pascal VOC
20 classes, 5K images

COCO
80 classes, ~120K images

Open Images
(600 classes, 1.7M images)

LVIS v0.5
(1000 classes, 50K images)

For image classification, life is easy :)

How do we know how good our
model is?

cat dog catcat

Accuracy: 75%

Evaluating Detectors is harder :(

Groundtruth Dog

Detected Dog

Problem 1: Metrics must handle
location errors

Should we consider this
detection to be correct?

Evaluating Detectors is harder :(

Groundtruth Dog

Detected Dogs

Problem 2: Metrics
must account for
overprediction and
underprediction

Groundtruth Dog

Detected Dog

Groundtruth Dog

Intersection over Union (IOU)

IOU =
Intersection

Union

Detection is considered“correct” if IOU > 𝛼

● Boxes are disjoint if and only if IOU=0
● Boxes are identical if and only if IOU=1

IoU = 0.5 IoU = 0.7 IoU = 0.95

Slide credit: http://image-net.org/challenges/talks/2016/ECCV2016_ilsvrc_coco_detection_segmentation.pdf

Intersection over Union (IOU)

Detection BBoxGround-Truth BBox

True/False Positives and Missed Objects

True
positive

True
positive

False
positive

False
positive

Missed Object

● Match detections and groundtruth
instances based on IOU

● Count missed groundtruth objects
● Mark detections as TP or FP based

on whether IOU>𝛼

Missed Object

Summarizing Performance with Precision/Recall

Precision: Of the detections our model produced, how
many were correct (i.e. True Positives)?

Recall: Of the groundtruth instances in our data, what
fraction of instances were correctly detected (i.e., not
missed)?

Remember: Precision and Recall are in [0, 1] and higher is better.

Precision =
#TP

#TP + #FP

Recall =
#TP

#Groundtruth
Objects

Trading off between Precision and Recall

score/confidence
threshold

99
%
Do
g

90
%
Ca
t

50
%
Hu
ma
n

30
%
Cu
p

10
%
La
un
dr
y
Ma
ch
in
e

2%
 T
or
ti
ll
a

0.0 1.0

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Last step of detection pipeline: use score threshold to select final detections

Trading off between Precision and Recall

score/confidence
threshold

99
%
Do
g

90
%
Ca
t

50
%
Hu
ma
n

30
%
Cu
p

10
%
La
un
dr
y
Ma
ch
in
e

2%
 T
or
ti
ll
a

0.0 1.0

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Last step of detection pipeline: use score threshold to select final detections

Trading off between Precision and Recall

score/confidence
threshold

99
%
Do
g

90
%
Ca
t

50
%
Hu
ma
n

30
%
Cu
p

10
%
La
un
dr
y
Ma
ch
in
e

2%
 T
or
ti
ll
a

0.0 1.0

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Last step of detection pipeline: use score threshold to select final detections

Trading off between Precision and Recall

score/confidence
threshold

99
%
Do
g

90
%
Ca
t

50
%
Hu
ma
n

30
%
Cu
p

10
%
La
un
dr
y
Ma
ch
in
e

2%
 T
or
ti
ll
a

0.0 1.0

Increase precision,
decrease recall

Decrease precision,
increase recall

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Last step of detection pipeline: use score threshold to select final detections

Trading off between Precision and Recall

score/confidence
threshold

99
%
Do
g

90
%
Ca
t

50
%
Hu
ma
n

30
%
Cu
p

10
%
La
un
dr
y
Ma
ch
in
e

2%
 T
or
ti
ll
a

0.0 1.0

Increase precision,
decrease recall

Decrease precision,
increase recall

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Last step of detection pipeline: use score threshold to select final detections

When would it be better to be on one side of this spectrum than the other?

Precision/Recall Curves and AP (Average Precision)
P

re
ci

si
on

Recall

Precision / Recall curve

0.0 1.0

Precision/Recall Curves and AP (Average Precision)
P

re
ci

si
on

Recall

Precision / Recall curve

0.0 1.0

AP = Average Precision
 = Area under PR curve

Remember:

● AP is always in [0, 1]

● Higher AP is better

● Always relative to an IOU

criterion, e.g., AP@.5 IOU,

AP@.75 IOU, etc...

AP, mAP, “COCO (Integrated) mAP”

Evaluate AP independently
for each category

Evaluate mAP using different
IOU thresholds

Average over
categories and IOU

thresholds

RFCN w/Resnet101, 300
proposals

Faster R-CNN w/Inception
Resnet V2, 300 proposals

SSD w/MobileNet
(Low Resolution)

SSD w/Inception V2
(Low Resolution)

Faster R-CNN w/Resnet101,
100 proposals

COCO

mAP=21 mAP=24 mAP=32

mAP=30 mAP=37

RFCN w/Resnet101, 300
proposals

Faster R-CNN w/Inception
Resnet V2, 300 proposals

SSD w/MobileNet
(Low Resolution)

SSD w/Inception V2
(Low Resolution)

Faster R-CNN w/Resnet101,
100 proposals

COCO

mAP=21 mAP=24 mAP=32

mAP=30 mAP=37

● How to mark detections as True or False positives based

on IOU

● What Precision and Recall mean

● And have some vague idea about how P-R Curves and

Average Precision are computed :)

You should know:

● Sliding Window Detectors

● Detection with Convolutional Networks

● How to Evaluate a Detector

● Practical tips/tricks

Outline

How to select a model

Decisions:

● Which meta-architecture? {SSD, Faster R-CNN, R-FCN}

● Which feature extractor? {VGG, Resnet, Inception v2, Inception v3, Mobilenet, etc}

● Which image size? {300x300, 512x512, 600x1024, 800x1296}

Things to consider: sensor, device, latency constraints, memory constraints

DatacentersYour laptop Mobile Raspberry Pi Tensor Processing Unit

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., ... Speed/accuracy trade-offs for modern convolutional object detectors. CVPR 2017

Caution: this graph is a few
years old now!

Pick a point on the speed/accuracy tradeoff curve

There is a “pareto-optimal”
curve. Those are our favorite
detectors!

Use lower resolution images for speed

Lower resolution much faster;
tends to miss smaller objects

Use a small number of proposals for speed (for
proposal based architectures)

Lower # of proposals much faster;
sacrifices a bit of recall

Training with High Resolution Images
Dataset Typical Training Resolutions

MNIST 28x28

CIFAR 32x32

ImageNet 112x112, 224x224, 299x299

COCO 640x640, 600x1024, 1024x1024, 800x1333, Often 10x more pixels!

Larger images => Smaller batch sizes => Noisy batch norm statistics :(

Common approaches:
● Freeze batch norm
● Use batch norm variant (e.g. GroupNorm)
● Train with multi GPU/TPU (even better, use Sync BN)

JFT 300M 18K labels

Detections

Transfer weights

Initialize from a model pre-trained to classify
some other dataset (the larger the better)

See “Revisiting Unreasonable Effectiveness of
Data in Deep Learning Era” [Sun et al 2017]

● Anchor based object detection methodology

● Examples of single stage and two stage models

● Evaluation concepts (IOU, Precision, Recall, mean AP)

● Practical Tips

You should know:

Next Time

Segmentation
● Semantic Segmentation
● Dense Prediction: general
● Instance and Panoptic Segmentation
● Keypoint Estimation
● Object Detection II: Anchor free approaches

Image credit: https://ai.stanford.edu/~syyeung/cvweb/tutorial3.html

