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Lecture Outline

May 19
e Part 1: Advanced CNNs (Focusing on classification)
o Reusable higher level building blocks of modern convnet architectures
m Dropout, Batch Norm, Factorized Convolutions, Residual Connections, etc.
o Tour through “popular” classification architectures
m E.g., AlexNet, VGG, GooglLeNet, Resnet, MobileNet, SE-Net
e Part 2: Object Detection
o Motivation, Applications
Anchor based detection methodology
Single stage and Two stage meta-architectures
Evaluation metrics
Practical Tips
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From Classification to Detection

Detection = Classification + Localization

5 °

Variable # outputs

Need to classify based
on much fewer pixels
than in Imagenet setting;
Requires context!
Usually need to operate
on much larger images

Photo credit: Michael Mina
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“Sliding Window” Detection




“Sliding Window” Detection

Compute within-region features,
then classify




“Sliding Window” Detection

Typical to enlarge region to include
some “context”




Sliding window placement

Slide over fine grid Slide over coarse grid
in X, y, scale, aspect ratio in X, y, scale, aspect ratio
) =
iy - g e - o - g_, A
i - 'm‘ N p - ‘ ‘

ST =

Slow and Accurate Fast and Not-so-accurate

(... or can it be?)



Bounding Box Regression

= e 3% Idea:
e ~ ~ Also predict continuous

E ,t offset from anchor to
- “snap” onto object



Bounding Box Regression

v

> offset from anchor to

- “snap” onto object



Outline

Sliding Window Detectors
Detection with Convolutional Networks
How to Evaluate a Detector

Practical tips/tricks



Using convolutional networks for detection

______________________________________________

Detection Generator
A M. |

| Agenda for next few slides:

| @ Cover a simplified convnet approach for

' »= generating detections in detalil;

E8 = @.| ¢ Touch on more modern architectures (all of
- which are based on the same concept)

T reauwure cAuaculul

___________________________________________________________

e Extract features at sliding window positions via convolution
e Deep networks -> large receptive flelds that can account for
context



A simplified convnet for detection

Think of each feature vector v. . as

/ corresponding to a sliding window (anchor).
o

Category score

Offset from anchor

Receptive Field

SoftMax (WS v, )
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A simplified convnet for detection

Think of each feature vector v, . as

/ corresponding to a sliding window (anchor).
o

Category score = SoftMax (W°'*° v,

Offset from anchor = Wloc°

Use the same Wloc and W°*° forall i j

in anchor grid if anchors are:
e of the same shape, and
e contained and centered in
receptive field

Receptive Field



A simplified convnet for detection

Think of each feature vector v, . as

v / corresponding to a sliding window (anchor).
o

Category score = SoftMax (W™ v .)

= Offset from anchor = Wl"c-vij

Use convolution to do simultaneous prediction for all anchors:
Category score = SoftMax (Conv (v; WS))

Offset from anchor = Conv (v; W'°°)

. Anchor |,

Receptive Field




A simplified convnet for detection

Think of each feature vector v, . as

v / corresponding to a sliding window (anchor).
o

Category score = SoftMax (W™ v .)

= Offset from anchor = Wl"c-vij

Use convolution to do simultaneous prediction for all anchors:
Category score = SoftMax (Conv (v; WS))

Offset from anchor = Conv (v; W'°°)

But... if anchors need to be the same shape, how

___Anchor |z do we handle different scales/aspect ratios?

Receptive Field




one for each

(

and W°is

Solution: use multiple w*ec
aspect ratio/scale)

ij)

v

SoftMax (Wets-art.
Wloc, arl -
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V.

SoftMax (WCls ar? .

Wloc,ar2 .

V..
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Wloc,ar3
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Fancier Solution: use multiple anchor grid resolutions

Extra Feature Layers
VGG-16 [ A :

Classifier : Conv: 3x3x(4x(Classes+4))

F N (2]
— 1%]
: \\ \\ Classifier : Conv: 3x3x(6x(Classes+4)) ©
\ \ (@]
|
| | S R —— —— = b
300 | [ I o
| ' ' I
I [ 38 1o 19 g
Image | { : C’B
: 1 Conv4_3 | | Conve Conv7 19 Conv: 3x3x(4x(Classes+4)) | @
| | | | (FC6) (FC7) S
300 | | | Conv8_2 ..3
l [ o
| | 10 Conv11_2 =
l | 8
| | =

Rz

| 256 | L |
Conv: 1x1x128

Qnv: 3x3x256-s1

[Liu et al 2016]



Target Assignment

Step 1: Match anchor boxes to
groundtruth boxes (based on Euclidean

distance or overlap area)
Step 2: Give each anchor a classification

and regression target
e If anchor has no matching

groundtruth, it classifies as 0 and no

Class target matrix Location targets
groundtruth boxes (person, class 2) (one entry per anchor) (only for matched anchors)
0 0 0 gt, . - anchor .
qtymin - anchorymirl
0 0 o gtxmax B anChorxmax
gtymax - anchorymax

regression target is given



Typical Training Objective

Common to use other
location losses here...

Per-anchor Loss:

L (anchor a) = a * &(a has matching groundtruth) * L (t'°°, Wloc-vij)

+ B * SoftMaxCrossEntropy (£°'°, WS vy)

Total Loss: Average per-anchor loss over anchors

Minimize w/SGD



Localization Loss in Box Encoding Space
Aaryn N

Huber ha Wieec v




Localization Loss in Box Encoding Space
/ 4 xc Groundtruth box center \

P in normalized
W roardnaton
Yc
Huber hq | wloc v,
log w ;
log h

K N J /



Localization Loss in Box Encoding Space

Huber

~

Groundtruth box center \
in normalized
coordinates

WlOC ‘N

’ 1
J

Groundtruth box
size in log space

_/



Localization Loss in Box Encoding Space

Huber = “Smooth L1”

-

Groundtruth box center

in normalized
coordinates

’
J

Groundtruth box
size in log space

WlOC ‘N

N

1

_/



Classification Loss: Dealing with Class Imbalance

Problem:
# negative/background anchors >> # positive/foreground anchors

Typical solutions:

e Subsample negatives

e Downweight negatives

e Online hard mining (Srivastava et al.)
e Focalloss function (Lin et al.)




Classification Loss: Dealing with Class Imbalance

Problem:

# negative/background anchors >> # positive/foreground anchors

Typical solutions:

e Subsample negatives

e Downweight negatives

e Online hard mining (Srivastava et al.)
e | Focal loss function (Lin et al.) |

CE(p) = —log(py)
FL(p) = —(1 — p)” log(p)

(&)

22222
O T T
o= oo

Give less weight to:

well-classified
examples

0.2 0.4 0.6 0.8 1
probability of ground truth class




Dealing with multiple detections of the
same object

___ Duplicate detection problem: Typically
% many anchors will detect the same

| scores.

= | Solution: remove detections if they
— overlap too much with another higher
- | scoring detection.




Non Max Suppression (NMS)

Algorithm:
% 1. Sortdetections in decreasing order with respect
to score

2. Iterate through sorted detections:

a. Reject a detection if it overlaps with a
previous (unrejected) detection with IOU
greater than some threshold

3. Return all unrejected detections

. Some shortcomings of NMS to remember:
e Imposes a hard limitation on how
close objects can be in order to be
detected
e Similar classes do not suppress each
other




Detection “meta- architectures" are a recipe for

______________________________________________

detection architectures | Detection Generator

Multiway
Classification

Box
Regression

' (vgg, inception,
resnet, etc)

Single Stage Models

(Encapsulates Multibox, SSD, YOLO, YOLO v2, RetinaNet)



Another popular meta architecture

______________________________________________

Proposal Generator

Objectness |
Classification !

-
-
"

Box
Regression

Box Classifier

I Multiway
Classification

Box
Refinement

Two-Stage

(R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN) . :
[e.g., Ren et al 2015] .



Single Stage Case Study: RetinaNet (Lin et al 2017)

Key Ideas:

Feature Pyramid Networks for Object Detection Focal Loss for Dense Object Detection

Tsung-YiLin PriyaGoyal Ross Girshick ~Kaiming He  Piotr Dollir

e Multi-Resolution Feature Extractor:

‘Tsung-Yi Lin'?, Piotr Dollir', Ross Girshick',

Kaiming He', Bharath Hariharan', and Serge Belongic Bacaligok AL Restalch FATR),
*Faccbook Al Rescarch (FAIR)
“Cornell University and Cornell Tech CEp) = —logta)
o esnet + e B

Focal Loss

Smart initialization of classification
bias for fast training:
o On Google TPUs, can train on
COCO dataset in 3.5 hours

1612.03144v2 [cs.CV] 19 Apr 2017

arXiv:
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pyramidal ierarchy of deep comolutional networks 0 con.
structfeature pyramids with marginal extra cost. A top-
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Current state-of the-art object detectors are based on
a two-stage, proposal-driven mechanism.  As popularized
in the RCNN framework [11], the first stage generates a
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theaccacyof o-sag deteciors s Jar: I this paper
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One way to extracting multiresolution feature maps
from Resnet

80x80 40x40 20x20
High ] \
resolution || [l.] ll5) sl . sl lelllel 2llle| [2/llgl |5 Al 1sllls] |
inputs:
e.g. A B (3] 3] 18] B 2 9 ol |z . 0 l: 2
640x640
N
Y Y
Block 1, Block 2, Block 3, Block 4,
c=64 c=128 c=256 c=512
3 residual units 4 residual units 6 residual units 3 residual unifs




One way to extracting multiresolution feature maps
from Resnet

40x40 20x20
2N
High
resolution , )
inputs: gk H e HE e E: H S H EH e H e H e H e H e HeHiHi i (e HaaEialle i Rt
e.g. 2 1313 BB B] (2 (B3] 18] 18] (B (201180 Iel (2] (2] 18] (3] (B[] 18] 18] (310l (2] (2] 18] 18] kgl
640x640
\ J\ A\ \
AV AV AV N
Block 4,
Tradeoff: c=512
e Want: high resolution feature maps to match high density anchor 3 residual unifs
grids capturing small objects.

e But: high resolution feature maps live at earlier layers; can’t take
advantage of network depth :(




Enter Feature Pyramid Networks (FPN)
[/ N

[j 10x10

20x20 { ; [j 20x20
40x40 /

/:
80x80/ / ,
/ /

—

40x40 deep feature representations

/’ b All resolutions now benefit from

N
A%

80x80

Feature Pyramid Networks for Object Detection by Lin et al 2017
Focal Loss for Dense Object Detection by Lin et al 2018
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Feature Pyramid Networks for Object Detection by Lin et al 2017
Focal Loss for Dense Object Detection by Lin et al 2018




FPN

-

J—a
D

/ |
/ W
D

v

-

-

box
subnet

WxH Jd--- || WxH
X256 x4 X256

Y

WxH 4---> WxH

Y

x256 | x4 %256

/

N\
AN

Shared
predictor
weights
across FPN
levels

Feature Pyramid Networks for Object Detection by Lin et al 2017

Focal Loss for Dense Object Detection by Lin et al 2018




b oNnZ EfficientDéet D7

RetinaNet with Resnet 101 with FPN Feature “RetinaNet” with EfficientNet + biFPN
Extractor Feature Extractor

Videos by Karol Majek



Case Study: Faster R-CNN by Ren et al 2015

Stage 1: Use a first stage to (over)-predict class agnostic proposals

Region Proposal Network (RPN)
(Think of this as your standard single stage model)

Image from NYTimes



Case Study: Faster R-CNN by Ren et al 2015

Stage 2: Crop + Resize; Second stage classification

\
/

But crop from RPN features
instead of pixels!

Image from NYTimes



Faster R-CNN with Resnet (He et al 2015)

Winning architecture for COCO 2015 Challenge

Faster R-CNN Stage 1

Block 1

Block 2 Block 3 Y,

—
—-—
—

Faster R-CNN Stage 2. - -~~~ "

-
-
-

\ O . I
\ (] Crop/Resize A3 2l [2el |
S A‘ » (a.k.a. ROIAlign) Shiihzzhe g
| and Stack 8 1zl 2| 2| |2 |2

Block 4




Faster R-CNN with Resnet (He et al 2015)

Winning architecture for COCO 2015 Challenge

Faster R-CNN Stage 1

Differentiable Op!; Entire model
jointly trainable using sum of losses
from first and second stage.

\

— .
O
(m ] Crop/Resize
‘ (a.k.a. ROIAlign) |—+
= | and Stack

Block 4

—| RPN Classification Loss |

—| RPN Localization Loss |

—| Obiject Classification Loss |

—| Object Localization Loss |




ROI-Align / Crop-and-resize

PyTorch: torchvision.ops.RolAlign
TF: tf.image.crop_and_resize
tgy negutar grid o,vé'r
proposal box |~

seeel
eeeel

Samples typically won't
line up nicely with RPN

feature map grid

Sum over 4 neighbors
/ ' .
foy =D figmax(0,1 |z —i|) max(0, 1 — |y — )

" Use bilinear interpolation with 4
neighboring cells to compute

feature@sample point

J

e

N

Differentiable with respect to RPN

feature f i
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Faster R-CNN with Resnet 101 Feature
Extractor

Videos by Karol Majek



One stage vs Two stage Models

e Somewhat-outdated understanding: one stage fast not as accurate, two
stage slow, more accurate
e TJoday the divide is fuzzy

e One stage:
o Tends to have a “simpler” architecture using only standard ops (Conv, BN, ReLU, Concat);
o Fussier to “get right”

e Two stage:

o Require NMS, ROIAlign at training time
o Yields per-instance feature vectors - easier to stick Faster R-CNN together with other tasks

(we will see this later)

Speed/accuracy trade-offs for modern convolutional object detectors by Huang et al



You should know:

e How to do sliding window detection using ConvNets - aka

anchor-based object detection

e Single stage and Two stage “meta-architectures” for

detection



Outline

Sliding Window Detectors
Detection with Convolutional Networks
How to Evaluate a Detector

Practical tips/tricks



First you need a dataset...

Pascal VOC
20 classes, 5K images

COCO 2017 train/val browser (123,287 images, 886,284 instances). Crowd labels not shown.

I@ l@ l&lal\ @Elllalx
|x|a | |@_|wll|\|%|&| |ﬁ|g|§n—l El|
E@ mmde R4
B 2l BE
COCO

80 classes, ~120K images



Open Images LVIS vO.5
(600 classes, 1.7M images) (1000 classes, 50K images)



Number of boxes
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How do we know how good our
modelis?

[
-
X = /
: f: ;
S /
4 = ‘
O
¢
A

= %) i h % ‘:‘3 ! ““‘ ) e \"“
cat \/ dog\/ cat x

Accuracy: 75%

For image classification, life is easy :)




Evaluating Detectors is harder :(

Problem 1: Metrics must handle
location errors

Should we consider this
detection to be correct?



Evaluating Detectors is harder :

Problem 2: Metrics
must account for
overprediction and
underprediction




Intersection over Union (I0U)

Intersection

I0U = Union

e Boxes are disjoint if and only if TO0U=0
e Boxes are identical if and only if T0U=1

Detection is considered“correct” if 10U > «

| [ T ENREREAN
OO0 Olooo | OO0 04d

loU=05 loU=0.7 loU=0.9




Intersection over Union (I0U)

loU =0.5 loU =0.7

: Ground-Truth BBox - Detection BBox

Slide credit: http://image-net.org/challenges/talks/2016/ECCV2016_ilsvrc_coco_detection_segmentation.pdf



True/False Positives and Missed Objects

x False
positive

Match detections and groundtruth
instances based on I0U

Count missed groundtruth objects
Mark detections as TP or FP based
on whether IOU>a

T:_:ue J X False True
positive positive positive



Summarizing Performance with Precision/Recall

Precision: Of the detections our model produced, how
many were correct (i.e. True Positives)?

#TP
Precision =

#TP + #FP

Recall: Of the groundtruth instances in our data, what
fraction of instances were correctly detected (i.e., not
missed)?

#TP
Recall =

#Groundtruth
Objects

Myﬂﬁ Remember: Precision and Recall are in [0, 1] and higher is better.



Trading off between Precision and Recall

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Last step of detection pipeline: use score threshold to select final detections
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Trading off between Precision and Recall

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Last step of detection pipeline: use score threshold to select final detections

Dog
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Trading off between Precision and Recall

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Last step of detection pipeline: use score threshold to select final detections

Dog
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Trading off between Precision and Recall

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Last step of detection pipeline: use score threshold to select final detections
i Increase precision,
decrease recall

Decrease precision,
. 1
increase recall !
‘ 1 ’
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

o
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/ 1.0
score/confidence
threshold

X%



Increase precision,
decrease recall

Last step of detection pipeline: use score threshold to select final detections
Decrease precision, !
i increase recall !
g i
1 + o
g ; 8 g
' olo olo
' & o
v \/?' 0

[J]
[~}
g
1
&
A,
7
3 ,
g 51

y o

—X

score/confidence
threshold

XX
When would it be better to be on one side of this spectrum than the other?

Trading off between Precision and Recall

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;
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Precision

Precision/Recall Curves and AP (Average Precision)

0.0 Recall 1.0



Precision

Precision/Recall Curves and AP (Average Precision)

T on Remember: —
/ S~ - \Qeoa//
NN C‘l//-,,e e APisalwaysin[0, 1]
e Higher AP is better
e Always relative to an IOU
Average Precision % criterion, e.g., AP@.5 10U,
Area under PR curve \\
\ AP@.75 10U, etc...
N
1.0

0.0 Recall



AP, mAP, “COCO (Integrated) mAP”

mAl mAR/backpack|
tag: DetectionBoxes_Performan ategory/mAP/airplane  tag: DetectionBexes_PerformanceByCategory/mAP/apple tag: Dete B
0.6
04 | Evaluate AP independently
- for each category
" s —
0 0 | 0.02 [
0 20k 40k 60K 80k 100k 0 20k 40k B0k 80k 100K 0 20k 40k 60K 80k 100K
MAP@®.5010U MAP@.75I0U mAP
tag: DetectionBoxes_PrecisionfmAP@.5010U tag: DetectionBoxes_Precisiof/mAP@.75I0U
.55 0.5
0.6
0.4
0.4 0.3
0.2 0.2
0.1
O |
Evaluate mAP using different 0+
0 20k 40k S0k 80k 100k

IOU thresholds

0.2

0.1 +

40k 60k 100k

tag: DetectionBoxes_Precisi¢ /mAP

20K

/

—_—e

Average over
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You should know:

e How to mark detections as True or False positives based

on I0U
e What Precision and Recall mean
e And have some vague idea about how P-R Curves and

Average Precision are computed :)



Outline

Sliding Window Detectors
Detection with Convolutional Networks
How to Evaluate a Detector

Practical tips/tricks



i Google Al

How to select a model

Decisions:
e Which meta-architecture?  {SSD, Faster R-CNN, R-FCN}
e Which feature extractor? {VGG, Resnet, Inception v2, Inception v3, Mobilenet, etc}

e Which image size? {300x300, 512x512, 600x1024, 800x1296}

Things to consider: sensor, device, latency constraints, memory constraints

Your laptop Datacenters Mobile Raspberry Pi  Tensor Processing Unit



Pick a point on the speed/accuracy tradeoff curve % Google Al
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Overall mAP
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Use lower resolution images for speed
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Use a small number of proposals for speed (for
proposal based architectures)
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Training with High Resolution Images

Dataset Typical Training Resolutions
MNIST 28x28
CIFAR 32x32
ImageNet 112x112, 224x224, 299%299
COCO 640x640, 600x1024, 1024x1024, 800x1333, } Often 10x more pixels!

Larger images => Smaller batch sizes => Noisy batch norm statistics :(

Common approaches:
e Freeze batch norm
e Use batch norm variant (e.g. GroupNorm)
e Train with multi GPU/TPU (even better, use Sync BN)




Initialize from a model pre-trained to classify
some other dataset (the larger the better)

JFT 300M 18K labels
EEd o - B

Pattern Analysis, Statistical Modelling and :
Common Objects in Context

Transfer weights

Outputs: bbox
softmax regressor

o

Rol feature

feature map vector . ..ol
Method mAP@0.5 | mAP@[0.5,0.95]
He et al. [16] 33 32.2
ImageNet 53.6 343
[300M 56.9 36.7
ImageNet+300M 58.0 374 See “Revisiting Unreasonable Effectiveness of
Inception ResNet [27] 56.3 35.5 Data in Deep Learning Era” [Sun et al 2017]



You should know:

Anchor based object detection methodology
Examples of single stage and two stage models
Evaluation concepts (10U, Precision, Recall, mean AP)

Practical Tips



Next Time

Segmentation

e Semantic Segmentation

Dense Prediction: general

Instance and Panoptic Segmentation
Keypoint Estimation

Object Detection II: Anchor free approaches

Image credit: https://ai.stanford.edu/~syyeung/cvweb/tutorial3.html




