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Lecture Outline
May 19

● Part 1: Advanced CNNs (Focusing on classification)
○ Reusable higher level building blocks of modern convnet architectures

■ Dropout, Batch Norm, Factorized Convolutions, Residual Connections, etc.
○ Tour through “popular” classification architectures

■ E.g., AlexNet, VGG, GoogLeNet, Resnet, MobileNet, SE-Net
● Part 2: Object Detection

○ Motivation, Applications
○ Anchor based detection methodology:
○ Single stage and Two stage meta-architectures
○ Evaluation metrics
○ Practical Tips



LeNet-5 Review

● Input 32x32
● Conv(5x5, 1->6) -> Tanh
● MaxPool(2, 2)
● Conv(5x5, 6->16) -> Tanh
● MaxPool(2, 2)
● Flatten
● FC(400 -> 120) -> Tanh
● FC(120 -> 84) -> Tanh
● FC(84 -> 10)

Two Convs w/valid padding, Three FCs
Params: 25*6 + 25*6*16 + 400*120 + 
120*84+84*10  = 61470

FLOPS:
28^2 * 5*5*6+14^2 * 4 * 20+10^2 * 5 *5 * 
6*16+5^2 * 4 * 
16+400*120+120*84+84*10
=433800



Timeline of Events

● 1958 Perceptron (Rosenblatt et al)
● 1985 Backprop (Hinton et al)
● 1989 LeNet (LeCun et al)
● 1998 LeNet-5 (LeCun et al)
● Late aughts - rekindled interest in neural nets, deep learning
● 2009 - Imagenet 
● 2012 - AlexNet - a turning point!
● Post-AlexNet = Deep Learning revolution

Focus of Today’s 
lecture



Our focus today

● AlexNet and LeNet (from 1980s) very similar;  What’s changed?
○ More data… 
○ Deeper models
○ More efficient

● Example details that will be covered today
○ ReLU
○ Batch Normalization
○ Factored convolutions
○ Residual connections
○ Squeeze-and-excitation layers

● We won’t cover efficiency coming from hardware advances over the years



Let’s take a tour through the AlexNet paper...

Influential over many many later papers w/over 
60K cites on Google Scholar (as of May 2020):
● ReLU 
● Multi-GPU
● Data augmentation
● Push to go deeper
● 224x224



AlexNet Architecture

○ Input 224x224 (or 227x227)
○ Conv(11x11, 3->96, stride 4) -> ReLU -> LRN
○ Pool (3, 2)
○ Conv(5x5, 96->256, stride 1) -> ReLU -> LRN
○ Pool (3, 2)
○ Conv(3x3, 256->384, stride 1) -> ReLU
○ Conv(3x3, 384>384, stride 1) -> ReLU
○ Conv(3x3, 384>256-, stride 1) -> ReLU
○ Pool(3, 2)
○ FC(9216 -> 4096) 
○ FC(4096 -> 4096)
○ FC(4096 -> 1000)

Deeper than LeNet
5 Convs, 3 FC

Much bigger input than LeNet!  
Important design consideration; 

Too small, hard to recognize; 
Too large, computational challenges

LRN mostly not 
used these days; 

we won’t talk 
about itOverlapping pooling - 

we also won’t cover 
this



Multi GPU training
GPU 1

GPU 2

See AlexNet paper for details; also One weird trick for parallelizing convolutional neural networks 
(also by Alex Krizhevsky)

This is model parallelism --- these days data parallelism more common



ReLU vs Tanh nonlinearities

Train error w/tanh

Train error w/ReLU

Problem with tanh is that signal saturates 
easily (w/gradient magnitudes becoming 
extremely small) leading to slow training

In positive region, ReLU doesn’t saturate 
(constant gradient!)

Example on CIFAR-10 (this is not with AlexNet)



ReLU vs Tanh nonlinearities

● Almost universally adopted
● Very fast computationally
● Still saturates in negative region

○ Needs good initialization (or batch norm, 
as we will discuss later)

● Competitors:
○ PReLU, ELU, Leaky ReLU, SELU, Swish

● Can lead to overconfident 
predictions far away from training 
data

Problem with tanh is that signal saturates 
easily (w/gradient magnitudes becoming 
extremely small) leading to slow training

In positive region, ReLU doesn’t saturate 
(constant gradient!)



Data Augmentation - Training time

Figure credit: https://www.learnopencv.com/understanding-alexnet/, 
https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html

224x224 random crops (from 256x256 inputs) Random horizontal flips

Random color distortions based on 
PCA applied to RGB pixels



Dropout Regularization

Dropout: A Simple Way to Prevent Neural Networks from Overfitting by Srivastava et al

Idea: 
● Training time: 

○ Scale layer by (1/p)
○ Set each neuron in layer to zero with probability p

● Test time:
○ Don’t do dropout

“Drop” neurons 
w/probability p



Dropout: A Simple Way to Prevent Neural Networks from Overfitting by Srivastava et al

Idea: 
● Training time: 

○ Scale layer by (1/p)
○ Set each neuron in layer to zero with probability p

● Test time:
○ Don’t do dropout

“Drop” neurons 
w/probability p

Why scale by 1/p?
If x is value of neuron and w is its 
weight, under Dropout, we have:

E[w * (x/p)] = w * x

Dropout Regularization



Dropout Regularization

● Reduces “co-adaptation” of neurons and leads to more robust/redundant 
features

● Tends to be used with large FC layers

● Usually requires longer training
● Less ubiquitous these days (but still used) --- the idea of randomly 

perturbing something at training time and averaging over the randomness at 
test time is *very* common



Parameter counting

Figure credit: Justin Johnson

Most compute in mid conv layers

We will see factored conv layers 
and bottleneck layers as a 

solution to this in later papers

Most parameters in FC layers

We will see a move not to use FC

But mostly…  we will see that things will just get more compute intensive :)

Most memory in early convs

Note: 60 M parameters trained on ~1 M images!



ImageNet experiments

Preprocessing: 

● Subtract mean RGB from each pixel

Optimization:

● SGD momentum
● Batch size 128
● 5-6 days of training

Comparison against ImageNet SOTA at the time



What are those layers doing?



What are those layers doing?

 Rich feature hierarchies for accurate object detection and semantic segmentation by Girshick et al.



AlexNet Recap

● Deeper than LeNet-5! 

○ 5 Conv, 3 FC vs 2 Conv + 3 FC

○ 60 M vs 60K parameters

● ReLU (vs Tanh)

● DropOut regularization

● 224x224-ish inputs

● Multi GPU training

● Data Augmentation



Case Study (2014): VGG

VGG 16 VGG 19AlexNet

From 8 layers to 
~20 layers!



VGG Design Pattern

VGG 16 VGG 19

● 3x3 convs, stride 1, pad 1
● 2x2 pool, stride 2
● After pool, double channels (until 512)

(Influential on many upcoming networks)



VGG Design Pattern

● 3x3 convs, stride 1, pad 1
● 2x2 pool, stride 2
● After pool, double channels (until 512)

Let’s think about two stacked 3x3 
Convs vs one 5x5 Conv:

● Same receptive field; 
● With intermediate ReLU, stacked version is 

“deeper”;
● Stacked version is more efficient 

3x3 Conv

3x3 Conv

5x5 Conv

Stacked 3x3 Convs

5x5 Conv
Parameters: 5 * 5 * C^2 = 25 C^2
FLOPS: 25 * C^2 * H * W

Parameters: 2 * 3 * 3 * C^2 = 18 C^2
FLOPS: 18 * C^2 * H * W

(Influential on many upcoming networks)

Jon’s note: By FLOPS in this slide deck, I 
actually mean mult-add :P



VGG Design Pattern

● 3x3 convs, stride 1, pad 1
● 2x2 pool, stride 2
● After pool, double channels (until 512)

● Memory usage halves
○ 2x smaller in {height, width}, 2x larger in depth

● Parameters quadruples
○ Independent of spatial resolution

● FLOPS stays the same!

(Influential on many upcoming networks)



VGG Design Pattern

● 3x3 convs, stride 1, pad 1
● 2x2 pool, stride 2
● After pool, double channels (until 512)

Bottom part of VGG

(Influential on many upcoming networks)

224x224

3x3 conv, 128 112x112x128 64*112*3*3 = 64512
Pool 112x112x64

3x3 conv, 64 224x224x64 64*64*3*3 = 36864
3x3 conv, 64 224x224x64 3*64*3*3 = 1728
Operation Output shape # parameters

● Memory usage halves
○ 2x smaller in {height, width}, 2x larger in depth

● Parameters quadruples
○ Independent of spatial resolution

● FLOPS stays the same!



VGG 16
224x224

3x3 conv, 256 56x56x256 294912
Pool 56x56x128

3x3 conv, 128 112x112x128 147456
3x3 conv, 128 112x112x128 64*112*3*3 = 64512

Pool 112x112x64

3x3 conv, 64 224x224x64 64*64*3*3 = 36864
3x3 conv, 64 224x224x64 3*64*3*3 = 1728
Operation Output shape # parameters



3x3 conv, 512 28x28x512 1179648
Pool 28x28x256

3x3 conv, 256 56x56x256 589824
3x3 conv, 256 56x56x256 294912

Pool 56x56x128
3x3 conv, 128 112x112x128 147456
3x3 conv, 128 112x112x128 64*112*3*3 = 64512

Pool 112x112x64

3x3 conv, 64 224x224x64 64*64*3*3 = 36864
3x3 conv, 64 224x224x64 3*64*3*3 = 1728
Operation Output shape # parameters

224x224



3x3 conv, 512 14x14x512 2359296
Pool 14x14x512

3x3 conv, 512 28x28x512 2359296
3x3 conv, 512 28x28x512 2359296
3x3 conv, 512 28x28x512 1179648

Pool 28x28x256
3x3 conv, 256 56x56x256 589824
3x3 conv, 256 56x56x256 294912

Pool 56x56x128
3x3 conv, 128 112x112x128 147456
3x3 conv, 128 112x112x128 64*112*3*3 = 64512

Pool 112x112x64

3x3 conv, 64 224x224x64 64*64*3*3 = 36864
3x3 conv, 64 224x224x64 3*64*3*3 = 1728
Operation Output shape # parameters

224x224



Flatten 25088
Pool 7x7x512

3x3 conv, 512 14x14x512 2359296
3x3 conv, 512 14x14x512 2359296
3x3 conv, 512 14x14x512 2359296

Pool 14x14x512
3x3 conv, 512 28x28x512 2359296
3x3 conv, 512 28x28x512 2359296
3x3 conv, 512 28x28x512 1179648

Pool 28x28x256
3x3 conv, 256 56x56x256 589824
3x3 conv, 256 56x56x256 294912

Pool 56x56x128
3x3 conv, 128 112x112x128 147456
3x3 conv, 128 112x112x128 64*112*3*3 = 64512

Pool 112x112x64

3x3 conv, 64 224x224x64 64*64*3*3 = 36864
3x3 conv, 64 224x224x64 3*64*3*3 = 1728
Operation Output shape # parameters

224x224



FC 1000 4096*1000 = 4,096,000
FC 4096 4096*4096 = 16,777,216
FC 4096 25088*4096 = 102,760,448

Flatten 25088
Pool 7x7x512

3x3 conv, 512 14x14x512 2359296
3x3 conv, 512 14x14x512 2359296
3x3 conv, 512 14x14x512 2359296

Pool 14x14x512
3x3 conv, 512 28x28x512 2359296
3x3 conv, 512 28x28x512 2359296
3x3 conv, 512 28x28x512 1179648

Pool 28x28x256
3x3 conv, 256 56x56x256 589824
3x3 conv, 256 56x56x256 294912

Pool 56x56x128
3x3 conv, 128 112x112x128 147456
3x3 conv, 128 112x112x128 64*112*3*3 = 64512

Pool 112x112x64

3x3 conv, 64 224x224x64 64*64*3*3 = 36864
3x3 conv, 64 224x224x64 3*64*3*3 = 1728
Operation Output shape # parameters

Even larger FC 
layers! Largest FC:

25088 -> 4096)

224x224



ImageNet experiments

● Training details similar to 
AlexNet

● Batch size 256
● 2-3 weeks(!) of training
● 4 GPUs, data parallelism

GoogLeNet : Winner of ILSVRC 2014

VGG Stronger “single-net” 
performance than GoogLeNet, but 
GoogLeNet (next) more efficient



After VGG: Trend is to go even deeper...

But to do so requires computational efficiency.

Next: “Factored” Convolutions -- rewrite convs as a (series or parallel) network of 
more efficient convs (think of low rank matrix factorizations!). 

Examples:

● Sequence of (spatially) smaller convolutional kernels
○ Already saw this a bit with VGG

● Lower dimension then raise again (like low rank decomposition)
● Separable Convolutions



Case Study (2014): GoogLeNet

22
 L

ay
er

s



Case Study (2014): GoogLeNet

Inception Blocks
Repeated Local Structure



Case Study (2014): GoogLeNet

Inception Blocks

Stem



Case Study (2014): GoogLeNet

Inception Blocks

“Auxiliary 
Losses”

Stem



Case Study (2014): GoogLeNet

Inception Blocks

“Auxiliary 
Losses”

Stem

Global pool + 
Lightweight  FC



GoogLeNet Stem

Stem

Aggressively reduce resolution in early layers (224x224 
to 28x28 in first 4 layers) --- we will see later networks 
also do this

3x3 Conv 192 2 28x28x192
3x3 Conv 192 1 56x56x192
3x3 Pool 2 56x56x64
7x7 Conv 64 2 112x112x64

Operation # filters stride Output shape

224x224



Global Pool + Lightweight FC
Global pool + 

Lightweight  FC

7x7x1024

7x7 Avg Pool

FC

Softmax

1024x1000 FC 
vs 

VGG’s largest 25088x4096 FC 
(~100x smaller!)

1x1x1024

1x1x1000



Inception Blocks

Two tricks:
● Parallel convolutions paths
● Bottleneck layers

To understand these tricks, let’s look at some simplifications

3x3 Conv

Previous 
Layer

1x1 Conv

5x5 Conv

1x1 Conv

1x1 Conv

3x3 MaxPool

1x1 Conv

Concat



Inception Blocks

3x3 Conv

Previous 
Layer

5x5 Conv1x1 Conv

Concat

Simplified Inception Block



Inception Blocks

3x3 Conv

Previous 
Layer

5x5 Conv1x1 Conv

Concat

5x5 Conv

Previous 
Layer

Concat

Simplified Inception Block

Same receptive field as 5x5: think of replacing 5x5 conv with a 
“mini-network” with same receptive field

○ But in this “mini-network”, not all channels of output need to 
depend on full extent of receptive field

vs



Inception Blocks

3x3 Conv

Previous 
Layer

5x5 Conv1x1 Conv

Concat

5x5 Conv

Previous 
Layer

Concat

Simplified Inception Block

vs

28x28x192

28x28x192

28x28x256

64
128 64

This mini-network (our Inception Block) ends up being more 
efficient --- let’s verify this by counting parameters/ops



Inception Blocks

3x3 Conv

Previous 
Layer

5x5 Conv1x1 Conv

Concat

5x5 Conv

Previous 
Layer

Concat

Simplified Inception Block

vs

28x28x192

28x28x192

28x28x256

64
128 64

1x1 3x3 5x5 Total

Params 192x64 9x192x128 25x192x64

FLOPS



Inception Blocks

3x3 Conv

Previous 
Layer

5x5 Conv1x1 Conv

Concat

5x5 Conv

Previous 
Layer

Concat

Simplified Inception Block

vs

28x28x192

28x28x192

28x28x256

64
128 64

1x1 3x3 5x5 Total

Params 192x64 9x192x128 25x192x64

FLOPS 28x28x192x64 9x28x28x192x128 25x28x28x192x64



Inception Blocks

3x3 Conv

Previous 
Layer

5x5 Conv1x1 Conv

Concat

5x5 Conv

Previous 
Layer

Concat

Simplified Inception Block

vs

28x28x192

28x28x192

28x28x256

64
128 64

1x1 3x3 5x5 Total

Params 192x64 9x192x128 25x192x64 540K

FLOPS 28x28x192x64 9x28x28x192x128 25x28x28x192x64 423M



Inception Blocks

3x3 Conv

Previous 
Layer

5x5 Conv1x1 Conv

Concat

5x5 Conv

Previous 
Layer

Concat

Simplified Inception Block

vs

28x28x192

28x28x192

28x28x256

64
128 64

1x1 3x3 5x5 Total

Params 192x64 9x192x128 25x192x64 540K

FLOPS 28x28x192x64 9x28x28x192x128 25x28x28x192x64 423M

5x5 Total

Params 25*192x256 1.2M

FLOPS 25*28x28x192x256 963M



Inception Blocks

3x3 Conv

Previous 
Layer

5x5 Conv1x1 Conv

Concat

5x5 Conv

Previous 
Layer

Concat

Simplified Inception Block

vs

28x28x192

28x28x192

28x28x256

64
128 64

Expensive branches: ~9x, ~12x 
FLOPS of 1x1 branch 

1x1 3x3 5x5 Total

Params 192x64 9x192x128 25x192x64 540K

FLOPS 28x28x192x64 9x28x28x192x128 25x28x28x192x64 423M

5x5 Total

Params 25*192x256 1.2M

FLOPS 25*28x28x192x256 963M



Inception Blocks - “Bottleneck Trick”

Idea: Reduce dimensions prior to 
expensive convolutions (to 96 and 16 
dimensions, resp)3x3 Conv

Previous 
Layer

1x1 Conv

5x5 Conv

1x1 Conv
1x1 Conv

Concat

64 128 64

96 16

28x28x192

28x28x256



Inception Blocks - “Bottleneck Trick”

Idea: Reduce dimensions prior to 
expensive convolutions (to 96 and 16 
dimensions, resp)3x3 Conv

Previous 
Layer

1x1 Conv

5x5 Conv

1x1 Conv
1x1 Conv

Concat

64 128 64

96 16

28x28x192

28x28x256

1x1 3x3 5x5 Total

Params 192x64

FLOPS 28x28x192x64 



Inception Blocks - “Bottleneck Trick”

Idea: Reduce dimensions prior to 
expensive convolutions (to 96 and 16 
dimensions, resp)3x3 Conv

Previous 
Layer

1x1 Conv

5x5 Conv

1x1 Conv
1x1 Conv

Concat

64 128 64

96 16

28x28x192

28x28x256

1x1 3x3 5x5 Total

Params 192x64 192x96+ 9x96x128

FLOPS 28x28x192x64 28x28x192x96 + 9x28x28x96x128 



16

Inception Blocks - “Bottleneck Trick”

Idea: Reduce dimensions prior to 
expensive convolutions (to 96 and 16 
dimensions, resp)3x3 Conv

Previous 
Layer

1x1 Conv

5x5 Conv

1x1 Conv
1x1 Conv

Concat

64 128 64

96

28x28x192

28x28x256

1x1 3x3 5x5 Total

Params 192x64 192x96+ 9x96x128 192x16 + 25x16x64

FLOPS 28x28x192x64 28x28x192x96 + 9x28x28x96x128 28x28x192x16 + 25x28x28x16x64



Inception Blocks - “Bottleneck Trick”

Idea: Reduce dimensions prior to 
expensive convolutions (to 96 and 16 
dimensions, resp)3x3 Conv

Previous 
Layer

1x1 Conv

5x5 Conv

1x1 Conv
1x1 Conv

Concat

64 128 64

96 16

28x28x192

28x28x256

1x1 3x3 5x5 Total

Params 192x64 192x96+ 9x96x128 192x16 + 25x16x64 170K

FLOPS 28x28x192x64 28x28x192x96 + 9x28x28x96x128 28x28x192x16 + 25x28x28x16x64 133M



Inception Blocks
Add pooling layer “since pooling operations 
have been essential for the success of current 
convolutional networks”
Note: (we will see pooling operators play a 
reduced role in later networks)

3x3 Conv

Previous 
Layer

1x1 Conv

5x5 Conv

1x1 Conv

1x1 Conv

3x3 MaxPool

1x1 Conv

Concat

28x28x192

28x28x256

32128 32

96 16

64

192

1x1 3x3 5x5 Pool Total

Params 192x64 192x96+ 9x96x128 192x16 + 25x16x32 192x32 159K

FLOPS 28x28x192x64 28x28x192x96 + 9x28x28x96x128 28x28x192x16 + 25x28x28x16x32 9*28*28*192+ 28x28x192*32 128M



Auxiliary Losses

“Auxiliary 
Losses”● Vanishing gradients a big problem in deeper nets

● Idea: 
○ Training time: Add auxiliary classification layers at training 

time to provide a stronger gradient signal to early layers
○ Test time: discard additional layers

● Later inventions provide better solutions to vanishing gradient:
○ Batch norm
○ Residual connections

● Some papers still use these auxiliary losses



Speed/Accuracy balance

An Analysis of Deep Neural Network Models for Practical Applications by Canziani et al

Slower

M
or

e 
ac

cu
ra

te

VGG is yuuuge; slightly 
better on Imagenet 
than GoogLeNet

GoogLeNet very 
lightweight



Neural Network Generated Art with Inception



3x3 Conv

Previous 
Layer

1x1 Conv

5x5 Conv

1x1 Conv
1x1 Conv

Concat

3x3 Conv

Previous 
Layer

1x1 Conv

3x3 Conv

1x1 Conv
1x1 Conv

Concat

3x3 Conv
No Large 
Filters at 
all

Variations on a Theme: Let’s play the “VGG” Trick

Rethinking the Inception Architecture for Computer Vision by Szegedy et al



Variations on a Theme: Let’s play the “VGG” Trick

3x3 Conv

Previous 
Layer

1x1 Conv

5x5 Conv

1x1 Conv
1x1 Conv

Concat

3x3 Conv

Previous 
Layer

1x1 Conv

3x3 Conv

1x1 Conv
1x1 Conv

Concat

3x3 Conv

Rethinking the Inception Architecture for Computer Vision by Szegedy et al

Can we go smaller than 3x3?

No Large 
Filters at 
all



Rethinking the Inception Architecture for Computer Vision by Szegedy et al

2x2 Conv

2x2 Conv

Covers 3x3 receptive field

Spatial Factorization into (non-square) asymmetric convolutions

3x3 Conv

2x2 Conv

2x2 Conv

A little smaller

Params: 9*C^2
FLOPS: 9*C^2*H*W 

Params: 2*4*C^2 = 8C^2
FLOPS: 2*4*C^2*H*W = 8*C^2*H*W



Rethinking the Inception Architecture for Computer Vision by Szegedy et al

But… we can do even better :)

3x3 Conv

3x3 Conv

Covers 3x3 receptive field

3x3 Conv

2x2 Conv

2x2 Conv

A little smaller

Spatial Factorization into (non-square) asymmetric convolutions

Params: 9*C^2
FLOPS: 9*C^2*H*W 

Params: 2*4*C^2 = 8C^2
FLOPS: 2*4*C^2*H*W = 8*C^2*H*W



Spatial Factorization into (non-square) asymmetric convolutions

Rethinking the Inception Architecture for Computer Vision by Szegedy et al

3x3 Conv

2x2 Conv

2x2 Conv

1x3 Conv

3x1 Conv

A little smaller Even smaller!

Params: 9*C^2
FLOPS: 9*C^2*H*W 

Params: 8C^2
FLOPS: 8*C^2*H*W

Params: 2*3*C^2 = 6C^2
FLOPS: 2*3*C^2*H*W = 6*C^2*H*W

3x1 Conv

1x3 Conv

Covers 3x3 
receptive field!



Spatial Factorization into (non-square) asymmetric convolutions

Rethinking the Inception Architecture for Computer Vision by Szegedy et al

3x3 Conv

2x2 Conv

2x2 Conv

1x3 Conv

3x1 Conv

A little smaller
Even smaller!

1x3 Conv3x1 Conv

Concat

Series Convs Parallel Convs

Params: 9*C^2
FLOPS: 9*C^2*H*W 

Params: 8C^2
FLOPS: 8*C^2*H*W

Params: 6C^2
FLOPS: 6*C^2*H*W



Spatial Factorization into (non-square) asymmetric convolutions

Rethinking the Inception Architecture for Computer Vision by Szegedy et al

3x3 Conv

2x2 Conv

2x2 Conv

1x3 Conv

3x1 Conv

nxn Conv

1xn Conv

nx1 Conv

1x3 Conv3x1 Conv

Concat

1xn Convnx1 Conv

Concat

Series Convs Parallel Convs

Params: 2 * N * C^2
FLOPS: 2 * N * C^2 * H * W

Params: N^2 * C^2
FLOPS: N^2 * C^2 * H * W 



Inception v2 Block Types

3x3 Conv

Previous 
Layer

1x1 Conv

3x3 Conv

1x1 Conv1x1 Conv

Concat

3x3 Conv

Pool

1x1 Conv

1x7 Conv

Previous 
Layer

1x1 Conv

1x7 Conv

1x1 Conv

1x1 Conv

Concat

7x1 Conv Pool

1x1 Conv

3x3 Conv

Previous 
Layer

1x1 Conv

3x3 Conv

1x1 Conv
1x1 Conv

Concat

Pool

1x1 Conv

7x1 Conv

1x7 Conv

7x1 Conv

3x3 Conv

3x3 Conv3x3 Conv

Rethinking the Inception Architecture for 
Computer Vision by Szegedy et al



Another variation: Taking bottleneck trick to 
extreme limit

Previous Layer

3x3 Conv

1x1 Conv

3x3 Conv

1x1 Conv

3x3 Conv

1x1 Conv

3x3 Conv

1x1 Conv

3x3 Conv

1x1 Conv

...

Concat

HxWxC

HxWxC ● C parallel convolution paths
● Each 1x1 conv yields 1-d output

Parameters
C * C + C * 3 * 3

FLOPS
C * C + C * H * W * 3 * 3

Compare with “full” 3x3 Conv:
● Parameters: 3 * 3 * C * C
● FLOPS: 3 * 3 * H * W * C * C



Another variation: Taking bottleneck trick to 
extreme limit

Previous Layer

3x3 Conv

1x1 Conv

3x3 Conv

1x1 Conv

3x3 Conv

1x1 Conv

3x3 Conv

1x1 Conv

3x3 Conv

1x1 Conv

...

Concat

HxWxC

HxWxC ● C parallel convolution paths
● Each 1x1 conv yields 1-d output

Parameters
C * C + C * 3 * 3

FLOPS
C * C + C * H * W * 3 * 3

Compare with “full” 3x3 Conv:
● Parameters: 3 * 3 * C * C
● FLOPS: 3 * 3 * H * W * C * C

Also known as a “separable convolution” or “depthwise 
separable” convolution



Separable Convolutions

Previous Layer

3x3 Conv 3x3 Conv 3x3 Conv 3x3 Conv 3x3 Conv

1x1 Conv

Concat

HxWxC

HxWxC

Each 3x3 conv operates independently on 
a single channel

Equivalent:
● First apply 1x1 Conv (C->C)
● Then apply 3x3 Convs (1->1) along each channel
● Concatenate results



Separable Convolutions

Previous Layer

3x3 Conv 3x3 Conv 3x3 Conv 3x3 Conv 3x3 Conv

1x1 Conv

Concat

HxWxC

HxWxC

This grouping of independent 
single-channel convolutions sometimes 
called a depthwise convolution

Equivalent:
● First apply 1x1 Conv (C->C)
● Then apply 3x3 Convs (1->1) along each channel
● Concatenate results



Separable Convolutions

Previous Layer

3x3 Depthwise Conv

1x1 Conv

Concat

HxWxC

HxWxC

Separable Convs factor channel dependence from spatial dependence!

Diagonal Matrix

SVD



Separable Convolutions

Previous Layer

3x3 Depthwise Conv

1x1 Conv

Concat

HxWxC

HxWxC

Previous Layer

1x1 Conv

3x3 Depthwise Conv

Concat

HxWxC

HxWxC

Note: conventionally, Separable Convs are Depthwise Conv followed by 
1x1 Conv:

○ Not quite equivalent, but same computational properties, difference 
goes away if you stack many separable convs together



Case Study (2017): MobileNet v1 (Howard et al)

● 95% of computation is 1x1 convolutions efficiently implemented with GEMMs. 

Type Output Depth Output Resolution
Convolution 32 112

Separable Convolution 64 112

Separable Convolution 128 56

Separable Convolution 128 56

Separable Convolution 256 28

Separable Convolution 256 28

Separable Convolution 512 14

Separable Convolution 512 14

Separable Convolution 512 14

Separable Convolution 512 14

Separable Convolution 512 14

Separable Convolution 512 14

Separable Convolution 1024 7

Separable Convolution 1024 7

Avg Pool + FC 1000 1

Slide credit: Andrew Howard

Early reduction in 
resolution (like 

GoogLeNet

No heavy FC

“Full first 
convolution”

Separable 
convolutions w/VGG 

like structure



MobileNet Performance

100% MobileNet 224 Resolution 50% MobileNet 160 Resolution

Model
Imagenet 
Accuracy Million MACs

Million 
Parameters Model

Imagenet 
Accuracy Million MACs

Million 
Parameters

MobileNet 70.6 568 4.2
50% MobileNet 
160 Resolution 60.2 76 1.32

Inception V1 TF 
(GoogleNet) 69.8 1550 6.8 Squeezenet 57.5 850 1.25

VGG 16 71.5 15300 138 Alexnet 57.2 720 60

27X Less Computation than VGG16
32X Smaller than VGG16
Nearly Same Accuracy as VGG16

9.4X Less Computation than Alexnet
45X Smaller than Alexnet
3% Better than Alexnet

Slide credit: Andrew Howard





Generalization: Temporal Separability

Carreira and Zisserman.  Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. CVPR 2017.

Xie et al. "Rethinking Spatiotemporal Feature Learning For Video Understanding." 



Another Generalization: “Grouped” Convolutions
Not to be confused w/”Group Convolutions”

Parallel/Independent convolution 
pathways: 

● Each Conv operates independently on a 
“group” of K input channels and produces 
its own “group” of L output channels

● Grouped Conv (with G groups) Op:
○ Input: GK channels 
○ Output: LK channels 64 64 64 64

16 16 16 16

3x3 Conv 3x3 Conv3x3 Conv 3x3 Conv

Input: (4*64 = 256 channels)



Grouped Convs in AlexNet

(Earlier we ignored this detail in the AlexNet paper)

GPU 1

GPU 2



Quick Recap

Spent a lot of time focusing on  computation via Factored Convolutions:

● Inception Blocks
● Bottleneck layers
● Spatial Factorization
● Separable Convolutions (Bottleneck trick to the extreme)
● MobileNet, GoogLeNet, Inception V2
● Group Convolution (as a generalization of Separable Convolutions)

Let’s turn to optimization issues.  Next up:

● Batch norm
● Residual networks



Motivation: Internal Covariance Shift

Layer i+1

Layer i

During training, Layer i+1 needs to keep adapting 
to Layer i’s shifting input distribution :(



Motivation: Internal Covariance Shift

Layer i+1

Layer i

During training, Layer i+1 needs to keep adapting 
to Layer i’s shifting input distribution :(

Idea of batch norm: Add intermediate layer that 
normalizes Layer i’s output distribution to zero mean, 
unit variance.

Desiderata: Want this new layer to be:

● Differentiable 
● Computationally efficient



Batch Normalization (for FC layers)

Approach:
● Ideally, normalize by entire training dataset 

--- but if we need to do this every step, 
too expensive.  Normalize by minibatch 
stats instead.

● Normalize features independently.

Input X
(from last layer)

Ba
tc

h 
si

ze
 N

C channels

Shape: [1, C]



Batch Normalization (for FC layers) Training

Approach:
● Ideally, normalize by entire training dataset 

--- but if we need to do this every step, 
too expensive.  Normalize by minibatch 
stats instead.

● Normalize features independently.

Relax hard zero mean, 
unit variance constraint;

Allows BN to recover identity 
function (if that were the optimal 

thing to do)

Gamma, beta, learnable parameters!

Input X
(from last layer)

Ba
tc

h 
si

ze
 N

C channels

Shape: [1, C]



Getting the Batch Norm Statistics Right

● If minibatch size m too small: 
“batch norm statistics” will be 
very noisy
○ When training on multiple GPUs, 

typically estimate per-device BN 
statistics; but for small batch 
sizes, often better to sync 
statistics across devices

● At test time, estimate batch 
norm statistics by averaging 
over very large set (using 
moving averages)



Typical Batch Norm Usage

({Conv, FC} -> Batch Norm -> ReLU) is the typical pattern for most modern 
convnets (except at the last layer)

● Note: can remove bias parameter from previous layer when using BN

We will assume (henceforth) that BN and ReLU are present when we use “Conv”

Conv

BN

ReLU

Conv

FC

BN

ReLU

FC

For Convs, use same 
batch norm parameters 
for all spatial locations

Situates layer outputs in ReLU’s “elbow” 



Batch Norm Folding/Fusing

Conv

BN

ReLU

Conv 
w/new 

weights

ReLU

Since Batch Norm is linear w.r.t input, at test 
time (you can think of it as a 1x1 Conv if you 
want), the operation can be merged into the 
previous Conv/FC

So adding BN to a ConvNet does not 
introduce additional computation at 
inference time

Train Test



Example: Inception-BN on ImageNet

● Simpler variant of Inception v2; a whopping ~30 layers (by my count)
● Batch norm before every nonlinearity

Training iterations

Im
ag

en
et

 v
al

id
at

io
n 

ac
c



Batch Norm Benefits/Gotchas

● Reduces Internal Covariate Shift (maybe, not really?)

● Smooths optimization landscape, 

● Helps stabilize, regularize, speed up training

● No added computation at test time

● Reduces need to do dropout

● Hard to debug sometimes - different train/test modes

● Batch norm “wants” a large batch size

● Output for a given example now has a strange dependency on everything in 

minibatch



Quick Recap

● Batch Normalization motivation: “internal covariate shift”

● Batch Normalization update equations

● Folded Batch Normalization parameters

● Many successor to Batch Norm: e.g., GroupNorm, Batch Renorm, Filter 

Response Normalization… but Batch Norm is still king :)

So far, we skipped around a bit - but now we return back to end of 2015...



From ~20 layers to >100 layers!

Residual Networks (2015)



What would happen if we could just add more layers?
(if compute weren’t an issue)

CIFAR dataset (32x32 inputs)

Lo
w

er
 is

 b
ett

er

Observation: Deep 56 layer net 
underperforms shallower 20 
layer net.  

Hypothesis: Overfitting??  Let’s 
check train error

Deep Residual Learning for Image Recognition 
by He et al



What would happen if we could just add more layers?
(if compute weren’t an issue)

Deep Residual Learning for Image Recognition 
by He et al

Observation: Deep 56 layer net still underperforms 
shallower 20 layer net in training error!!  

Next Hypothesis: Optimization issue? Is SGD is harder for 
deeper models (e.g. due to vanishing gradients?)



Idea: Let’s make it “easy” for optimizer to learn 
identity transforms in extra layers

● Why would this help?
○ If so, then we can always set additional layers of a deep network to be identity 

and mimic performance of a shallow model
○ In this case, performance of deep network should always be equal or better to 

shallow network on training loss



Identity mapping with shortcuts

Conv

Conv

ReLU

X

H(X)

Conv

Conv

ReLU

X

H(X)=F(X)+X

X

“Plain unit” “Residual unit”

F(X) is a “residual”

Shortcut connection - For 
this to work, Convs need to 
be dimension preserving

Setting either Conv to 
zeros will recover 
identity 

ReLU

ReLU



Residual Networks
● Use Conv w/stride 2 instead of Pool
● Like VGG - extremely simple structure
● Like inception, aggressively reduce resolution in early 

layers, Pool at top with no heavy FC

Block 1, 
c=64

3 residual units

Block 2, 
c=128

4 residual units

Block 3, 
c=256

6 residual units

Block 4, 
c=512

3 residual units

(3+4+6+3 residual units) * (2 convs per residual unit) + First conv + Last FC 
= 34 layers

Special case residual units when we change resolution (use 1x1 Conv(X) instead of X in shortcut w/o ReLU)



Residual Networks solve the optimization problem

Residual Connections allow deeper network to outperform shallower network!



Bottleneck Units

Conv

Conv

ReLU

X

H(X)

Conv

Conv

ReLU

X
“Plain unit” “Basic Residual unit”

ReLU

X

“Bottleneck Residual unit”

1x1 Conv (4C->C)

1x1 Conv (C->4C) 

ReLU

X

ReLU

X
3x3 Conv (C->C)

ReLU

Deeper for less compute



Resnet 18/34/50/101/152

Often see ablations done with a smaller Resnet, then experiments that “pull out 
all the stops” with a heavier variant

Basic Residual Units Bottleneck Residual UnitsInput size: 
224x224

MobileNet (v1): 2.5x108 VGG: 19.6x109FLOPS for comparison:

Block 1

Block 2

Block 3

Block 4



Total World Dominance (on ImageNet and COCO)

After 5 years, Resnet still ubiquitously used!

We will cover COCO later

Single Model Results

Human top-5 error ~5%



Resnet v2 w/Pre-activation residual units

Remember: before, we were implicitly assuming Batch Norm as part of the Conv

Conv

BN

ReLU

Conv

BN

ReLU

Identity Mappings in Deep Residual Networks by He et al

Conv

BN

ReLU

Conv

BN

ReLU

Original Residual unit “Pre-activation 
Residual Unit”

Can’t recover identity 
function from stacked 
original Residual Units 
because of ReLU

Allows for entire 
network to recover 
identity function (if we 
ignore downsampling 
layers)

Better for backprop; 
allows deeper models 
to be trained (e.g. 
1001-layer Resnet on 
CIFAR)



What are all those layers doing!!?!

Answer: being very redundant!  Let’s discuss a few ways to think about these 
layers.

“While depth of representation has been posited as a primary reason for their 
success, there are indications that these architectures defy a popular view of 
deep learning as a hierarchical computation of increasingly abstract features at 
each layer.”

Highway and Residual Networks Learn Unrolled Iterative Estimation, Greff et al



Dropping blocks from ResNet

Weird but true fact: you can delete blocks from Resnet (even after training) 
and expect performance to be roughly the same (!)

Residual Networks Behave Like Ensembles of Relatively Shallow Networks by Veit et al



Permuting Blocks from Resnet

Residual Networks Behave Like Ensembles of Relatively Shallow Networks by Veit et al



Multipath Ensembling Interpretation

Resnet behaves like an ensemble over an exponential collection of networks 
consisting of paths through this unraveled view --- (though note that it is not 
actually an ensemble.)

Residual Networks Behave Like Ensembles of Relatively Shallow Networks by Veit et al

Simple Resnet with 3 residual units Equivalent “Unraveled View”



Iterative Estimation interpretation of Resnets

● Residual Connections Encourage Iterative 

Inference by Jastrzebski et al

● Highway and Residual Networks Learn 

Unrolled Iterative Estimation by Greff et al



Quick Recap

● Residual Connections as a way to “easily” learn identity transformation

● Resnet Architectures with Basic and Bottleneck residual units

● Pre-activation residual units

● Layer redundancy, ensemble-like behavior and other theoretical 

interpretations of Resnets



ImageNet since Residual Networks

● 2016:  Ensembles of Inception and Resnet based models

● 2017: Squeeze and Excitation networks

Post 2017

● More emphasis on automating architecture design



Squeeze and Excitation

Squeeze-and-Excitation Networks by Hu et al

Idea: Use global image 
context to selectively 
emphasize/suppress channels

SE modules + Resnet variant 
won Imagenet 2017

Average pooling 
for global context

Apply small net 
w/bottleneck trick

Per-channel [0, 1] 
weights

This kind of feature 
reweighting is sometimes 
called self-gating



Neural Architecture Search (NAS)

Human-designed

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks by Tan & Le

NAS circa 2017, 2018
Today



Neural Architecture Search (NAS)

● Neural architecture search with reinforcement learning by Zoph et al
● Learning transferable architectures for scalable image recognition by Zoph et al
● Progressive Neural Architecture Search by Liu et al
● MnasNet: Platform-Aware Neural Architecture Search for Mobile by Tan et al
● EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks by Tan et al
● DARTS: Differentiable architecture search by Liu et al
● Neural Architecture Search: A Survey by Elsken et al 

Three ingredients of a NAS system:
● Search space
● Search strategy
● Performance Estimation

Fig from MnasNet: Platform-Aware Neural Architecture Search for Mobile by Tan et al



ImageNet Coda

After 8 years (2017), ImageNet team declared victory, moved competition to 
Kaggle

Impact:

● 10x reduction of image classification error, 

beating human level performance

● >15K citations (major underestimate of 

impact)

● “Made neural nets cool again”

● Inspired many datasets --- “ImageNet of X”

ImageNet: Where have we been? Where are we going? by Fei Fei Li and Jia Deng 



(Quote from Fei Fei Li and Jia Deng, quoting Winston Churchill)



So what’s next?

Obama
Person
Scale



Next: Boxes, Segments, Human Pose

Based on a figure from Jia Deng and Kevin Murphy


